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Abstract: We revisit the problem of constructing consistent interactions between a massive spin-3/2
field and a partially massless graviton in four-dimensional (anti) de Sitter (A)dS4 spacetime. We use
the Stueckelberg formulation of the action principle for these fields and find two non-trivial cubic
vertices with less than two derivatives when moving to the unitary gauge. One of the vertices is
reminiscent of the minimal coupling of the massive spin-3/2 field to gravity, except that now the
graviton is partially massless.
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1. Introduction

The use of the Stueckelberg formulation for the problem of constructing consistent
interactions between massive fields has proved very efficient, mainly through the works of
Zinoviev and collaborators, see, e.g., [1–3] and references therein. Some years ago in [4],
Zinoviev constructed cubic couplings between a massive spin-3/2 field and a massive
spin-2 graviton around the anti-de Sitter (AdS4) and the de Sitter (dS4) backgrounds, with
the assumption that the couplings should not bring more than one derivative. Then, the
partially massless limit for the graviton was considered, resulting in the conclusion that no
cubic vertex with one derivative survived in this limit.

The partially massless graviton does not exist around a Minkowski background. In
order to propagate, such a particle requires a background that is either anti-de Sitter (AdS)
or de Sitter (dS), depending on whether the cosmological constant Λ of the maximally-
symmetric space is negative of positive, respectively. In such maximally symmetric space-
times with nonvanishing cosmological constant, a partially massless graviton possesses
four propagating degrees of freedom and is characterized by a well-suited mass directly re-
lated to the cosmological constant Λ, as we recall shortly and as discussed at length in [5–7],
for example. Obviously, the dS4 background is particularly relevant for early-Universe cos-
mology. The terminology “Partially Massless” (sometimes shortened by the acronym “PM”
in the rest of this paper) is justified because the four helicity degrees of freedom of such a
particle are intermediate between the five degrees of freedom of a massive spin-2 field and
the two helicity ±2 degrees of freedom of the massless graviton. The partially massless
graviton possesses four propagating degrees of freedom corresponding to helicities ±2 and
±1. The corresponding PM field kµν satisfies the Klein-Gordon-like equation

(�− m̃2c2

h̄2 )kµν = 0, m̃2 := 2
3 Λ, (1)

where � is the Laplace–Beltrami operator in (A)dS4. We note that the mass term is propor-
tional to the cosmological constant Λ of the maximally symmetric background.

A physical motivation behind the search for interactions between a PM graviton
and a real, massive spin-3/2 field is that there is an equal number of physical degrees of
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freedom for a partially massless graviton and a real, massive spin-3/2 field, suggesting a
possible supersymmetry mixing these two fields. An interacting theory for the PM graviton
and a real massive spin-3/2 field would therefore be reminiscent of supergravity, for a
partially massless graviton instead of the massless graviton and for a massive spin-3/2
field instead of the massless gravitino of supergravity. On a more phenomenological side,
the results of black-hole mergers [8] have put a lower bound on the mass of the graviton
that does not prevent the graviton from being partially massless. The point is that the
mass of the partially massless graviton is fixed by the cosmological constant, as recalled
in Equation (1), and that the cosmological constant of our Universe is observed to be very
small indeed [9]. Numerically, we have Λ ∼ 10−66(eV)2/c4, while it has been observed
that the graviton squared mass m2

G is bounded from above by the numerical value of the
order 10−52(eV)2/c4. This leaves enough room for a partially massless graviton, with
fourteen orders of magnitude.

We wish to revisit the question of possible couplings between the PM graviton and
a real, massive spin-3/2 field, this time taking the spin-2 field as partially massless from
the very beginning of the analysis. Indeed, the operations of introducing interactions and
taking a partially massless limit do not commute, in general. In fact, in this paper, we
report a coupling between a partially massless spin-2 field and a massive spin-3/2 field
that seems to have gone unnoticed in previous investigations, as far as we could see.

