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Abstract: Recently, in various theoretical works, path-breaking progress has been made in recovering
the well-known page curve of an evaporating black hole with quantum extremal islands, proposed to
solve the long-standing black hole information loss problem related to the unitarity issue. Motivated
by this concept, in this paper, we study cosmological circuit complexity in the presence (or absence)
of quantum extremal islands in negative (or positive) cosmological constant with radiation in the
background of Friedmann-Lemaître-Robertson-Walker (FLRW) space-time, i.e., the presence and
absence of islands in anti de Sitter and the de Sitter space-time having SO(2, 3) and SO(1, 4) isometries,
respectively. Without using any explicit details of any gravity model, we study the behavior of the
circuit complexity function with respect to the dynamical cosmological solution for the scale factors
for the above mentioned two situations in FLRW space-time using squeezed state formalism. By
studying the cosmological circuit complexity, out-of-time ordered correlators, and entanglement
entropy of the modes of the squeezed state, in different parameter space, we conclude the non-
universality of these measures. Their remarkably different features in the different parameter space
suggests their dependence on the parameters of the model under consideration.
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1. Prologue

In recent times, various outstanding quantum information theory concepts have been
extensively used to decode the enormous number of hidden secrets of a quantum theory
of gravity. Among all of these well known successful tools and techniques, in this paper,
we mainly concentrate on the underlying physics of circuit complexity [1]. The notion
of circuit complexity was first introduced in physics by Professor Leonard Susskind to
understand the mysteries of quantum aspects of black holes. It has been an important and
very successful probe in diagnosing certain interesting features underlying the system.
Before going into the details of this paper’s subject material, let us familiarize the readers
with the bigger picture to develop the strong background motivation of this paper.

The concept of quantum extremal islands [2,3] has been a very successful theoretical
concept in reproducing the page curve for an evaporating black hole [4] from semi-classical
considerations, which has been recently studied in various remarkable works [2,5–8]. This
program came into the picture to propose a possible solution to the long-standing famous
Hawking information loss paradox [9–11]; related to the preserving unitarity in evaporating
black holes. A better understanding of von-Neumann entropy was needed to understand
Hawking radiation. As a result, the idea of page curve remained incomplete and led to
many contradicting views. It was found that the consistent way of computing the entropy
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involved an area of a surface that is not the horizon. It is the surface that extremizes the
generalized entropy, and, hence, the name arises quantum extremal surface (QES) in the
associated literature. In References [2,5,6,12], the authors explicitly showed that using
QES, one can systematically start from a pure quantum state black hole. During the entire
process of evaporation, a consistent definition of the fine-grained entropy can be given.
The curve displayed by this entropy shows that the expected page curve is devoid of any
contradictions. Hence, the entropy computed, including QES was consistent with the
unitary evolution as expected from quantum mechanics. To successfully describe the
process, we need to add a bulk region in the QES after the page transition time, which aids
in reproducing the page curve. These bulk regions are known as islands.

Over the years, many formulations for entanglement entropy came into the picture and
were applied in various cases [13–18]. However, the computation of this entanglement
entropy is not always very trivial. One can expect to find various underlying unexplored
features of entanglement entropy by studying complexity without going into the technical
details of computing the entanglement entropy from a given gravitational paradigm taking
motivation from Leonard Susskind’s path-breaking idea [19]. He explicitly showed the
rate of change of complexity [20–22] is equal to the product of entropy and the equilibrium
saturation temperature [19], i.e., dC/dt = ST. Thus, he established a connecting relation
between the circuit complexity and the entanglement entropy for black hole systems. How-
ever, this is a conjectured relation and it has not been explicitly proved. Hence one cannot
take this relation to be universal. An explicit check of the validity of this conjecture might
be a very useful prospect and a generalization of this conjecture for a general gravitational
system might be reveal extremely interesting features of the considered system.

The notion of cosmological circuit complexity is intimately related with the out-of-
time-ordered correlation (OTOC) functions [23–27] which is generally used as a probe of
quantum chaos [28]. (This relationship between OTOC and complexity in presence of
quantum extremal islands within the framework of FLRW cosmology, particularly for the
two solutions for the scale factors may not be universal).

Cosmological Island bound : OTOC = exp(−c̄ exp(λa)) = exp(−C) (1)

where the equality holds for the maximal chaos inside the Island-inspired bulk region in
the FLRW cosmological background. This relation is also extremely useful in the context
of condensed matter systems, where computing the OTOCs is not always a trivial task.
Here the quantity, c̄ ∼ N−1/2, where N represents the number of degrees of freedom.
Additionally, it is important to note that, the quantum Lyapunov exponent, to describe the
quantum description of the chaotic phenomena has to satisfy the following constraint,
commonly cited as the Maldacena Shenker Stanford (MSS) bound in the associated literature,
as given by [28] (In the context of FLRW cosmology by utilizing the fact that, the quantum
Lyapunov exponent can be computed from the scale factor dependence of the Cosmological
Complexity, i.e.,).

λ =
d ln C(a)

da
, (2)

one can give a Cosmological extended version of the MSS bound, which is given by:

cosmological MSS bound : β−1 = T ≥ 1
2π

d ln C(a)
da

. (3)

We will talk about the technical details and derivations of this extended bound in the
latter half of this paper:

MSS bound : λ ≤ 2π

β
= 2πT, where β =

1
T

in h̄ = 1, c = 1, kB = 1 . (4)
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Here, β represents the inverse equilibrium temperature of the chaotic system during
saturation of the OTOC at a large evolutionary scale. In this connection, here, it is essential
to note that recently in Reference [29], Tom Hartman and co-authors investigated the
cosmological islands and the conditions for them to appear in gravitational curved space-
time without singularities. They showed that islands appear in the four-dimensional
FLRW cosmology with radiation and negative cosmological constant (cc). In contrast,
in the positive cosmological constant case, islands are absent in the bulk region. We take
a leaf from this paper, and, using the connection between complexity and OTOC as our
primary guiding principle, we reinvestigate these two particularly well-known cases from
the perspective of quantum chaos. We also study the behavior of these measures in two
different parameter spaces to show the non-universality of these measures. In this paper,
we show that the complexity for four-dimensional FLRW with radiation and negative cc
(AdS case, with SO(2, 3) isometry) resembles page curve behavior which is absent for the
positive cc (dS case, with SO(1, 4) isometry). We also compute the entanglement entropy
in the language of squeezed parameters and study their evolution with the scale factor.
The purpose of using this squeezed state formalism is to translate the given problem
entirely in the language of a general quantum mechanical system. The squeezed state
formalism also provides an elegant and efficient way of computing the entanglement
entropy particularly, von-Neumann and Renyi entropy in terms of the squeezed state
parameters. It also provides a way to connect the entanglement entropy with the circuit
complexity for the model under consideration. Thus, though not exactly, one will be able
to develop an idea about how the entanglement entropy of a particular system is related
to the circuit complexity and whether the conjectured relation proposed by Prof. Leonard
Susskind holds true in that particular case or not. We also observed that the complexity
measure and the OTOCs are parameter dependent quantities and have widely different
behavior in different regions of parameter space.

The present computation of circuit complexity, entanglement entropy, the four-point
OTOCs, and many physical observables and quantities can be computed by following the
standard techniques of quantum field theory of curved space-time for a general gravita-
tional metric [30–33], other than the situation where one tries to understand the black hole
geometry with and without quantum extremal islands in presence of time-evolving FLRW
metric. Even in the global and planar coordinates (inflationary patch) of De Sitter space, one
can compute a quantum effective action or a partition function by following a semiclassical
approach, where gravity is taken to be classical and fields which are embedded in the
gravity are taken to be quantum, if due to some additional physical criteria or speciality
in the physical set up, anisotropy and inhomogeneity are introduced from the starting
point [30–38]. However, once we talk about pure FLRW space-time from the starting point,
things are not as simple as mentioned above. Once a field is embedded in the FLRW
geometrical background (in presence or absence of islands), then due to the homogeneity
and isotropy property of the FLRW metric, fields are considered to be only time-dependent,
provided no influence of additional physics is considered here. Most importantly this is
not an assumption. Now, as we are interested in the quantum fluctuations of the fields
rather than the background embedded field, one usually introduces the inhomogeneity
and anisotropy in the metric, as well as in the field in such a way that the underlying setup
and physical outcomes do not get effected due to this. In this construction, the metric and
the field after introducing the anisotropy and inhomogeneity can be written as:

gµν(x, τ) = ḡµν(τ) + δgµν(x, τ), (5)

φ(x, τ) = φ̄(τ) + δφµν(x, τ), (6)

In the above equations in both cases, the first terms represents only the conformal time
τ (Conformal time and physical times are related by the following expression:

τ =
∫ dt

a(t)
. (7)
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Once we substitute the explicit physical time-dependent scale factor a(t) in FLRW space-
time then one can explicitly compute the connecting relationship between the conformal
time and physical time coordinates. In the present context of the discussion, we are
specifically interested in two special types of solutions of the scale factor in FLRW geometric
background, which can able to capture the information of quantum extremal islands, along
with having tradition with two different signatures of cosmological constants (positive
as well as negative) dependent background metric and the fields, respectively, which
preserve the mentioned homogeneity and isotropy in the FLRW space-time. On the other
hand, the second terms in the above equations are the outcome of perturbations in the
FLRW background which capture the effects of inhomogeneity and anisotropy. Now, as
we do not know how to treat a full quantum theory of gravity and how to deal with the
gravitational fluctuations at a quantum level, even for FLRW background geometry the
usual approach is to treat them classically. However, since we know how to quantize the
inhomogeneous perturbed field, we treat it at the quantum level. So here once again we
are using the semi-classical treatment to write down the quantum field theory in FLRW
space-time from the perturbed contributions but it is implemented in a little bit different
way to break the homogeneity and isotropy, which a general gravitational background
might not in principle always have. Now, having this setup, one can either follow the semi-
classical path integral approach by writing down the partition function or the associated
quantum effective action and can compute the quantities that we evaluated in this paper
within the context of time-evolving black hole geometry describing quantum extremal
islands in presence of radiation in FLRW background. The other approach is to treat the
problem by quantizing the Hamiltonian in terms of creation and annihilation operators
using the well-known canonical quantization technique in an appropriate gravitational
gauge. As we proceed further with the material of this paper, one can clearly visualize that
we also have chosen a preferred gravitational gauge which helps us to directly connect
the scalar part of the gravitational isotropy and homogeneity breaking fluctuation with
the field fluctuation. Consequently one can translate the Hamiltonian and its quantized
version in terms of gauge-invariant perturbations, which is commonly used in the context
of perturbation theory in FLRW space-time, or commonly known as the cosmological
perturbation theory [39–44]. Apart from using the usual canonical quantization technique,
in the present context of the discussion, we have used the single field squeezed state
formalism which helps us to think of the quantized Hamiltonian in terms of a mode
having momentum k and other having momentum −k in the Fourier space. Additionally,
using this formalism the quantized version of the Hamiltonian of the problem written
in the present set up can be parametrized in terms two parameters, which quantifies the
amplitude and phase of the two mode squeezed states. In the corresponding literature
it is identified as the squeezing amplitude rk(τ) and the squeezing angle φk(τ). For the
two given expressions for a scale factors a(τ) describing two different physical solutions of
FLRW space-time describing the time evolving black hole geometry it is possible to compute
the conformal time evolutions of these two parameters. Once this is done the rest of the
problem can be automatically solved as most of the physical observables can be expressed
in terms of these two time evolving parameters. This approach that we have followed in this
paper actually expresses a very complicated underlying semi-classical computation from
the quantum field theoretic set up in a very simplified language which helps us to extract
all physical information from the computation. Not only this approach helps to simplify
the complicated structure of the set up, but also helps to compute and physically interpret
many quantum-mechanical observables, circuit complexity function, entanglement entropy
of the black hole with or without having an island, and last but not the least also helps us
to predict the features of four-point OTOC in a very simplest language.

