Consistent Couplings between a Massive Spin-3/2 Field and a Partially Massless Spin-2 Field
Abstract
:1. Introduction
2. Main Results
3. Consistent Couplings in the Stueckelberg Formulation
3.1. The Free Model
3.2. Interactions to First Order
- In the Stueckelberg formulation, the deformation of the Lagrangian that corresponds to the first vertex presented in Introduction readsup to trivial field redefinitions. The coefficient in front of it is, at this stage, arbitrary.
- In the Stueckelberg formulation, the deformation of the Lagrangian that corresponds to the second vertex presented in Introduction readsOn the contrary to the free Stueckelberg theory where the flat limit is smooth, in the interacting case, we cannot take limit as the vertex is non-analytical in constant .
- The above vertex induces a deformation of the gauge transformations given byThe corresponding gauge algebra isThe redefinition of the gauge parameters that trivializes the gauge algebra is
3.3. Reaching the Unitary Gauge at First Order in Deformation
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinoviev, Y.M. On massive spin 2 interactions. Nucl. Phys. B 2007, 770, 83–106. [Google Scholar] [CrossRef]
- Khabarov, M.V.; Zinoviev, Y.M. On massive spin-3/2 in the Fradkin–Vasiliev formalism. Class. Quant. Grav. 2021, 38, 195012. [Google Scholar] [CrossRef]
- Zinoviev, Y.M. On massive higher spin supermultiplets in d = 3. Nucl. Phys. B 2023, 996, 116351. [Google Scholar] [CrossRef]
- Zinoviev, Y.M. On Partially Massless Supergravity. Phys. Part. Nucl. 2018, 49, 850–853. [Google Scholar] [CrossRef]
- Deser, S.; Nepomechie, R.I. Anomalous Propagation of Gauge Fields in Conformally Flat Spaces. Phys. Lett. B 1983, 132, 321–324. [Google Scholar] [CrossRef]
- Higuchi, A. Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-time. Nucl. Phys. B 1987, 282, 397–436. [Google Scholar] [CrossRef]
- Deser, S.; Waldron, A. Partial masslessness of higher spins in (A)dS. Nucl. Phys. B 2001, 607, 577–604. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [PubMed]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Boulanger, N.; Deffayet, C.; Garcia-Saenz, S.; Traina, L. Consistent deformations of free massive field theories in the Stueckelberg formulation. J. High Energy Phys. 2018, 7, 21. [Google Scholar] [CrossRef]
- Barnich, G.; Henneaux, M. Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 1993, 311, 123–129. [Google Scholar] [CrossRef]
- Henneaux, M. Consistent interactions between gauge fields: The Cohomological approach. Contemp. Math. 1998, 219, 93–110. [Google Scholar] [CrossRef]
- Stueckelberg, E.C.G. Théorie de la radiation de photons de masse arbitrairement petite. Helv. Phys. Acta 1957, 30, 209–215. [Google Scholar]
- Ruegg, H.; Ruiz-Altaba, M. The Stueckelberg field. Int. J. Mod. Phys. A 2004, 19, 3265–3348. [Google Scholar] [CrossRef]
- de Rham, C. Massive Gravity. Living Rev. Rel. 2014, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, N.; Campoleoni, A.; Cortese, I.; Traina, L. Spin-2 twisted duality in (A)dS. Front. Phys. 2018, 6, 129. [Google Scholar] [CrossRef]
- Garcia-Saenz, S.; Hinterbichler, K.; Rosen, R.A. Supersymmetric Partially Massless Fields and Non-Unitary Superconformal Representations. J. High Energy Phys. 2018, 11, 166. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Khabarov, M.V.; Snegirev, T.V.; Zinoviev, Y.M. Lagrangian description of the partially massless higher spin N = 1 supermultiplets in AdS4 space. J. High Energy Phys. 2019, 8, 116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulanger, N.; Lhost, G.; Thomée, S. Consistent Couplings between a Massive Spin-3/2 Field and a Partially Massless Spin-2 Field. Universe 2023, 9, 482. https://doi.org/10.3390/universe9110482
Boulanger N, Lhost G, Thomée S. Consistent Couplings between a Massive Spin-3/2 Field and a Partially Massless Spin-2 Field. Universe. 2023; 9(11):482. https://doi.org/10.3390/universe9110482
Chicago/Turabian StyleBoulanger, Nicolas, Guillaume Lhost, and Sylvain Thomée. 2023. "Consistent Couplings between a Massive Spin-3/2 Field and a Partially Massless Spin-2 Field" Universe 9, no. 11: 482. https://doi.org/10.3390/universe9110482
APA StyleBoulanger, N., Lhost, G., & Thomée, S. (2023). Consistent Couplings between a Massive Spin-3/2 Field and a Partially Massless Spin-2 Field. Universe, 9(11), 482. https://doi.org/10.3390/universe9110482