In order to build consistent vertex involving massive fields (in the present case, the
massive spin-3/2 field), we use the method proposed in [10] that combines the cohomolog-
ical reformulation of the Noether method for gauge systems [11,12] with the Stueckelberg
formulation for massive fields. The Stuckelberg formulation [13] of theories for massive
fields proves to be very useful, in the sense that it brings gauge invariance that controls the
degrees of freedom and hence the possible interactions to be added to the free theory. The
Stueckelberg formalism has been widely used since its invention; see [14] for a pedagogical
review of the Stueckelberg formalism. The advantage of the method [10] is that it exploits
the gauge structure of massless theories to describe interactions for massive fields. It proved
useful in showing that the de Rham, Gabadadze, and Tolley (dRGT) gravity (see, e.g., [15]
for a review) can be recast in a frame where the Einstein–Hilbert structure disappears,
leaving only a Born–Infeld-like theory, with vertices obtained by contraction of products of
the manifestly gauge-invariant field strengths in the Stueckelberg formulation of the free
massive theory. In particular, in [10], the full list of cubic vertices of massive dRGT gravity
theory was recovered, showing the usefulness of the method.

In this paper, we use the cohomological method of [10] for the search of consistent
couplings between a massive spin-3/2 field and a partially massless (PM) spin-2 field, also
called PM graviton. As we wrote above, the spacetime backgrounds considered in this
paper are the anti-de Sitter (AdS) and the de Sitter (dS) geometries where the cosmological
constant Λ is negative and positive, respectively. In its PM phase, the graviton therefore
propagates four degrees of freedom, exactly like the massive spin-3/2 field that carries
four degrees of freedom. It is therefore natural to ask whether it is possible to elaborate
a consistent gauge theory in which a PM graviton kµν and a massive spin-3/2 field ψµ

are involved.
We study the problem in both dS (Λ > 0) and AdS (Λ < 0) backgrounds at a stroke,

through the use of parameter σ that takes the value of +1 in AdS and −1 in dS.

2. Main Results

The main results we report in this paper consist in the construction of two vertices
expressed in the Stueckelberg formulation for both the PM spin-2 and the massive spin-3/2
fields. In the unitary gauge where the Stueckelberg fields are set to zero, the first vertex is
proportional to

`(1) = 2∇[µkν]ρ ψµ γρ ψν, (2)

where the spinor field ψµ satisfies the Majorana reality condition and denotes the field for
the massive spin-3/2 particle (the spinor indices are left implicit), the Lorentz-covariant
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derivative for the background geometry (we use conventions whereby the Lorentz-covariant
derivative satisfies [∇µ,∇ν]Vρ = −2σ λ2 δρ

[µ Vν], where σ = ±1. In other terms, the cos-
mological constant is Λ = −3 σ λ2 in four dimensions, where σ = −1 corresponds to
dS4 and σ = 1 to AdS4. On a Dirac spinor ψ, we have [∇µ,∇ν]ψ = − 1

2 σ λ2 γµν ψ) is
denoted by symbol ∇µ, and the symmetric rank-two tensor field kµν = kνµ represents the
PM spin-2 field. Throughout this paper, spacetime indices between square brackets are
antisymmetrised with strength one. For example, one has ∇[µkν]ρ = 1

2 (∇µkνρ −∇νkµρ)
and 2 ∂[µ Aν] = ∂µ Aν − ∂ν Aµ. The components of the (A)dS background metric are denoted
as gµν. As usual, the four Dirac matrices are denoted by γa, a = 0, 1, 2, 3, and γµ := eµ

a γa

featuring the components of the background (A)dS vierbein.
The other coupling is more interesting. In the unitary gauge, it reads

`(2) = kµν T µν, T µν = ω ψρ γρ(µ ψν) + ψσ γρσ(µ∇ρψν), ω :=
√

m2 + σλ2 , (3)

where the real parameter m is the mass of the spin-3/2 field in AdS, in the sense that the
limit m → 0 is the limit where the spin-3/2 field enjoys a gauge symmetry that removes
the helicity ±1/2 degrees of freedom, leaving only the helicity ±3/2 degrees of freedom
on shell. Tensor T µν is traceless and divergenceless on shell:

gµν T
µν ≈ 0, ∇µT µν ≈ 0, (4)

where a weak equality is an equality that holds on the solutions of the field equations
for the free theory. The above vertex `(2) = kµν T µν induces a deformation of the gauge
transformations on the physical fields (kµν, ψµ) in the unitary gauge, given by