The main motivations behind the current work are as follows:
• Motivation-I

Instead of using the semi-classical approach to write down the quantum effective
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action of the theory, express the entire set-up in terms of single field two mode
squeezed state formalism [45,46];

• Motivation-II
To understand signatures of quantum chaos in FRW space-time in the presence and
absence of cosmological islands by using the quantum information theoretic measure
known as circuit complexity. Circuit complexity, which is much more computationally
easier compared to other probes, gives much more information about the underly-
ing system;

• Motivation-III
To comment about another probe of quantum chaos, i.e., OTOCs without directly com-
puting it but by establishing a closed relation with the circuit complexity. Computing
the OTOCs in this set-up is not a trivial task and is much more challenging, but it can
be very easily predicted by computing the circuit complexity;

• Motivation-IV
To study the dependence of circuit complexity on the parameters of the theory, thereby
establishing the fact that the behavior of circuit complexity is not universal throughout
the entire regime of the parameter space. The behavior of circuit complexity may not
unique in the entire parameter space of the model under consideration. Thus, circuit
complexity provides a way of probing the behavior of the model in the entire regime
of the parameter space;

• Motivation-V
To try to provide an alternative way of calculating entanglement entropy without
going into the gravitational details of the model but from the perspective of circuit
complexity which is much more easier to calculate. Circuit complexity also pro-
vides much more information than entanglement entropy, which in itself is a great
motivation for computing it for any gravitational or field theory model.

The organization of the rest of the paper is as follows:

• In Section 2, we provide a brief review of the long-standing black hole information
loss problem and various proposals given till date to solve it, focusing mainly on
the Island proposal as our prime motivation to study the cosmological extension of
this concept;

• In Section 3, we introduce the concept of circuit complexity to the readers to motivate
them about this computational tool’s role in probing various unexplored theoretical
framework related to quantum chaos and information theory related issues;

• We then provide the useful cosmological FLRW models with radiation and AdS and
dS space-time that we have considered in this paper to study chaos and complexity in
Section 4 of this paper;

• Following that in Section 5, we provide the analytical expressions of circuit complexity
calculated from two different cost functionals commonly used in the perspective of
cosmological perturbation theory written in the language of squeezed quantum states;

• In Section 6, We provide the expressions of the von-Neumann entanglement entropy,
Renyi entropy, and equilibrium temperature of the modes in terms of the squeezed
state parameters;

• Section 7 contains our numerical calculation of the cosmological version of the cir-
cuit complexity and estimation of quantities like the measure of quantum chaos,
i.e., quantum Lyapunov exponent;

• Finally, in Section 8, we conclude with our all findings in this paper with some inter-
esting future prospects of the present work.

2. A Brief Review on Islands Paradigm

Black holes are thought to hold the key for quantum aspects of the gravitational
paradigm. It has kept everyone puzzled ever since its appearance in Einstein’s theory
of general relativity. One of the biggest conundrums in quantum mechanics of black
hole physics, for half a century or so, has been the problem of unitarity or, in other words,
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the black hole information loss problem. Over the years, many proposals have tried to solve
this problem viz. black hole complementarity principle [47,48], fuzzball paradigm [49–56],
and firewall paradigm [57,58].

2.1. Pedagogical Details

In 2019, many renowned physicists came up with the path-breaking concept of tack-
ling the black hole information loss problem by introducing Islands [2,3,5,6,59–64]. They
proposed that the contribution to the black hole entropy came not only from inside the
horizon (bulk) region but also from the outside horizon region of the evaporating black hole.
Considering the generalized quantum entanglement entropy that includes the contribution
from outside the black hole, the unitarity issue can be solved perfectly and consequently;
the black hole information loss paradox can be resolved.

It is important to mention here that, without the inclusion of the island, the associated
entropy of the Hawking radiation increases monotonically with respect to the evolutionary
time scale. On the other hand, quantum mechanics demands that the final state of a black
hole should be a pure state, and the entanglement entropy should go to zero after a long
time. The island proposal provides a quantum correction in the result for the Bekenstein
Hawking entropy, for an evaporating black hole. By considering the existence of the island
region, it has been shown that after the page time, the island corrected entropy starts to
decrease to reach zero after a long time, which means there is no entanglement at the
very late time. Hence, the fundamental notion of unitarity of the black hole information is
restored, as shown in Figure 1.

Figure 1. Schematic diagram showing the entropy of the outgoing radiation of the evaporating black hole as a function of
physical evolutionary time scale. This schematic diagram was taken from [65].
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2.2. Technical Details

Island formula generalizes the well known Ryu-Takayanagi formula used to quantify
the holographic entanglement entropy [13–18,66–68]. Let us consider, R to be a non-
gravitational system which is entangled with a gravitational system. Then von Neumann
entropy of the region R is given by the following island formula:

Island formula : S(R) = min extI Sgen(I ∪ R) , (8)

where the generalized entropy is given by the following expression (Here in the first term,
we have fixed GN = 1 and h̄ = 1 in the natural unit system):

Generalized entropy : Sgen(I ∪ R) =
Area(∂I)

4
+ Sm(I ∪ R)− Sdiv(∂I) . (9)

Here I is the region in the gravitational system known as island, Sm(I ∪ R) is the
von Neumann entropy of the region (I ∪ R) and Sdiv(∂I) is the UV divergent entropy of
boundary of I, i.e., ∂I. Region I is entangled with region R, i.e., degrees of freedom of I are
encoded in R. It means that the operators in I can be rewritten as operators in R no matter
how complicated the form is.

Initial work on the Island prescription was done in the context of two dimensional
dilaton gravity [5,59,69–76]. The representative action for this system is given as follows:

Action in 1 + 1D : S =
1
2

∫
d2x
√
−g φ

{
R + K(φ)(∂φ)2 − 2V(φ)

}
, (10)

where the dilaton dependent coupling K(φ) and the representative potential V(φ) are
defined by the following expressions:

Jackiw− Teitelboim (JT) gravity :

K(φ) = 0, V(φ) = −λ2, (11)

Callan−Giddings−Harvey− Strominger (CGHS) gravity :

K(φ) =
1

φ2 , V(φ) = −2λ2. (12)

Action given in Equation (10) is an example of modified measure theory as discussed
in refs. [77,78]. Recently in refs. [79,80], the authors has shown the existence of islands
in higher dimensional space-time as well. Furthermore, in References [81–83], Professor
Robert C. Myers and co. also have studied quantum extremal Islands in arbitrary space-
time dimensions. Such islands can exist even without the presence of black holes. In this
D + 1 dimensional space-time the representative island action can be written as:

Action in D + 1 : S =
1
2

∫
dD+1x

√
−g φ

{
R + K(φ)(∂φ)2 − 2V(φ)

}
. (13)

In this paper, we consider 3 + 1 dimensional space-time model to study the circuit
complexity in FLRW islands to have realistic cosmological implications since our observed
universe is 3 + 1 dimensional. Recently, Hartman and collaborators in Reference [29] has
studied the presence of such islands in 3 + 1 dimensional FLRW space-time.

In 3 + 1 dimensional FLRW cosmological space-time the representative island action
can be expressed as:

Action in 3 + 1 D (Jordan) : SJ =
1
2

∫
dτ d3x a4(τ) φ

{
R + K(φ)(∂φ)2 − 2V(φ)

}
. (14)

Now, to extract the underlying the physical insight from the above mentioned model,
we need to perform conformal transformation on the above mentioned action. This allows
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us to express the Island action written in Jordan frame to the Einstein frame, which is
given by:

Action in 3 + 1 D (Einstein) : SE =
1
2

∫
dτ d3x a4(τ)

{
R̃ + (∂φ̃)2 − 2V(φ̃)

}
. (15)

where in the newly defined Einstein frame the redefined field can be expressed in terms of
the old frame field content as:

Field in Jordan frame : φ̃ =
∫ √

(2K(φ) + 3)
φ

dφ , (16)

where we have throughout used the following conformal transformation in the metric:

Einstein to Jordan frame : g̃µν = Ω2(φ) gµν where Ω2(φ) := φ . (17)

The above mentioned transformed action is in perfect form to analyze the cosmological
perturbation theory, as it is representing the simple Einstein gravity minimally coupled
to a canonical scalar field in the Einstein frame. This will further help us to study the
cosmological imprints from the above mentioned island action expressed in FLRW spatially
flat (k = 0) background space-time. To avoid any confusion here it is important to note
that, for further computational purpose we will drop the ˜ symbol from our analysis which
actually distinguish the Einstein and Jordan frame explicitly.

The conditions for such Islands to appear in any gravitational space-time and quantum
state are already discussed in greater detail in [29]. Below we summarize the conditions.
• Condition I:

Bekenstein area bound for entropy must be violated in the following way within the
island prescription:

S̃m ≥
Area(∂I)

4
, (18)

Here S̃m is the finite matter entropy after subtracting the UV divergences appearing at
the boundary;

• Condition II:
The region I can be treated as the quantum normal if the following criteria holds good
for the generalized entropy:

± d
dλ±

Sgen(I) ≥ 0, (19)

where
d

dλ±
is the null derivative (+ for outward, − for inward) with respect to Island

region I;

• Condition III:
The region G can be treated as the quantum normal if the following criteria holds
good for the generalized entropy:

∓ d
dλ±

Sgen(G) ≤ 0, (20)

where
d

dλ±
is the null derivative (+ for outward, − for inward) with respect to Island

region I.

Usually, calculating entanglement entropy is not a very easy task. We want to bypass
this cumbersome task in a comparatively easy way by considering the use of circuit
complexity within the framework of FLRW cosmology. We do not do any computation
from the gravitational theories to calculate the entanglement entropy in the presence of
quantum extremal Islands. Instead of doing a complicated computation, we consider the
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FLRW metric with radiation along with the negative (AdS) and positive (dS) signature of
the cosmological constant as our initial ingredient for the present computational purpose.
To understand the effects of quantum mechanics, we must perturb the usual classical FLRW
metric in 3+ 1 dimensional space-time, out of which we will consider only the scalar modes
in this paper. In this paper, we study cosmological circuit complexity from squeezed state
formalism for both positive (dS) and negative (AdS) cosmological constant with radiation
and re-examine the island paradigm in both cases from a cosmology-complexity connecting
point of view. We will explicitly show that cosmological circuit complexity for the AdS
case will be precisely consistent with the island paradigm, which can produce the Page
curve and resolve the well known black hole information loss paradox without exactly
computing any gravitational entropy.

3. Circuit Complexity and Its Purposes

Complexity as a measure was first suggested by Susskind et al. [84,85] and a series of
other papers to explain the increasing size of an ER bridge inside an eternal black hole
that connects two copies of the dual CFT. To describe the interior, we need a measure
of information that evolves for much longer times after the boundary CFT has reached
thermal equilibrium [84,86]. One can think of complexity as the information about the
processes in a system. A system with more processes (thermodynamic, mechanical, or
energy dissipation) can be considered to be of higher complexity than a system with
lesser processes happening. A definition of circuit complexity can then be extended as
the minimum number of processes that follow a path along a circuit between a reference
state and a target state. In the language of quantum mechanics, we can look at processes as
unitary gates and the reference and target quantum mechanical states can be chosen based
on our model. In [87], Nielsen had shown the minimization of unitary gates of a circuit
between reference and target state is the minimization of geodesic length in circuit space.
One can start with a simple evolution of a reference state into the target state with some
unitary transformation U.

Target state from initial reference state : |ΨT〉 = U |ΨR〉 , (21)

where the representative unitary operation for the circuit complexity can be represented by
n consecutive operations, as given by:

Unitary operator : U =
n

∏
α=1

giα . (22)

There is no unique choice in determining the circuit. We can work directly with the
wavefunctions [88] using Nielsen’s geometric approach, or we can use an alternative
definition through Fubini-study metric [89]. We adapt the approach given in [88] where
they work on a lattice of infinite harmonic oscillators and constructing the desired U using
path ordered exponential of Hamiltonian in the space of circuits parametrized by s.

Unitary as path ordering : U(s) =
←−P exp

(
−i
∫ s

0
ds′ H(s′)

)
. (23)

←−P indicates a path ordering such that the Hamiltonian at the earlier times is applied to
the first state. U(s) represents a family of unitaries ranging from U(s = 0)—the identity
matrix to U(s = 1) which is the final unitary satisfying Equation (21). The Hamiltonian
H(s) can be expanded in terms of generalized Pauli matrices as,

Hamiltonian : H(s) = ∑
I

Y I(s)MI , (24)
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where MI represents the generalized Pauli matrices, and the coefficients Y I(s) are control
functions that tell which gate to act at a particular value of s. These functions specify
tangent to the trajectory in the space of unitaries and hence solve the Schrödinger equation

Path evolution of unitary operator :
dU(s)

ds
= −iY(s)I MIU(s) . (25)

The idea then is to define a cost functional for all possible paths, and minimizing this
will give us the optimal circuit.

Definition of cost functional : D(U(s)) =
∫ 1

0
dt F(U(s), Y I(s)) , (26)

where F is a local cost functional depending on the position U(s) and velocity Y I(s).
This problem is now similar to minimizing action on a given Lagrangian—F(U(s), Y I(s)).
The cost function needs to satisfy certain properties for it to be physically reasonable. He
identified the problem of finding the optimal circuit with the problem of finding extremal
curves or geodesics in a Finsler geometry, with the cost functional acting as the Finsler metric.
Complexity is then identified with the length of the geodesic.

Among the many known, the most studied cost functionals are the linearly weighted
and the geodesically weighted cost functional and are defined as

Linear cost functional : F1 := ∑
I
|Y I(s)|, (27)

Quadratic cost functional : F2 :=
√

∑
I
(Y I(s))2, (28)

The purpose of computing complexity from two different types of cost functional
will enable us to comment on which cost functional is better for probing the underlying
quantum chaotic features of a system.

The final step will be to get explicit expressions for the velocity. In our particular case
working with squeezed vacuum state and unsqueezed vacuum state Section 5, we can
write the wave functions as Gaussian e−x2

. By suitably diagonalizing we can represent the
wave function in a general form:

General Wave Fuction : ψ ≈ exp
[
− 1

2
xa Aabxb

]
. (29)

Our reference and target states can then be specified in terms of the positive symmetric
matrices A. One can then find an expression of gates in their matrix forms that act on A to
produce the target state from the reference state. These gate action is defined by a set of
generators MI .

Gate Action : Qab = exp[εMab], (30)

where MI are suitable generators decided by the Hamiltonian of the model. and ε is
a parameter. We can then find explicit expressions for the velocity Y I(s) by rewriting
Equation (25) in the following form:

Y I(s)MI = i(∂sU(s))U−1(s). (31)

Often the basis generators are simple enough to produce simple inner products seen in
many cases [88,90,91] given by

Inner Product : Tr(MI MT
J ) ≈ δI J . (32)
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With this one can get a straightforward equation of velocity.

Velocity : Y I(s) = Tr(i(∂sU(s))U−1(s)MT
I ). (33)

Using this, we can write the velocity in terms of the unitary operation that can be
identified from the diagonalized representation of the reference and target state derived
from the model’s Hamiltonian. We have done this using squeezed state formalism in
cosmological perturbations in the following sections for our given model.

To give some motivation about the necessity of complexity in theoretical physics, we
review here some of the important aspects of complexity that has been used by many
people in this field:

• Motivation I:
The motivation to study circuit complexity in high energy physics arose when it was
applied to quantum field theory and gravity sector [88,91–117], particularly from
attempts to apply AdS/CFT duality in certain black hole settings. Susskind et al.
in Reference [19] proposed ways of probing the interior regions of the black hole
horizon. They showed that these probes can be somehow related to a quantum
information-theoretic measure, namely, “Complexity”. Two famous conjectures came
into the picture, which opened many new areas of research in the branch of theoret-
ical physics connecting condensed matter and high energy physics with quantum
information science being the heart. The two conjectures are famously known as the
“Complexity = Volume” and “Complexity = Action” [1,84,85,118];

• Motivation II:
Apart from its use in the gravity sector, the notion of circuit complexity has found
its application in various other areas. Having a close relationship with the out of
time-ordered correlation functions (OTOC) circuit complexity has recently been used
as a diagnostic of quantum chaos and randomness [119,120]. Complexity has been
found to provide many important details that are of utmost significance when one
speaks about a chaotic system. It can be used to predict the Lyapunov exponent [121],
scrambling time [122], equilibrium temperature, and many other important properties
of a chaotic system. Additionally, in the non-chaotic regime where one cannot connect
the circuit complexity function with OTOC through a simple relationship, the present
analysis acts a significant theoretical probe to study the underlying various unknown
physical properties of the system under consideration. We will show later that instead
of getting exponential growth, in the non-chaotic regime which can be studied with
very tiny values of the cosmological constant values we get decreasing behavior;

• Motivation III:
Recently people have tried to study and quantify chaos in different cosmological
frameworks using the notion of circuit complexity and OTOCs [20–23,123]. By fol-
lowing the same research trend in this article we have studied the same issue for
the given model in detail. Though we have not restricted ourself to study only the
chaotic features, but also we have explored the other parameter space (tiny value
of the cosmological constants) where all the non-chaotic decreasing feature in the
circuit complexity function, as well as the Island entropy function can be observed
with respect the two possible solutions of the dynamical scale factors obtained for spa-
tially flat FLRW cosmological background in presence of radiation and two possible
signatures of cosmological constant.

4. Cosmological Models for Islands

In this section, we briefly discuss the cosmological models that we are considering
in this paper by following Reference [29]. We consider the solution of FLRW cosmology
with radiation along with the negative (AdS) and positive (dS) cosmological constant.
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The technical details of these

4.1. Model-I

In this case, the corresponding Friedman equation in presence of AdS FLRW space-time,
with SO(2, 3) isometry, along with the radiation in the spatially flat (k = 0) universe can be
written as (see Figure 2):

AdS FLRW + Radiation : H2(t) =
(

d ln a(t)
dt

)2
=

(
ȧ(t)
a(t)

)2
=

8π

3

(
ε0

a4(t)
− |Λ|

8π

)
. (34)

Figure 2. Representative Penrose diagram of recollapsing FRW cosmology with radiation and negative cosmological
constant showing presence of islands. This diagram has been taken from [29].

The scale factor obtained by solving the above form of Friedman equation for FLRW
cosmology with radiation and negative cc is given as follows:

Scale factor for AdS FLRW + Radiation : a(t) = a0

√
cos

πt
2tm

, (35)

where the symbols a0 and tm are described by the following expressions:

a0 = a(t = 0) =
(

8πε0

|Λ|

)1/4

, tm =
π

4

√
3
|Λ| (36)
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It the context of cosmology literature, people generally use conformal time instead of
physical time. Hence, it is useful to convert the scale factors in conformal time which is
related to the physical time by the following relation

dτ =
dt

a(t)

The scale factors of this model considered in terms of the conformal time coordinates is
given by the following expression:

a(τ) = a0

√
cos

[
2JacobiAmplitude

[
a0πτ

4tm
, 2
]]

. (37)

4.2. Model-II

In this case, the corresponding Friedman equation in presence of dS FLRW space-time
with SO(1, 4) isometry along with the radiation in the spatially flat (k = 0) universe can be
written as (see Figure 3):

dS FLRW + Radiation : H2(t) =
(

d ln a(t)
dt

)2

=

(
ȧ(t)
a(t)

)2

=
8π

3

(
ε0

a4(t)
+
|Λ|
8π

)
. (38)

The scale factor obtained by solving the above form of Friedman equation for FLRW
cosmology with radiation and positive cc is given as follows:

Scale factor for dS FLRW + Radiation : a(t) = a0

√
sinh

πt
2tm

, (39)

where the symbols a0 and tm are described by the following expressions:

a0 = a(t = 0) =
(

8πε0

Λ

)1/4

, tm =
π

4

√
3
Λ

(40)

Using further the notion of conformal time coordinate, the scale factors of this model
considered in terms of the conformal time coordinates is given by the following expression:

a(τ) = a0

√√√√√−i cos
[
2JacobiAmplitude

[1
4

(
− (1 + i)a0πτ√

2tm
+

(2 + 2i)
√

1
tm

EllipticK(1/2)
i

tm

)
, 2
]]

. (41)

See Appendix A for more details.
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Figure 3. Penrose diagram showing regions of FRW cosmology with radiation and positive cosmological constant. It shows
that the Bekenstein violating region does not overlap with the quantum normal region. Hence it does not contain any
islands. This diagram has been taken from [29].