δ1ψµ = −ψν∇µ∇νξ + σ λ2 ψµ ξ, δ1kµν = 0, (5)

where we recall that the free, quadratic action S0[k, ψ] is invariant under [5–7]

δ0kµν = ∇µ∇νξ − σ λ2 gµν ξ, δ0ψµ = 0. (6)

From the knowledge of the quadratic and cubic actions S0[k, ψ] and S1[k, ψ] =
∫

d4x
√

ḡ `(2)

in the unitary gauge, we readily find the consistency of the deformation reported above:

δ0S1[k, ψ] + δ1S0[k, ψ] = 0. (7)

As far as deformation `(2) is concerned, we note from (5) and (6) that the transfor-
mation of the massive spin-3/2 field can be written as δ1ψµ = −ψν δ0kµν, from which
it is tempting to view the contravariant spinor ψµ as a gauge-invariant quantity, defin-
ing the covariant field as ψµ := ψν(gµν − κ kµν + O(κ2)), where κ is the deformation
parameter that we take with units of length that defines perturbative expansion S[φ] =
S0[φ] + κ S1[φ] +O(κ2), δφ = δ0φ + κ δ1φ +O(κ2) such that δS[φ] = 0 +O(κ2). In this
sense, like in Riemannian geometry, it would appear that metric gµν := gµν − κ kµν +O(κ2)
could be defined in terms of the (A)dS background metric and the PM spin-2 field kµν.

In the following section, we present the two deformations reported above in their
Stueckelberg form, and explain how the unitary gauge at first order in perturbation can be
reached, thereby reproducing the main results presented above.

3. Consistent Couplings in the Stueckelberg Formulation

In this section, we first spell out the free model, then exhibit the first-order interac-
tions we found, and finally explain the ways in which the unitary gauge at first order
in deformation can be reached.
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3.1. The Free Model

We want to investigate the couplings between a massive spin-3/2 field and a PM
spin-2 field. Our starting point is the Stueckelberg formulation for these models. The
Stueckelberg action for a massive spin-3/2 field and a PM spin-2 field in (A)dS4 reads

S0[kµν, Bµ, ψµ, χ] =
∫

d4x
√
−ḡ

(
− 1

2
∇ρkµν∇ρkµν +∇ρkµν∇µkρ

ν −∇µk∇νkµν

+
1
2
∇µk∇µk +

σ

4
FµνFµν − 2σλ2(kµνkµν − 1

4
k2)

+ 2λ [k∇µBµ − kµν∇µBν] + 3λ2 BµBµ

)
+
(
− 1

2
ψµ γµνρ ∇νψρ +

ω

2
ψµ γµν ψν −

3ω

2
χχ

− 3
4

χ γµ ∇µχ− 3m
2

ψµ γµ χ
)

,

(8)

where Fµν = 2∇[µBν] ≡ ∇µBν −∇νBµ is the Abelian field strength for the U(1) vector
gauge field Bµ. For the spin-2 sector, we use the conventions of [16]. The vector field Bµ

and the Majorana spinor χ are, respectively, the Stueckelberg companions of kµν and ψµ.
The Stueckelberg action (8) is invariant under the following Abelian gauge transformations:

δ0kµν = 2∇(µεν) + λ ḡµν π, δ0Bµ = ∇µπ + 2σλ εµ,

δ0ψµ = ∇µθ +
ω

2
γµ θ, δ0χ = m θ.