5. Quantum Complexity from Squeezed Quantum States
5.1. Squeezed States from Perturbation FLRW Cosmology

In this section, we will study squeezed state formalism within the framework of cos-
mological perturbation theory for FLRW spatially flat background. As already discussed
in the earlier section, we consider the Island action in the 3 + 1 dimension in the Einstein
frame given by

SE =
1
2

∫
dτ d3x a4(τ)

{
R + (∂φ)2 − 2V(φ)

}
(42)

We again remind the reader that in the above equation, we have deliberately removed
the tilde sign from the field variable for the sake of notational simplicity. It is to be noted
that the field variable φ in the above equation represents the redefined field in the Einstein
frame. We now consider the following perturbation in the scalar field:

φ(x, τ) = φ(τ) + δφ(x, τ) (43)

and the whole dynamics can be expressed in terms of a gauge invariant description through
a variable given by:

ζ(x, τ) = − H(τ)(
dφ(τ)

dτ

) δφ(x, t). (44)

We fix some gauge constraints that re-parametrizes space-time for the first order pertur-
bation theory:

δφ(x, τ) = 0, gij(x, τ) = a2(τ)
[
(1 + 2ζ(x, τ))δij + hij(x, τ)

]
, ∂ihij(x, τ) = 0 = hi

i(x, τ), (45)

This gauge, conserves the curvature perturbation variable is outside the horizon.
We apply ADM formalism to compute the second-order perturbed action for scalar

modes. The action, after gauge fixing is:

δ(2)S =
1
2

∫
dτ d3x

a2(τ)

H2

(
dφ(τ)

dτ

)2[
(∂τζ(x, τ))2 − (∂iζ(x, τ))2

]
. (46)
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To re-parametrize the second-order perturbed action, we introduce the following space-
time dependent variable:

v(x, τ) = z(τ) ζ(x, τ), where z(τ) = a(τ)
√

ε(τ), (47)

which transforms the perturbed action to a familiar form of canonical scalar field. This is
known as the Mukhanov variable. Additionally, note that the newly defined quantity, ε(τ) is
the conformal time dependent slow-varying parameter:

ε(τ) := − Ḣ
H2 = − a(τ)

H2
d

dτ

(
H

a(τ)

)
= 1− H

′

H2 . (48)

Consequently, second order perturbed action for the scalar perturbation in terms of the
Mukhanov variable can be written:

δ(2)S =
1
2

∫
dτ d3x

[
v′2(x, τ)− (∂iv(x, τ))2 +

(
z′(τ)
z(τ)

)2

v2(x, τ)− 2
(

z′(τ)
z(τ)

)
v′(x, τ)v(x, τ)

]
. (49)

The quantity z′
z can be calculated as:

z′(τ)
z(τ)

=
a′(τ)
a(τ)

+
1
2

ε′(τ)

ε(τ)
= H

[
1

ε(τ)
− 1 + ε(τ)− 1

2
1

ε(τ)

H′′
H3

]
(50)

Using the following ansatz for the Fourier transformation we now convert the second
order perturbed action for the scalar degrees of freedom in terms of the Fourier modes.

v(x, τ) :=
∫ d3k

(2π)3 vk(τ) exp(−ik.x), (51)

After substituting the above expression, the second-order perturbation for the scalar
modes in Fourier space can recast as:

δ(2)S =
1
2

∫
dτ d3k

[
|v′k(τ)|

2 +

(
k2 +

(
z′(τ)
z(τ)

)2
)
|vk(τ)|2 − 2

(
z′(τ)
z(τ)

)
v′k(τ)v−k(τ)

]
︸ ︷︷ ︸

Lagrangian density L(2)(vk(ø),v′k(ø),ø)

, (52)

where it is important to note that:

|v′k(τ)|2 = v
′∗
−k(τ)v

′
k(τ), |vk(τ)|2 = v∗−k(τ)vk(τ). (53)

We vary the second-order perturbed action with respect to the perturbed field variable
in the Fourier space, and we get:

v′′k(τ) + ω2(k, τ)vk(τ) = 0. (54)

This is known as the Mukhanov-Sasaki equation and represents the classical equation of
motion of a parametric oscillator where the frequency of the oscillator is conformal time
dependent and in the present context of discussion, given by:

ω2(k, τ) := k2 + m2
eff(τ), (55)

where we have introduced a conformal time dependent effective mass, quantified by:

m2
eff(τ) = −

z′′(τ)
z(τ)

=
1
τ2

(
ν2

island(τ)−
1
4

)
(56)
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The conformal time dependent mass parameter can be calculated for the two models
considered in this paper as follows. In the Friedman equations the effective fluid in the
presence of radiation and a negative (AdS) / positive (dS) cosmological constant are
described by the following effective pressure and energy densities, which are given by:

AdS FLRW + Radiation:

peff =

(
p +

|Λ|
16πε0

)
, (57)

ρeff =

(
ρ− |Λ|

16πε0

)
. (58)

dS FLRW + Radiation:

peff =

(
p− |Λ|

16πε0

)
, (59)

ρeff =

(
ρ +

|Λ|
16πε0

)
. (60)

Further, we introduce a quantity called equation of state parameter for the effective
fluid, weff, which is defined as follows:

AdS FLRW + Radiation: weff =
peff
ρeff

=


(

p +
|Λ|

16πε0

)
(

ρ− |Λ|
16πε0

)
, (61)

dS FLRW + Radiation: weff =
peff
ρeff

=


(

p− |Λ|
16πε0

)
(

ρ +
|Λ|

16πε0

)
. (62)

Particularly for radiation dominated epoch the radiation pressure can be expressed in

terms of the energy density as, p =
ρ

3
. Thus, the effective equation of state parameter can

be further simplified as:

AdS FLRW + Radiation: weff =
1
3


(

1 +
3|Λ|

16πε0ρ0

)
(

1− |Λ|
16πε0ρ0

)
, (63)

dS FLRW + Radiation: weff =
1
3


(

1− 3|Λ|
16πε0ρ0

)
(

1 +
|Λ|

16πε0ρ0

)
. (64)
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In the purely radiation dominated epoch the radiation density scales with the scale
factor as, ρ = ρ0a−4, using which the effective equation of state parameter weff finally takes
the following simplified form:

AdS FLRW + Radiation: weff =
1
3


(

1 + 3
(

a
a0

)4
)

(
1−

(
a
a0

)4
)
, (65)

dS FLRW + Radiation: weff =
1
3


(

1− 3
(

a
a0

)4
)

(
1 +

(
a
a0

)4
)
. (66)

where in both the results we define the following quantity a0 to be

a0 = a(t = 0) =
(

16πε0ρ0

|Λ|

)1/4

=

(
8πε0

|Λ|

)1/4

, where we fix ρ0 =
1
2

. (67)

Consequently, the general mass parameter for cosmological islands can be computed as:

νisland =

√
1
4
+

2(1− weff)

(1 + 3weff)2 . (68)

which can be further, explicitly has written for the mentioned two models as:

AdS FLRW + Radiation: νisland(a) =
1
2

√
1 + ∆AdS(a), (69)

dS FLRW + Radiation: νisland(a) =
1
2

√
1 + ∆dS(a). (70)

where the newly introduced scale factor dependent factors, ∆AdS and ∆dS are defined
as follows:

∆AdS(a) :=

8

1− 1
3


(

1 + 3
(

a
a0

)4
)

(
1−

(
a
a0

)4
)



1 +


(

1 + 3
(

a
a0

)4
)

(
1−

(
a
a0

)4
)



2 , (71)

∆dS(a) :=

8

1− 1
3


(

1− 3
(

a
a0

)4
)

(
1 +

(
a
a0

)4
)



1 +


(

1− 3
(

a
a0

)4
)

(
1 +

(
a
a0

)4
)



2 . (72)
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Finally, substituting all the above mentioned expressions for the mass parameters
obtained for the two cases, we get the following simplified expressions:

AdS FLRW + Radiation: m2
eff(τ) =

1
4τ2 ∆AdS(a) =

2
τ2

1− 1
3


(

1 + 3
(

a
a0

)4
)

(
1−

(
a
a0

)4
)



1 +


(

1 + 3
(

a
a0

)4
)

(
1−

(
a
a0

)4
)



2 , (73)

dS FLRW + Radiation: m2
eff(τ) =

1
4τ2 ∆dS(a) =

2
τ2

1− 1
3


(

1− 3
(

a
a0

)4
)

(
1 +

(
a
a0

)4
)



1 +


(

1− 3
(

a
a0

)4
)

(
1 +

(
a
a0

)4
)



2 . (74)

In terms of the cosmological constant for both the cases, the above expression can be
further recast as:

AdS FLRW + Radiation: m2
eff =

2
τ2



1−

1 +
3|Λ|
8πε0

1− |Λ|
8πε0



1 +

1 +
3|Λ|
8πε0

1− |Λ|
8πε0




, (75)

dS FLRW + Radiation: m2
eff =

2
τ2



1−

1− 3|Λ|
8πε0

1 +
|Λ|

8πε0



1 +

1− 3|Λ|
8πε0

1 +
|Λ|

8πε0




. (76)

These obtained results for the mass parameter and the effective mass for the two cases
are extremely useful for further analysis, which we will perform in the next section.

5.2. Scalar Mode Function for Cosmological Islands

The Mukhanov-Sasaki equation can be simplified into:

v′′k(τ) +

(
k2 − 1

τ2

(
ν2

island(τ)−
1
4

))
vk(τ) = 0. (77)

The most general analytical solution is:

vk(τ) :=
√
−τ
[
C1 H

(1)
νisland(−kτ) + C2 H

(2)
νisland(−kτ)

]
(78)
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where H(1)
νisland(−kτ) and H(2)

νisland(−kτ) are Hankel functions of the first and second kind,
respectively, with argument −kτ and order νisland. C1 and C2 can be fixed by the choice of
the initial vacuum state and we restrict ourselves, to Bunch Davies vacuum or Hartle Hawking
vacuum or Chernkov vacuum, by choosing the integration constants as C1 = 1 and C2 = 0.

The solution then becomes:

vk(τ) =
√
−τ H(1)

νisland(−kτ). (79)

Upon further considering the asymptotic limits, −kτ → 0 and −kτ → ∞, the Hankel
functions of the first kind are simplified into:

lim
−kτ→∞

H(1)
νisland(−kτ) =

√
2
π

1√
−kτ

exp
(
−i
{

kτ +
π

2

(
νisland +

1
2

)})
. (80)

Using these asymptotic results of the Hankel functions can be expressed as:

vk(τ) =
2νisland− 3

2 (−kτ)
3
2−νisland

√
2k

∣∣∣∣∣ Γ(νisland)

Γ
( 3

2

) ∣∣∣∣∣
(

1− i
kτ

)
exp

(
−i
{

kτ +
π

2

(
νisland −

3
2

)})
. (81)

5.3. Quantization of Hamiltonian for Scalar Modes

Further, we derive the conformal time derivative of the field variable:

v′k(τ) = i

√
k
2

2νisland− 3
2 (−kτ)

3
2−νisland

∣∣∣∣∣Γ(νisland)

Γ
( 3

2
) ∣∣∣∣∣

{
1−

(
νisland −

1
2

)
i

kτ

(
1− i

kτ

)}
exp

(
−i
{

kτ +
π

2

(
νisland −

1
2

)})
. (82)

To construct the classical Hamiltonian function, one needs the canonically conjugate
momentum associated with the classical cosmologically perturbed scalar field variable and
can be calculated as:

πk(τ) :=
∂L(2)(vk(τ), v′k(τ), τ)

∂v′k(τ)
= v

′∗
k (τ)−

(
z′(τ)
z(τ)

)
vk(τ) (83)

The classical Hamiltonian in the present context turns out to be:

H(τ) =
∫

d3k

[
1
2

∣∣∣∣πk(τ) +
z′(τ)
z(τ)

vk(τ)

∣∣∣∣2 + 1
2

µ2(k, τ)|vk(τ)|2
]

, (84)

where the time dependent mass µ2(k, τ) of the oscillator is given by the following expression:

µ2(k, τ) :=

[
k2 −

(
z′(τ)
z(τ)

)2]
. (85)

Using the solutions of the classical mode functions, we can construct the quantum
mechanical mechanical operators in the Heisenberg picture as follows:

v̂(x, τ) = U †(τ, τ0)v̂(x, τ0)U (τ, τ0)

=
∫ d3k

(2π)3

[
v∗−k(τ) âk + vk(τ) â†

−k

]
exp(ik.x), (86)

π̂(x, τ) = U †(τ, τ0)π̂(x, τ0)U (τ, τ0)

=
∫ d3k

(2π)3

[
π∗−k(τ) âk + πk(τ) â†

−k

]
exp(ik.x). (87)
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The canonical Hamiltonian for the parametric oscillator can be expressed in terms of
the above mentioned quantum operators as follows.

Ĥ(τ) =
∫

d3k

[
1
2

∣∣∣∣[v∗′−k(τ) âk + v
′

k(τ) â†
−k

]
+

z′(τ)
z(τ)

[
v∗−k(τ) âk + vk(τ) â†

−k

]∣∣∣∣2

+
1
2

µ2(k, τ)|
[
v∗−k(τ) âk + vk(τ) â†

−k

]
|2
]

=
1
2

∫
d3k

[
Ωk(τ)

(
â†

k âk + â†
−k â−k + 1

)
︸ ︷︷ ︸
Contribution from the free term

+ i λk(τ)

(
exp(−2iφk(τ))âk â−k − exp(2iφk(τ))â†

k â†
−k

)
︸ ︷︷ ︸

Contribution from the Interaction term

]
, (88)

where we define Ωk(τ) and λk(τ) by the following expressions:

Ωk(τ) : =

{∣∣∣v′k(τ)∣∣∣2 + µ2(k, τ)|vk(τ)|2
}

, λk(τ) :=

(
z′(τ)
z(τ)

)
. (89)

Here Ωk(τ) represents the conformal time dependent dispersion relation for our set-up,
and λk(τ) is the slowly conformal time varying function ln z(τ), where z(τ) = a

√
2ε, is

the Mukhanov variable. We request the readers to kindly refer to the appendix of [20] for the
details of the computation of the previous subsections.

5.4. Fixing the Initial Condition

We fix the initial condition in such a way that, at the time scale τ = τ0, we get the
following normalization, provided we have imposed a constraint that, kτ0 = −1:

vk(τ0) =
1√
2k

2νisland−1

∣∣∣∣∣Γ(νisland)

Γ
( 3

2
) ∣∣∣∣∣ exp

(
−i
{π

2
(νisland − 2)− 1

})
, (90)

πk(τ0) = i

√
k
2

2νisland− 3
2

∣∣∣∣∣Γ(νisland)

Γ
( 3

2
) ∣∣∣∣∣ exp

(
−i
{π

2
(νisland − 2)− 1

})
1−

√
2

(
νisland −

1
2

)(
νB +

1
2
+ i
)

(
νisland +

1
2

) exp
(
− iπ

4

), (91)

It is expected that at any arbitrary time scale τ, the associated quantum operators can
be written in the Heisenberg picture as:

v̂k(τ) = vk(τ0)

(
ak(τ) + a†

−k(τ)

)
, (92)

π̂k(τ) = −πk(τ0)

(
ak(τ)− a†

−k(τ)

)
, (93)

The ladder operators at any later time scale τ can also be expressed in terms of the
initial time scale τ0 using the similarity transformation in the Heisenberg picture.

ak(τ) := U †(τ, τ0)akU (τ, τ0), (94)

a†
−k(τ) := U †(τ, τ0)a†

−kU (τ, τ0). (95)
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The role of the squeezed state formalism in QM can be realised while determining
the expression of the Unitary operator in the context of cosmological perturbations of the
scalar modes.

5.5. Squeezed State Formalism in Island Cosmology

Following [45,46], we factorize the unitary evolution operator produced by the above
Hamiltonian U , as follows

U (τ, τ0) = Ŝ(rk(τ, τ0), φk(τ))R̂(θk(τ)), (96)

whereR is the two mode rotation operator, defined as:

R̂(θk(τ)) = exp

(
−iθk(τ)

(
âk â†

k + â†
−k â−k

))
, (97)

and Ŝ is the two-mode squeezing operator, defined as:

Ŝ(rk(τ), φk(τ)) = exp

(
rk(τ)

2
[

exp(−2iφk(τ))âk â−k − exp(2iφk(τ))â†
−k â†

k
])

. (98)

The time-dependent parameters, rk(τ) and φk(τ) describes the squeezing amplitude
and the squeezing angle, respectively. The two-mode rotation operator, R̂, also produces
an irrelevant phase factor exp(iθk(τ)) while acted upon the initial quantum vacuum
state and can be safely ignored. The appearance of the squeezed quantum state can
be realized through the interaction of the cosmological perturbation with the conformal
time-dependent scale factor. This leads to a conformal time-dependent frequency for the
parametric oscillator, whose quantization is described in terms of the two-mode squeezed
state formalism, as described in [45]. We choose the ground state of the free Hamiltonian
as the initial quantum mechanical state:

âk |0〉k,−k = 0 ∀ k, (99)

which is basically a Poincare invariant vacuum state in the present context of discussion.
The action of the squeezed quantum operator Ŝ on the above initial vacuum state

produces a two-mode squeezed quantum vacuum state, as:

|Ψsq〉k,−k = Ŝ(rk(τ), φk(τ)) |0〉k,−k

=
1

cosh rk(τ)

∞

∑
n=0

(−1)n exp(−2in φk(τ) tanhn rk(τ) |nk, n−k〉 , (100)

with the following two-mode excited or usually known as the occupation number state
given by the following expression:

|nk, n−k〉 =
1
n!
(
â†

k
)n(â†

−k
)n |0〉k,−k . (101)

Consequently, in the present context of discussion the full quantum wave function can
be expressed in terms of the product of the wave function for each two-mode pair as k,−k
given by the following expression:

|Ψsq〉 =
⊗

k

|Ψsq〉k,−k

=
⊗

k

1
cosh rk(τ)

(
∞

∑
n=0

(−1)n

n!
exp(−2in φk(τ) tanhn rk(τ)

(
â†

k
)n(â†

−k
)n
)
|0〉k,−k ,

(102)
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5.6. Time Evolution in Squeezed State Formalism

We begin by expressing the creation and annihilation operators of the parametric oscil-
lator in terms of the squeezed states and using the factorized form of the unitary operator
introduced in the previous subsection, the expression for the creation and annihilation
operator can be written at any arbitrary time scale as:

âk(τ) = Û †(τ, τ0) âk Û (τ, τ0)

= R̂†(θk(τ))Ŝ†(rk(τ), φk(τ)) âk R̂(θk(τ))Ŝ(rk(τ), φk(τ))

= cosh rk(τ) exp(−iθk(τ)) âk − sinh rk(τ) exp(i(θk(τ) + 2φk(τ))) â†
−k, (103)

â†
−k(τ) = Û †(τ, τ0) â†

−k Û (τ, τ0)

= R̂†(θk(τ))Ŝ†(rk(τ), φk(τ)) â†
−k R̂(θk(τ))Ŝ(rk(τ), φk(τ))

= cosh rk(τ) exp(iθk(τ)) â†
−k − sinh rk(τ) exp(−i(θk(τ) + 2φk(τ))) âk. (104)

Consequently, the quantum operator associated with the cosmological perturbation
field variable for the scalar fluctuation and the its canonically conjugate momenta can be
expressed as:

v̂k(τ) = vk(τ0)

(
âk(τ) + â†

−k(τ)

)

= vk(τ0)

[
âk

(
cosh rk(τ) exp(−iθk(τ))− sinh rk(τ) exp(−i(θk(τ) + 2φk(τ)))

)
(105)

+ â†
−k

(
cosh rk(τ) exp(iθk(τ))− sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

)]
,

=
[
v∗−k(τ) âk + vk(τ) â†

−k

]
,

π̂k(τ) = −πk(τ0)

(
ak(τ)− a†

−k(τ)

)

= −πk(τ0)

[
âk

(
cosh rk(τ) exp(−iθk(τ)) + sinh rk(τ) exp(−i(θk(τ) + 2φk(τ)))

)
(106)

− â†
−k

(
cosh rk(τ) exp(iθk(τ)) + sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

)]
,

=
[
π∗−k(τ) âk + πk(τ) â†

−k

]
.

The classical mode function and its associated canonically conjugate momentum in
terms of the squeezed parameters can be identified as:

vk(τ) = vk(τ0)

(
cosh rk(τ) exp(iθk(τ))− sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

)
, (107)

πk(τ) = πk(τ0)

(
cosh rk(τ) exp(iθk(τ)) + sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

)
. (108)

The time evolution of the quantum operators R̂ and Ŝ leads to the following sets of
differential equations for the squeezing parameters:

drk(τ)

dτ
= −λk(τ) cos(2φk(τ)), (109)

dφk(τ)

dτ
= Ωk(τ) + λk(τ) coth(2rk(τ)) sin(2φk(τ)), (110)
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where the time dependent factors, λk(τ) and Ωk(τ) in the squeezed state picture in the
−kτ � 1 can be recast as:

λk(τ) : =

(
z′(τ)
z(τ)

)
= H

[
1

ε(τ)
− 1 + ε(τ)− 1

2
1

ε(τ)

H′′
H3

]
, (111)

Ωk(τ) : =

{
|πk(τ) + λk(τ)vk(τ)|2 +

(
k2 − λ2

k(τ)
)
|vk(τ)|2

}

≈ 3k 22(νisland−2)

∣∣∣∣∣Γ(νisland)

Γ
( 3

2
) ∣∣∣∣∣

2

. (112)

See Appendix B for more details.

5.7. Quantum Complexity from Squeezed Quantum States in Island Cosmology

To compute the complexity from squeezed formalism we use the wave function formalism
of computing circuit complexity developed by [88] and used extensively in [21,22,92]. We fix
a reference state |0〉k,−k, commonly used in cosmological perturbations. The squeezed
two-mode vacuum state |Ψsq〉k,−k becomes the target state.

The reference two-mode vacuum state wave function is given by:

âk |0〉k,−k = 0 ∀ k (113)

which has the following usual Gaussian structure:

ΨRef(vk, v−k) :=
(

Ωk
π

)1/4
exp

(
−Ωk

2
(v2

k + v2
−k)

)
(114)

where we have used the expression for Ωk in the sub-Hubble region, that we analyti-
cally approximated.