(9)

The rationale behind these transformations is as follows. First, the gauge transforma-
tion law of the Stueckelberg field χ shows that, as long as the mass parameter m is nonzero,
one can gauge fix χ to zero by using gauge parameter θ(x). Once this is achieved and the
gauge where χ = 0 is reached, the field ψµ becomes gauge invariant, as it should for a
massive field. Second, the gauge transformation law of the Stueckelberg field Bµ shows
that, as long as the cosmological constant of the (A)dS background is nonvanishing, one can
gauge fix Bµ to zero by using gauge parameter εµ(x). There is, however, a residual εµ-gauge
transformation whereby gauge Bµ = 0 is preserved when a π-gauge transformation of field
Bµ is accompanied with an ε̄µ-transformation with parameter ε̄µ = − σ

2λ ∇µπ. As a result,
in the gauge where Bµ = 0, the residual gauge transformation of the PM gauge field kµν

becomes δ0kµν = ∇µ∇νξ − σλ2 gµν ξ, where we define ξ := − σ
λ π. One thereby recovers

the well-known transformation law (6) of the PM spin-2 field, offering the rationale behind
gauge transformations (9).

It is useful to introduce the gauge-invariant quantities

Ψµ := ψµ − 1
m ∇µχ− ω

2m γµ χ,

Kµνρ := 2∇[µkν]ρ + 2 λ ḡρ[µBν] − σ
2λ ∇ρFµν,

(10)

in terms of which free action (8) can be written in a manifestly gauge invariant way:

S0[kµν, Bµ, ψµ, χ] =
∫

d4x
√
−ḡ L0

=
1
2

∫
d4x

√
−ḡ
(
−Ψµ γµνρ ∇νΨρ + ω Ψµ γµν Ψν − 1

2 KµνρKµνρ + KµKµ

)
, (11)

where Kµ = ḡαβKµ
αβ. The equations of motion obtained by extremising the above action

with respect to the fields kµν and ψµ are, respectively,

∇ρKρ(µν) − gµν∇ρKρ +∇(µKν) ≈ 0, (12)

∇νΨρ γµνρ + ω Ψν γµν ≈ 0. (13)
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These equations are useful in checking the consistency of vertex `(2). We notice that, setting
to zero the Stueckelberg field χ in Equation (13) and taking the flat limit whereby ω → m,
we reproduce the well-known Rarita–Schwinger equation γµνρ∂νψρ −mγµνψν = 0 for the
spinor field ψµ, using the fact that it obeys the Majorana reality condition.

3.2. Interactions to First Order

We now report our main findings obtained following the method proposed in [10] for
constructing interactions of massive fields in the Stueckelberg formulation. For the sake of
conciseness, in this paper, we refrain from reviewing this method and instead spell out the
results that can be checked without referring to the formalism developed in [10].

• In the Stueckelberg formulation, the deformation L(1)
1 of the Lagrangian that corre-

sponds to the first vertex `(1) presented in Introduction reads

L(1)
1 = Ψσ γρ Ψα Kσα

ρ, (14)

up to trivial field redefinitions. The coefficient in front of it is, at this stage, arbitrary.
• In the Stueckelberg formulation, the deformation L(2)

1 of the Lagrangian that corre-
sponds to the second vertex `(2) presented in Introduction reads

L(2)
1 = ω Ψµ γµν Ψρ kρν − ω2

m Ψ
µ

γν χ kµν +
ω2

m Ψµ γµ χ k

+ Ψσ γσνρ∇ρΨµ kµν − 2 ω
m ∇[ρΨσ] γσαχ kρ

α − ω
m ∇ρΨσ γρσχ k

− σ ω
2λ ΨσγρσΨαFρα − σ

2λ Ψσγαρσ∇αΨµFρµ.

(15)

On the contrary to the free Stueckelberg theory where the flat limit is smooth, in
the interacting case, we cannot take limit λ → 0 as the vertex is non-analytical in
constant λ.