By noting that a specific squeezing parameters with the annihilation and creation
operators fixes the wave function we can write it as:(

cosh rk(τ) âk + exp(−2iφk(τ)) sinh rk(τ) â†
−k

)
|Ψsq〉k,−k = 0. (115)

The perturbed field space representation is given by:

Ψsq(vk, v−k) = 〈vk, v−k|Ψsq〉k,−k

=
exp

(
A(τ) (v2

k + v2
−k)−B(τ) vk v−k

)
cosh rk(τ)

√
π(1− exp(−4iφk(τ)) tanh2 rk(τ)− 1)

, (116)

where the coefficients A(τ) and B(τ) are the functions of rk(τ) and φk(τ), given by:

A(τ) :=
Ωk
2

(
exp(−4iφk(τ)) tanh2 rk(τ) + 1
exp(−4iφk(τ)) tanh2 rk(τ)− 1

)
, (117)

B(τ) := 2Ωk

(
exp(−2iφk(τ)) tanh2 rk(τ)

exp(−4iφk(τ)) tanh2 rk(τ)− 1

)
. (118)

Generally in literature people use conformal time as the dynamical variable for compu-
tational purposes. However, to make our computation physically justifiable we use the
scale factor as the dynamical variable. Performing the change in the dynamical variable is
a trivial task:

τ → a(τ) :
d

dτ
= a′(τ)

d
da(τ)

(119)
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The evolution equations of the squeezed state state parameter and the squeezed state
angle can written in terms of the new dynamical variable a(τ) as:

drk(a)
da

= −λk(a)
a′

cos 2φk(a), (120)

dφk(a)
da

=
Ωk
a′
− λk(a)

a′
coth 2rk(a) sin 2φk(a) (121)

The vacuum reference and the target squeezed state written in Equations (114) and (116)
is eventually used to calculate the complexity from two types of cost functions namely
the “linear weighting” (C1) and the “geodesic weighting” (C2), respectively, within the
framework of cosmology and represented by the following expressions:

C1(k) =
1
2

(
ln
∣∣∣∣Σk
ωk

∣∣∣∣+ ln
∣∣∣∣Σ−k
ω−k

∣∣∣∣+ tan−1 Im Σk
Re ωk

+ tan−1 Im Σ−k
Re ω−k

)

C2(k) =
1
2

√(
ln
∣∣∣∣Σk(τ)

ωk(τ)

∣∣∣∣)2

+

(
ln
∣∣∣∣Σ−k(τ)

ω−k(τ)

∣∣∣∣)2

+

(
tan−1 Im Σk(τ)

Re ωk(τ)
+

)2

+

(
tan−1 Im Σ−k(τ)

Re ω−k(τ)

)2

. (122)

where we define the following functions:

Σk(τ) = B(τ)− 2A(τ), (123)

Σ−k(τ) = −B(τ)− 2A(τ), (124)

ωk(τ) =
1
2

Ωk(τ) = ω−k(τ). (125)

Below, we provide a formal derivation of the expressions of the circuit complexities.
As already discussed, the above expressions are derived using the Nielsen’s wave function
approach. However another approach which people uses is the covariance matrix method.
A formal derivation of the circuit complexities in the covariance matrix approach can be
found in [124]. The Nielsen’s wave function approach uses wavefunctions to give circuit
complexities of two mode squeezed states that is sensitive to both squeezing parameters:
rk and φk. The complexity is calculated using the reference and target two-mode squeezed
states. This enables to write the circuit complexity in terms of squeezing parameters rk
and φk.

The exponent of the target state, i.e., two-mode squeezed states Equation (116) can be
diagonalized as:

Ψsq = N exp
(
−1

2
M̃abvkv−k

)
(126)

where, N is the normalization constant, i.e., denominator in Equation (116) and,

M̃ =

−2A + B 0

0 −2A− B

 =

Σk 0

0 Σ−k

 (127)

The unsqueezed state, reference state can also be written in a similar form as above, as
it is also a Gaussian wave function represented by:

ΨRef = N exp
(
−Ωk

2
(
v2

k + v2
−k
))

= N exp

(
1
2 ∑

k,−k
Ωk|k|2

)
(128)
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Thus, our two required state has a Gaussian wave function and is of the form:

Ψη = N exp
(
−1

2

(
qa.Aη

ab.qb

))
(129)

where, q = (vk, v−k) and Aη is a 2× 2 diagonal matrix. For the target state Equation (116),

Aη=1 =M =

Σk 0

0 Σ−k

 (130)

while for our reference state Equation (114), matrix A is Aη=0. So,

Aη=0 =

Ωk 0

0 Ω−k

 (131)

The unitary transformation acts like,

Aη = U (η).Aη=0.UT(η) (132)

The boundary conditions is given by:

Aη=1 = U (η = 1).Aη=0.UT(η = 1)

Aη=0 = U (η = 0).Aη=0.UT(η = 0)
(133)

U can be parametrized in terms of the tangent vectors, as discussed earlier, such
that at η = 1, the required target state is achieved. Since, Aη=1 and Aη=0 can have
complex elements, elementary gates are restricted to GL(2, C) unitaries. The tangent vector
components are given by:

Y I = Tr(∂ηU(η)U−1(η)(OI)
T) (134)

where, it is to be noted that:

Tr(OI .OT
J ) = δI J , (135)

and I, J = 0, 1, 2, 3. The metric is then given by:

ds2 = GI JdY IdY∗J . (136)

For simplicity, we will choose penalty factors GI J = δI J where we fix it to unity. The off-
diagonal elements in GL(2, C) can be set to zero as they increase the distance between
states. The U(η) will become:

U(η) = exp

 ∑
i∈(k,−k)

αi(η)Odiagonal
i

 (137)

where, αi(η) are complex parameters andOdiagonal
i are generators with identity at i diagonal

elements. The metric takes a simple form:

ds2 = ∑
i∈(k,−k)

(dαi,Re)2 + (dαi,Im)2 (138)
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where, Re and Im indicates real and imaginary part of αk, respectively. The geodesic is
again a straight line in the manifold given by:

αi,p(η) = αi,p(η = 1) + αi,p(η = 0) (139)

for each (i ∈ k,−k) and (p = Re and Im). For the given boundary conditions written
earlier, one gets

αi,Re(η = 0) = αi,Im(η = 0) = 0,

αi,Re(η = 1) =
1
2

ln
∣∣∣∣Σi

ωi

∣∣∣∣
αi,Im(η = 1) =

1
2

tan−1 Im(Σi)

Re(Σi)

(140)

for each (i ∈ k,−k). Now, the circuit complexity for linear C1(Ωk) and quadratic cost
C2(Ωk) functions can be derived as follows:

C1(Ωk) = αk,Re(η = 1) + α−k,Re(η = 1) + αk,Im(η = 1) + α−k,Im(η = 1)

=
1
2

(
ln
∣∣∣∣Σk
ωk

∣∣∣∣+ ln
∣∣∣∣Σ−k
ω−k

∣∣∣∣+ tan−1 Im(Σk)

Re(Σk)
+ tan−1 Im(Σ−k)

Re(Σ−k)

)
(141)

C2(Ωk) =
√
(αk,Re(η = 1))2 + (α−k,Re(η = 1))2 + (αk,Im(η = 1))2 + (α−k,Im(η = 1))2

=
1
2

√√√√(ln
∣∣∣∣ Σk
ωk)

∣∣∣∣
)2

+

(
ln
∣∣∣∣ Σ−k
ω−k)

∣∣∣∣
)2

+

(
tan−1 Im(Σk)

Re(Σk)

)2

+

(
tan−1 Im(Σ−k)

Re(Σ−k)

)2

(142)

Using the expressions of Σk, Σ−k, ωk, and ω−k the general circuit complexity takes the
following form:

C1(Ωk, η) =

∣∣∣∣ln∣∣∣∣1 + exp(−2iφk(η))tanhrk(η)

1− exp(−2iφk(η))tanhrk(τ)

∣∣∣∣∣∣∣∣+ ∣∣∣tanh−1(sin(2φk(η))sinh(2rk(η)))
∣∣∣ (143)

C2(Ωk, η) =
1√
2

√(
ln
∣∣∣∣1 + exp(−2iφk(η))tanhrk(η)

1− exp(−2iφk(η))tanhrk(η)

∣∣∣∣)2

+
(

tanh−1(sin(2φk(η))sinh(2rk(η)))
)2

(144)

6. Entanglement Entropy of Two Mode Squeezed States

In this section, the prime motivation is to compute the entanglement entropy for the
two-mode squeezed states and compare it to the circuit complexity. Apart from being
entangled, there exists a strong correlation between the two modes of the state. |Ψsq〉k,−k
is also an eigenstate of the operator n̂k − n̂−k with eigenvalue 0, where n̂k = â†

k â−k and
n̂−k = â†

−k âk. Due to this strong correlation and symmetry between the two modes,
average photon number is identical in each mode:

〈n̂k〉 = 〈n̂−k〉 = sinh2rk (145)

The reduced density operators for the individual modes can be written as:

ρ̂k =
∞

∑
n=0

1
(cosh rk)2 (tanh rk)

2n〈nk|nk〉, (146)

ρ̂−k =
∞

∑
n=0

1
(cosh r−k)2 (tanh r−k)

2n〈n−k|n−k〉. (147)
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The probability of having n photons in a single mode k or −k is given by:

P(i)
n =

(tanhrk)
2n

(coshrk)2 , i = k,−k (148)

The most commonly used entanglement entropies are the von-Neumann entanglement
entropy and the Renyi entropy, on which we have focussed on this paper. For a density
operator ρ̂, von-Neumann entropy is given by:

S(ρ̂) = −Tr[ρ̂ lnρ̂] (149)

For a pure state the von-Neumann entropy is zero while for mixed states it is greater
than zero. However, it is usually not a trivial task to calculate the entropy, but for the basis
in which density operator is diagonal, such as in Schmidt basis, entropy can be calculated
simply from the diagonal elements as:

S(ρ̂) = −Tr[ρ̂lnρ̂] = −∑
k

ρkklnρkk (150)

Since the two mode squeezed state Equation (116) is already in the form of Schmidt
decomposition, and the form of reduced density operators of individual modes k and −k is
also known, the von-Neumann entanglement entropy can be calculated by realizing that
the diagonal elements ρkk is P(i)

n . Then, the von-Neumann entropy is given by:

S(ρ̂k) = −Tr[ρ̂klnρ̂k] = S(ρ̂−k) = −
∞

∑
n=0

Pn lnPn

= ln(cosh2rk)cosh2rk − ln(sinh2rk)sinh2rk

(151)

It is to be noted that the entropy corresponding to the squeezed state Equation (116) is
not calculated because naturally this entropy is going to be zero as it is a pure state. Instead,
we have calculated entropy for the reduced density matrix.

The von-Neumann entropy can now be generalized to get the Rényi entropy for the
reduced density operator:

Sµ =
1

1− µ
ln

d

∑
n=1

Pn =
2µ ln coshrk + ln(1− tanh2µrk)

µ− 1
(152)

where µ ≥ 0 is the Rényi parameter and d is the Schmidt rank of the squeezed state
Equation (116) which is infinity.

For very large squeezing parameter, we get:

Sµ(rk → ∞) ≈ 2µrk
(µ− 1)

(153)

On taking the limit, µ → 1, we get the von-Neumann entropy Equation (151). Mean-
while, Rényi-2 entropy is given by S2(rk) = ln cosh2rk.

One can also calculate the effective temperature of the source by computing the thermal
distribution with an average photon number 〈n̂i〉 = sinh2rk. The average photon number
of the thermal field is given by:

〈n̂i〉 = n̄ =
1

exp(βω)− 1
(154)
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Then, one can compute the effective temperature as:

T = ωiln
(
〈n̂i〉
〈n̂i〉+ 1

)
=

ωi
2 ln(cothrk)

where, ωi = i/c is the frequency of the mode and i ∈ (k,−k).

7. Numerical Study with Cosmological Islands

Our objective is to numerically solve the time evolution differential equations satisfied
by the squeezed state parameters in this section. We have used the scale factor as the
dynamical variable instead of the conformal time, making our computation physically
justifiable. This change in the variable is commonly known as field redefinition. Once
we solve the differential equations, it will enable us to compute the circuit complexity
between two reference states within the framework of cosmological perturbation theory.
The effects of quantum fluctuations are treated in terms of squeezed states. We numerically
plot the complexities calculated from two different cost functionals for both the models of
the cosmological scale factors. Using the logic given in [20], we write the expression for the
complexity in the exponentially increasing region as

Ci(a) ≈ ci exp(λia)a=aexp ∀ i = 1, 2 (155)

It is to be noted that the above equation is valid only for the exponentially rising region;
hence the subscript aexp has been used, which we indeed observe for both the measures
of complexity in both the models. The index “i” in the above equation indicates which
measure of complexity is being used. The slopes and the amplitudes are written with
index i to indicate that they are different for different models. Mathematically, this can be
represented as

λi =

(
d ln Ci(a)

da

)
∀ i = 1, 2, (156)

One can also conjecture a similar relation between OTOC and complexity for the
exponentially rising region keeping in mind that complexity and OTOC are related by
C = −ln(OTOC). Hence for the exponentially rising region, the out-of-time ordered
correlation function can be written as

OTOC ≈ exp(−c exp(λa)) (157)

In Reference [20], the authors identified the slope λ as the quantum Lyapunov exponent
which captures the effect of chaos in the quantum regime and showed the existence of a
universal relation between the different measures of complexity. It is represented as

C = − ln (OTOC) ≈ Ci ∀ i = 1, 2 (158)

The above universal relation between the complexities can be translated to the Lyapunov
exponent through the MSS bound. Thus,

λi - λ ≤ 2π

β
∀ i = 1, 2 (159)

This relation can further be used to estimate the lower bound on the equilibrium
temperature, which can be done using the following relation

T %
λi
2π
∀ i = 1, 2 =⇒ T %

1
2π

(
d ln Ci(a)

da

)
a=aexp

∀ i = 1, 2 (160)
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For our purpose, we have numerically estimated the values of the Lyapunov exponents
for the both the models of scale factors using the following relation

λi =
ln Ci(apeak)− ln Ci(arise)

apeak − arise
(161)

The use of the above relation simplifies our task and prevents the complications of
implementing numerical differentiation. Furthermore, using the relation between the
circuit complexity and entanglement entropy, we numerically plotted the entropy with
respect to the scale factor.

7.1. Islands in Recollapsing FLRW (Cosine Scale Factor)

In Figures 4 and 5 the squeezed state parameter rk and the squeezing angle φk are
plotted with respect to the scale factor. The behavior of the squeezed state parameters
determines the nature of complexity.
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Figure 4. Squeezed state parameter rk plotted against scale factor.

1 5 10 50 100 500 1000

1.44

1.46

1.48

1.50

1.52

1.54

1.56

Figure 5. Squeezing angle φk plotted against scale factor.
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• In Figures 6 and 7 the behavior of the circuit complexity computed from the linearly
weighted and geodesically weighted cost functional are shown with respect to the
scale factor. Although the overall behavior of the complexity measures are identical,
some noticeable differences do occur, which are appended below:

– The complexity measure C1 (linearly weighted measure) is larger than C2 for the
entire range of scale factor;

– At the transition point, a slight dip in C1 is observed, whereas, for the same point,
there is a peak for C2.

• Figures 8 and 9 shows the plots of the Out-of-Time-Ordered correlation functions. Up to
a certain value of scale factor the OTOC decreases exponentially as expected from [23].
However after a certain transition scale factor it starts increasing exponentially.
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Figure 6. Linearly weighted complexity value plotted against scale factor.
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Figure 7. Geodesically weighted complexity value plotted against scale factor.
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Figure 8. Predicted OTOC from linearly weighted cost functional plotted against scale factor.
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Figure 9. Predicted OTOC from geodesically weighted cost functional plotted against scale factor.

Table 1 shows the value of the Lyapunov exponents calculated for the initial exponen-
tially rising region before the transition scale factor. The interesting feature to notice from
the values of the Lyapunov exponents is that they obey the universal relation established
in [20] which states that the Lyapunov exponents of complexity measures computed from
different cost functionals are of the same order,

Table 1. Lyapunov exponents calculated from the ln(C) vs. a plots for all the different chosen values of the cosmological
constants. The symbols Λi in the table denotes the five chosen values of the cosmological constant, as visible in the plots.

Complexity Measures λΛ1 λΛ2 λΛ3 λΛ4 λΛ5

C1 9.44 × 10−4 9.37 × 10−4 9.35 × 10−4 9.35 × 10−4 9.34 × 10−4

C2 10.66 × 10−4 10.59 × 10−4 10.58 × 10−4 10.57 × 10−4 10.56 × 10−4

• In Figures 10 and 11, we have plotted the entanglement entropy, viz. von-Neumann
entanglement entropy and Renyi entropy of the two modes with respect to the scale
factor. The entanglement entropies increases linearly with the scale factor, suggesting
that the entanglement between the two modes increases linearly with the evolutionary
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scale. From the similarity of the nature of entropies with the circuit complexities, at
least up to a certain evolutionary scale, suggests that there might be a connecting
relation between circuit complexity and entanglement entropies. An important point
worth raising at this point is whether the entanglement entropy between the two
modes of the squeezed state computed from the squeezed state formalism can be
related to the generalized entropy of the quantum extremal island in FRW space-
time. Though, not directly but some information about the quantum extremal islands
is indeed encoded in the entanglement entropy of the two modes of the squeezed
state. This is because, the information of the model is provided by the solution of the
scale factor which has been used as the dynamical variable in solving the evolution
equations of the squeezed parameters.

• In Figure 12, we have plotted the behavior of the equilibrium temperature of the
two modes squeezed state with respect to the scale factor. We observe that for initial
evolutionary scales, the equilibrium temperature rises sharply. This rise slows down
for the intermediate scales and moves towards saturation at the large evolutionary
scales. Thus, we can see that the equilibrium temperature is not a constant but has
different values at different phases of the evolutionary scales.

• In Figures 13 and 14 we have plotted the complexity measures in a different parameter
space, precisely for extremely small values of the cosmological constant. We observe
that unlike the parameter space where the values of the cosmological constants were
taken to be large, the complexity in this parameter space just shows an exponentially
rising behavior throughout the entire evolutionary scale. The decreasing behavior that
was observed for large values of cosmological constants is not observed in this case
suggesting that the behavior of the complexity is not independent of the parameters
of the chosen model.

• Figures 15 and 16, shows the behavior of the OTOC predicted from the circuit com-
plexities in the parameter space where the cosmological constant values are very
small. We again observe a feature that is different from the OTOCs computed in the
other parameter space. Unlike the previous case, in this parameter space, the OTOC
saturates at large evolutionary scales. The initial decreasing behavior at the early
evolutionary scales is, however, identical in both the parameter space. This suggests
that the behavior of the circuit complexity and the OTOCs are not universal for a
given model and depends on the choice of the parameter space.
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Figure 10. Von-Neumann entanglement entropy plotted as a function of the scale factor.
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Figure 11. Renyi entanglement entropy plotted as a function of the scale factor.

0 200 400 600 800 1000

10

100

1000

104

Figure 12. Entanglement entropy computed from C2 plotted against scale factor in the chaotic region.
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Figure 13. Behavior of C1 against scale factor in a different parameter space.
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Figure 14. Behavior of C2 against scale factor in a different space.
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Figure 15. Behavior of OTOC predicted from C1 against scale factor in a different space.
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Figure 16. Behavior of OTOC predicted from C2 against scale factor in a different space.

7.2. No Islands in Recollapsing FLRW (Sine Hyperbolic Scale Factor)

In Figures 17 and 18 the squeezed state parameter rk and the squeezing angle φk are
plotted with respect to the scale factor. The behavior of the squeezed state parameters
determines the nature of complexity. In Figure 17 we see there are cut-off values of the scale
factor, so we start observing deviations from the linear graph. Moreover, in Figure 18, we
see an initial rise, followed by saturation and then a sharp upward deviation at particular
values of the scale factor. We expect complexity measures also to experience similar
deviation near particular values of the scale factor.
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Figure 17. Squeezed state parameter rk plotted against scale factor.

0.01 0.10 1 10 100

1.50

1.55

1.60

1.65

Figure 18. Squeezing angle φk plotted against scale factor.

• In Figures 19 and 20 the behavior of the circuit complexity computed from the linearly
weighted and geodesically weighted cost functional is shown with respect to the scale
factor. Although the overall behavior of the complexity measures is identical, some
noticeable differences are mentioned below:

– The complexity measure C1 (linearly weighted measure) is larger than C2 for the
entire range of scale factor;

– The peak in C1 is a non-uniform double peak, whereas for C2 this becomes a more
uniform and smooth peak at the top;
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– The initial rise in C1 is more linear when compared to the initial rising part of C2.
We also observe the rise begins a little later in the case for C2.

• The general trend that we observe for the family of complexity values is that it initially
rises, reaches a peak and then falls. The most peculiar difference is the deviation at
particular values of scale factor for each cosmological constant. We observe some cut
off values of the scale factor in this model. The values become unsolvable, signifying
a blow-up or erratic behavior after a point.

• Figures 21 and 22 shows the plots of Out-of-Time-Ordered correlation functions. Up to
a certain value of scale factor, the OTOC decreases exponentially. However, after a
certain transition scale factor, it starts increasing exponentially. Here too, we observe
the deviations of the curve after a given value of scale factor for a chosen value of the
cosmological constant.
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Figure 19. Linearly weighted complexity value plotted against scale factor.
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Figure 20. Geodesically weighted complexity value plotted against scale factor.
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Figure 21. Predicted OTOC from linearly weighted cost functional plotted against scale factor.
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Figure 22. Predicted OTOC from geodesically weighted cost functional plotted against scale factor.

Table 2 shows the value of the Lyapunov exponents calculated for the initial exponen-
tially rising region before the transition scale factor. The family of complexity curves follow
a very similar trend during the rising portion. The estimation of the Lyapunov exponent
from different complexity measures gives very similar values. There are slight differences
in the values in the 3rd or 4th decimal places as we go to smaller values of the cosmological
constant.

Table 2. Lyapunov exponenets calculated from the ln(C) vs. a plots for all the different chosen values of the cosmologi-
cal constants.

Complexity Measures λΛ1 λΛ2 λΛ3 λΛ4 λΛ5

C1 6.017 6.01699 6.01699 6.01696 6.015

C2 6.0611 6.0611 6.0611 6.0610 6.058
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We observe deviations only after a few decimal places, and they are only significant in
smaller values of the cosmological constant and higher cost functional family. This shows
a higher sensitivity in smaller cosmological constant and higher-order cost functional.

• In Figures 23–25, we have plotted the behavior of the entanglement entropy, i.e.,
von-Neumann entanglement entropy and Renyi entropy between the two modes of
the squeezed states. We again observe, the increasing behavior with the evolutionary
time scales. However, for this model, it can be seen that for different values of the
parameter (cosmological constant) the entanglement entropy can be probed up to
different evolutionary scales. This is due to the existence of some cut-off values of the
scale factor beyond which the squeezed parameters cannot be solved. This values of
the evolutionary scales (cut off values) up to which the entanglement entropy can be
probed is larger for smaller values of the cosmological constant;

• A similar increasing behavior followed by saturation is observed for the equilibrium
temperature, as was seen for the cosine model case. However, the difference again
lies in the existence of the cut off values of the scale factor for the sinh model beyond
which for that particular parameter, one cannot probe the equilibrium temperature;

• In Figures 26 and 27 we have plotted the complexity measures for a different parameter
space, i.e., choosing extremely small values of the cosmological constant. We see the
behavior of the circuit complexity in this region is drastically different than that was
observed in the earlier parameter space. For the earlier and intermediate part of the
evolutionary scales, the circuit complexity measures shows a decreasing behavior
while at large scales it just shows a random fluctuating behavior. This feature was not
observed in the earlier parameter space;

• The behavior of the OTOCs in this parameter space is also remarkably different from
the ones that we observed in the earlier parameter space. See Figures 28 and 29
for details. In this regime, the OTOC shows a slowly increasing behavior in the
early evolutionary scales, followed by a sharp increase in the intermediate regions.
However, at late time scales, the OTOC shows a similar fluctuating behavior as the
circuit complexity. Another important feature is the absence of the cut off values of
the evolutionary scales in this parameter space which was observed in the earlier case.
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Figure 23. Von-Neumann entanglement entropy plotted as a function of the scale factor.
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Figure 24. Renyi entanglement entropy plotted as a function of the scale factor.
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Figure 25. Entanglement entropy computed from C2 plotted against scale factor in the chaotic region.
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Figure 26. Behavior of C1 against scale factor in a different space.
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Figure 27. Behavior of C2 against scale factor in a different space.
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Figure 28. Behavior of OTOC predicted from C1 against scale factor in a different space.
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Figure 29. Behavior of OTOC predicted from C2 against scale factor in a different space.