• The above vertex induces a deformation of the gauge transformations given by

δ1ψµ = −ω kµν γν θ + ω γµ ψν εν − ω λ
m γµ χ π − λ ψµ π

− ω
m γν∇νεµ χ− ω

m γµ∇νχ εν + 2∇µψν εν − λ
m χ∇µπ

− 2
m ∇µ∇νχ εν, (16)

δ1χ = 2 m ψµ εµ − 2 εµ∇µχ− λ χ π, (17)

δ1kµν = 0, δ1Bµ = 0. (18)

The corresponding gauge algebra is

[δθ , δε]ϕ = δθ̃ ϕ, θ̃ = 2 ω γµθ εµ, (19)

[δθ , δπ ]ϕ = δθ ϕ, θ = −2 λ θ π. (20)

The redefinition of the gauge parameters that trivializes the gauge algebra is

θ → θ − κ
ω

m
γµ χ εµ + κ

λ

m
χ π. (21)

In order to express our results in the unitary gauge, we first need to explain how to
reach the unitary gauge in perturbation.
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3.3. Reaching the Unitary Gauge at First Order in Deformation

The starting point is a free theory S0[ϕ
i, χI ] with a spectrum of fields (ϕi, χI) such that

the latter are Stueckelberg companions of the former. In other words, we consider an action
S0 =

∫
dnxL0 that is invariant under the gauge transformations

δ0 ϕi = R0
i
I εI + R0

i
α εα, (22)

δ0χI = mI εI + R0
I
α εα, (23)

where we use De Witt’s condensed notation. The gauge invariance under the Stueckelberg
gauge parameters εI implies the Noether identities

δL0

δχI ≡ −
1

mI
R+

0
i
I
δL0

δϕi , (24)

where the operator R+
0

i
I denotes the adjoint of R0

i
I .

We assume we also have a consistent, first order deformation of the action and gauge
transformations, i.e., functional S1[ϕ

i, χI ] =
∫

dnxL1 and gauge transformation laws

δ1 ϕi = R1
i
I(ϕ, χ) εI + R1

i
α(ϕ, χ) εα, (25)

δ1χI = R1
I

J(ϕ, χ) εJ + R1
I
α(ϕ, χ) εα, (26)

such that

δ1S0[ϕ
i, χI ] + δ0S1[ϕ

i, χI ] = 0. (27)

Upon expanding the latter equation using (22)–(26), we obtain the following Noether
identity associated with the gauge parameters εI :

δL1

δχI ≡ −
1

mI

(
R+

0
i
I

δL1

δϕi + [R+
1

i
I(ϕ, χ)− 1

mJ
R+

1
J

I(ϕ, χ)R+
0

i
J ]

δL0

δϕi

)
. (28)

Inserting this expression for δL1
δχI in Equation (27) yields

0 =
∫

dnx εα
[
R+

0
i
α

δL1

δϕi +R+
1

i
α(ϕ, χ)

δL0

δϕi

]
, (29)

where

R0
i
α = R0

i
α −

1
mI

R0
i
I R0

I
α, (30)

R1
i
α(ϕ, χ) = R1

i
α(ϕ, χ)− 1

mI
R1

i
I(ϕ, χ) R0

I
α −

1
mI

R0
i
I R1

I
α(ϕ, χ)

+
1

mImJ
R0

i
J R1

J
I(ϕ, χ)R0

I
α. (31)

Equation (29) expresses the εα-gauge invariance of action S[ϕi, χI ] = S0[ϕ
i, χI ] + g S1[ϕ

i, χI ]
to the first order in perturbation; here, g denotes the coupling constant used in perturbation.
This equation is valid for an arbitrary field configuration, in particular it is valid when we
set Stueckelberg fields χI to zero. Using the following obvious equality

δL1

δϕi (ϕ, χ = 0) =
δĽ1

δϕi (ϕ), Ľ1 := L1|χ=0, (32)
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we obtain

0 =
∫

dnx εα
[
R+

0
i
α

δĽ1

δϕi + Ř+
1

i
α(ϕ)

δĽ0

δϕi

]
, (33)

Ľ0 := L0|χ=0, Ř1
i
α(ϕ) := R1

i
α(ϕ, χ = 0).

In its turn, the latter equation expresses the gauge invariance, up to first order in pertur-
bation, of the reduced action Š[ϕi] = S0[ϕ

i, χI = 0] + g S1[ϕ
i, χI = 0] under the gauge

transformations

δε ϕi = [R0
i
α + g Ř1

i
α(ϕ)] εα +O(g2). (34)

In the particular case studied in this paper where we have physical fields ϕi =
{kµν, ψµ} and Stueckelberg fields χI = {Bµ, χ} with gauge transformations at zeroth and
first order given in (9) and (16)–(18), respectively, we find Equation (7). As a consequence,
the reduced action is invariant under (5) and (6) as announced in the introduction, where
we rename the scalar parameter π into ξ, absorbing in it the constant factor − σ

λ .
From the above-derived Formula (34) for gauge transformations δε ϕi that leave invari-

ant the reduced action, we can make an observation on the corresponding transformations
of Stueckelberg field strengths

Φi := ϕi − 1
mJ

R0
i
J χJ . (35)

As is well-known, these quantities are invariant under Stueckelberg transformations

δε
0 ϕi = R0

i
I εI , δε

0χI = mI εI . (36)

Under complete transformation laws (22), (23), (25) and (26), Stueckelberg field strengths
Φi transform as

δΦi = R0
i
αεα + g

(
R1

i
α(ϕ, χ)εα + R1

i
I(ϕ, χ)εI

− 1
mI

R0
i
I R1

I
α(ϕ, χ)εα − 1

mJ
R0

i
J R1

J
I(ϕ, χ)εI

)
+O(g2).

(37)

If, on the right-hand-side of the above formula, we set χI = 0 and εI = − 1
mI

R0
I
α εα for the

residual εI(ε) parameters that preserve the unitary gauge χI = 0 at the zeroth order in per-
turbation, it turns out that we exactly recover the expression for δε ϕi transformations (34).

In other words, we could turn the argument around and obtain a heuristic way of
producing the right-hand side of Formula (34) by demanding that the operations of setting
fields χI to zero and performing gauge transformations commute on the Stueckelberg field
strengths, i.e., imposing ( δΦi)

∣∣
χ=0, ε=ε(ε) = δε(Φi

∣∣
χ=0).

4. Conclusions and Outlook

The first vertex, L(1)
1 , that we presented above in (14) does not deform Stueckelberg

gauge transformations (9). It is exactly invariant under the latter transformations. The second
vertex, L(2)

1 , given in (15) is more interesting in the sense that it truly deforms the gauge
transformations given in (9). The first term on the right-hand side of (16) is reminiscent
of the local supersymmetry transformations in the AdS background, offering the minimal
deformation of the mass-like term on the right-hand side of δ0ψµ = ∇µθ + ω

2 γµ θ; see (9).
Correspondingly, the first term on the right-hand side of (15) is the minimal deformation of
the mass-like term for the spinor Ψµ in the free action (11). However, on the contrary to the
situation in supergravity theories, there is no deformation proportional to the linearised
“spin-connection” ∇[µkν]ρ in (15) or in (16).
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It will be interesting to investigate the consistent interactions among the fields of the
enlarged spectra given in [17]. There, it was shown that the doublet (kµν, ψµ) consisting of
a PM spin-2 and a massive spin-3/2 field studied in the present paper must be completed
with a massless spin-(3/2, 1) doublet in order to carry the action of supersymmetry. We
hope to report soon on the interactions among these four fields. In paper [18], on the other
hand, it was found that the partially massless doublet (5/2, 2) can be completed with a
massless doublet (2, 3/2) in order to carry the action of supersymmetry. We intend to
investigate the consistent couplings among those fields in future work.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: The work of N.B. was partially supported by the FNRS grant No. T.0022.19 “Fundamental
issues in extended gravity”. The work of S.T. was partially supported by the FNRS ASP fellowship
FC 54793 MassHighSpin. The work of G.L. was partially supported by the FNRS grant F.4503.20.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: It is a pleasure to thank Yurii Zinoviev for useful comments and discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zinoviev, Y.M. On massive spin 2 interactions. Nucl. Phys. B 2007, 770, 83–106. [CrossRef]
2. Khabarov, M.V.; Zinoviev, Y.M. On massive spin-3/2 in the Fradkin–Vasiliev formalism. Class. Quant. Grav. 2021, 38, 195012.

[CrossRef]
3. Zinoviev, Y.M. On massive higher spin supermultiplets in d = 3. Nucl. Phys. B 2023, 996, 116351. [CrossRef]
4. Zinoviev, Y.M. On Partially Massless Supergravity. Phys. Part. Nucl. 2018, 49, 850–853. [CrossRef]
5. Deser, S.; Nepomechie, R.I. Anomalous Propagation of Gauge Fields in Conformally Flat Spaces. Phys. Lett. B 1983, 132, 321–324.

[CrossRef]
6. Higuchi, A. Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-time. Nucl. Phys. B 1987, 282, 397–436. [CrossRef]
7. Deser, S.; Waldron, A. Partial masslessness of higher spins in (A)dS. Nucl. Phys. B 2001, 607, 577–604. [CrossRef]
8. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al.

GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101.
[CrossRef] [PubMed]

9. Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak,
S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6; Erratum in Astron. Astrophys. 2021,
652, C4. [CrossRef]

10. Boulanger, N.; Deffayet, C.; Garcia-Saenz, S.; Traina, L. Consistent deformations of free massive field theories in the Stueckelberg
formulation. J. High Energy Phys. 2018, 7, 21. [CrossRef]

11. Barnich, G.; Henneaux, M. Consistent couplings between fields with a gauge freedom and deformations of the master equation.
Phys. Lett. B 1993, 311, 123–129. [CrossRef]

12. Henneaux, M. Consistent interactions between gauge fields: The Cohomological approach. Contemp. Math. 1998, 219, 93–110.
[CrossRef]

13. Stueckelberg, E.C.G. Théorie de la radiation de photons de masse arbitrairement petite. Helv. Phys. Acta 1957, 30, 209–215.
14. Ruegg, H.; Ruiz-Altaba, M. The Stueckelberg field. Int. J. Mod. Phys. A 2004, 19, 3265–3348. [CrossRef]
15. de Rham, C. Massive Gravity. Living Rev. Rel. 2014, 17, 7. [CrossRef] [PubMed]
16. Boulanger, N.; Campoleoni, A.; Cortese, I.; Traina, L. Spin-2 twisted duality in (A)dS. Front. Phys. 2018, 6, 129. [CrossRef]
17. Garcia-Saenz, S.; Hinterbichler, K.; Rosen, R.A. Supersymmetric Partially Massless Fields and Non-Unitary Superconformal

Representations. J. High Energy Phys. 2018, 11, 166. [CrossRef]
18. Buchbinder, I.L.; Khabarov, M.V.; Snegirev, T.V.; Zinoviev, Y.M. Lagrangian description of the partially massless higher spin N = 1

supermultiplets in AdS4 space. J. High Energy Phys. 2019, 8, 116. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.nuclphysb.2007.02.005
http://dx.doi.org/10.1088/1361-6382/ac1c1e
http://dx.doi.org/10.1016/j.nuclphysb.2023.116351
http://dx.doi.org/10.1134/S1063779618050398
http://dx.doi.org/10.1016/0370-2693(83)90317-9
http://dx.doi.org/10.1016/0550-3213(87)90691-2
http://dx.doi.org/10.1016/S0550-3213(01)00212-7
http://dx.doi.org/10.1103/PhysRevLett.118.221101
http://www.ncbi.nlm.nih.gov/pubmed/28621973
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1007/JHEP07(2018)021
http://dx.doi.org/10.1016/0370-2693(93)90544-R
http://dx.doi.org/10.1090/conm/219/03070
http://dx.doi.org/10.1142/S0217751X04019755
http://dx.doi.org/10.12942/lrr-2014-7
http://www.ncbi.nlm.nih.gov/pubmed/28179850
http://dx.doi.org/10.3389/fphy.2018.00129
http://dx.doi.org/10.1007/JHEP11(2018)166
http://dx.doi.org/10.1007/JHEP08(2019)116

	Introduction
	Main Results
	Consistent Couplings in the Stueckelberg Formulation
	The Free Model
	Interactions to First Order
	Reaching the Unitary Gauge at First Order in Deformation

	Conclusions and Outlook
	References