In Table 3, a comparative analysis of the two models has been done in the two different
parameter space chosen in the paper. The remarkable difference in the properties of
the circuit complexity and OTOC in the two different parameter spaces shows the non-
universality of the complexities and the OTOCs and suggests that they are dependent on
the parameters of the chosen model and also on the regime of the evolutionary scale in
which it is studied.
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Table 3. Comparative study of the two models of scale factors in the two different parameter space
chosen in the paper.

Measures Parameter Space I Parameter Space II

Values of Parameters
High value of
Cosmological constant, i.e.,
early time scale (≤10−10)

extremely low value of
cosmological constant, i.e.,
late time scale.
(10−20–10−80)

Complexity behavior of
Cosine model

increases and then
decreases always increases

Complexity behavior of
Sinh model

increases and then
decreases but with cut offs

decreases and then
oscillates

OTOC behavior of
Cosine model

decreases and then
increases

decreases and then
saturates

OTOC behavior of
Sinh model

decreases and then
increases with cut offs increases and oscillates

Table 4 summarizes all our important conclusions from the study of the two cosmologi-
cal scale factors, one with island and the other without island.

Table 4. Comparative study of the two models of scale factors considered in this paper.

Measures AdS+Radiation FLRW dS+Radiation FLRW

Complexity plots in
parameter space I

exponential rise before a
characteristic scale factor
followed by a
smooth decay

exponential rise before a
characteristic scale factor
followed by decay with
cut offs.

Complexity plots in
parameter space II

increasing behavior
throughout

decreasing feature initially
followed by random
fluctuations.

OTOC plots in parameter
space I

exponential decay
observed before a
characteristic scale factor
followed by increasing
behavior

exponential decay
observed before a
characteristic scale factor
followed by increasing
behavior with cut offs.

OTOC plots in parameter
space II

decreasing feature initially
followed by saturation

increasing feature initially
followed by random
fluctuations.

Lyapunov exponent obeys the universal relation obeys the universal relation

Von-Neumann
entanglement entropy of
the modes of
squeezed state

increases throughout the
evolutionary scales

increases throughout the
evolutionary scales

Renyi entropy increases throughout the
evolutionary scales

increases throughout the
evolutionary scales

Equilibrium temperature
of the squeezed state

increases initially and
saturates at late
evolutionary scale

increases initially and
saturates at late
evolutionary scale

8. Conclusions and Prospects

From our study of cosmological islands, we have the following final remarks:
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• Remark I:
The single field two mode squeezed state formalism enables us to express the various
measures computed in this paper in terms of only two variables, the squeezed state
parameter and the squeezed angle instead of adopting the general semi-classical ap-
proach. The squeezed state formalism approach provides an elegant way of comparing
various measures calculated in this paper.

• Remark II:
The notion of circuit complexity and OTOC can be used as a useful tool for elucidating
many unknown aspects of gravitational and cosmological models. One can comment
on the difference between the two cosmological models considered in this paper
by computing the circuit complexity within the framework of spatially flat FLRW
cosmology in the presence of quantum extremal islands, having AdS with radiation
and dS with radiation.

• Remark III:
In any chosen parameter space, the complexity behavior in spatially flat FLRW cos-
mology in the presence and absence of islands shows remarkably different features.

• Remark IV:
The behavior of the out-of-time-ordered correlation functions are also drastically
different for the two different cases considered in this paper.

• Remark V:
Circuit complexity and OTOCs are universal in the entire region of the parameter space
of the chosen model. This can be seen from the different behavior of the complexity
measures for different ranges of the cosmological models.

• Remark VI:
The quantum Lyapunov exponent and equilibrium temperature calculated from differ-
ent complexity measures satisfy the universality relation established in Reference [20].

• Remark VII:
The entropy of the modes of the squeezed states shows an increasing behavior for
both the models with some minute differences, showing that the presence or absence
of islands in FRW cosmology does not effect the entropy of the modes of the squeezed
state. The equilibrium temperature of the two mode squeezed state also shows
identical overall behavior irrespective of the presence or absence of islands.

• Remark VIII:
In the Sine hyperbolic model (without islands), one can see the initial portion of the
complexity curve resembling the cosine model (with islands). However, due to the
deviation at different cut-off values of the scale factor, the behavior in the decreasing
part at late evolutionary scales is not identical.

Some of the prospects can be in the following direction:

• Prospect I:
As discussed earlier, apart from the quantum extremal surface or island prescription,
other proposals have also been suggested to solve the black hole information paradox.
However, none of them has been studied using the notion of circuit complexity and
OTOC. A very intuitive study will be to try and predict the entanglement entropy
from the computation of circuit complexity for the other proposals. One can then
comment on the best proposal for reproducing the page curve from the perspective of
circuit complexity and OTOC.

• Prospect II:
It is a well-known fact that black holes are highly chaotic systems. One can then ask
the question from the perspective of black hole chaos about which one is a better
proposal in reproducing the page curve and revealing the chaotic features of black
holes. This question can be addressed from the study of circuit complexity and OTOC,
which are the most relevant probes of quantum chaos.

• Prospect III:
An extension of the present work can be done for the primordial gravitational waves,
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requiring the inclusion of the tensor mode fluctuations generated from cosmological
perturbations in the spatially flat FLRW background rather than the scalar modes
considered in this case. It would be an interesting study as to how the two-mode
squeezed state formalism brings about the phenomenon of chaos and complexity in
primordial gravitational waves.

• Prospect IV:
A model-independent notion of circuit complexity can be given from the perspective
of effective field theory, where one starts from a single EFT action and derives all
models under various constraints satisfied by the action’s parameters. Squeezed
state formalism for such a universal action can be developed to generalize an give a
model-independent prescription of complexity.

• Prospect V:
Recently there has been a study of the Islands contribution in the entanglement
negativity [125]. This motivates us to rethink various entanglement-related phenom-
ena studied in [35,36,126,127] and whether those aspects can be studied from the
perspective of islands.

• Prospect VI:
Recently, there have been many studies in the field of open quantum systems (OQS)
[128–130]. It is natural to expect that an OQS will exhibit chaotic behavior due to its
constant interaction with its immediate surroundings. One can utilize the concept of
circuit complexity and OTOC to probe the chaos shown by an OQS.
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Appendix A. Horizon Constraints on the FLRW Cosmological Islands

In Section 5.4 we have imposed the constraint kτ0 = −1. It is important to note what
constraint this places on the scale factor, when we consider the cosmological horizon
for islands.

The cosmological horizon is given by

DH :=
k

a(t)H(t)
=

k
H(τ)

= 1, where H(τ) =
d ln a(τ)

dτ
=

a′(τ)
a(τ)

. (A1)

This along with the constraint gives us,

1
τH = −1 (A2)

Model I (AdS+Radiation):
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The expression can be calculated for both models by using the expression for τ andH
that we already calculated.

Model II (dS+Radiation):
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For a given range of scale factor, one can then determine whether we are probing inside or
outside the event horizon of the space-time based on the cosmological horizon condition.

Appendix B. Dispersion Relation in Cosmological Islands

In this appendix, our prime objective is to derive the expression for the dispersion
relation in terms of the squeezed parameter rk(τ) and the squeezed angle φk(τ), where
the dispersion relation appears in the Hamiltonian after quantization that we studied in
the paper explicitly.

Let us first write down the expression for the conformal time dependent dispersion
relation Ωk in terms of the canonical field variable and its associated canonically conjugate
momentum that appears after performing the cosmological perturbation theory for a single
scalar field:

Ωk(τ) : =

{∣∣∣v′k(τ)∣∣∣2 + µ2(k, τ)|vk(τ)|2
}

=

{
|πk(τ)|2 + k2|vk(τ)|2 + λk(τ)

(
π∗k(τ)vk(τ) + v∗k(τ)πk(τ)

)}
,

Now, we plug in the expressions for πk(τ) and vk(τ), which are reproduced here for
convenience:
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vk(τ) = vk(τ0)

(
cosh rk(τ) exp(iθk(τ))− sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

)
, (A5)

πk(τ) = πk(τ0)

(
cosh rk(τ) exp(iθk(τ)) + sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

)
, (A6)

and after doing algebraic manipulation we get the following result:

Ωk(τ) =

(
|πk(τ0)|2 + k2|vk(τ0)|2

)(
cosh2 rk(τ) + sinh2 rk(τ)

)

+ sinh rk(τ) · cos 2φk(τ)

(
|πk(τ0)|2 − k2|vk(τ0)|2

)

+ λk(τ)

{(
π∗k(τ0)vk(τ0) + v∗k(τ0)πk(τ0)

)

+ i sinh 2rk(τ) sin 2φk(τ)

(
π∗k(τ0)vk(τ0)− v∗k(τ0)πk(τ0)

)}
.

(A7)

Here we have chosen the initial condition at the time scale τ = τ0 by considering,
−kτ0 = 1. We impose this condition on the perturbation field variable and on the canoni-
cally conjugate momentum obtained for scalar fluctuation. We finally get:

vk(τ0) =
1√
2k
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( 3

2
) ∣∣∣∣∣ exp

(
−i
{π

2
(νisland − 2)− 1

})
1−

√
2

(
νisland −

1
2

)(
νisland +

1
2
+ i
)

(
νisland +

1
2

) exp
(
− iπ

4

). (A9)

the general mass parameter for cosmological Islands can be computed as:

νisland =

√
1
4
+

2(1− weff)

(1 + 3weff)2 . (A10)

where the effective equation of state parameter weff is defined for the two prescribed
models as:

AdS FLRW + Radiation: weff =
1
3


(

1 +
3|Λ|

16πε0ρ0

)
(

1− |Λ|
16πε0ρ0

)
 =

1
3


(

1 + 3
(

a
a0

)4
)

(
1−

(
a
a0

)4
)
, (A11)

dS FLRW + Radiation: weff =
1
3


(

1− 3|Λ|
16πε0ρ0

)
(

1 +
|Λ|

16πε0ρ0

)
 =

1
3


(

1− 3
(

a
a0

)4
)

(
1 +

(
a
a0

)4
)
. (A12)
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where we use the fact that the radiation dominated epoch the radiation density scales with
the scale factor as, ρ = ρ0a−4 where a0 is given by:

a0 = a(t = 0) =
(

16πε0ρ0

|Λ|

)1/4

=

(
8πε0

|Λ|

)1/4

, where we fix ρ0 =
1
2

. (A13)

Further, one can recast the expression for the generalized mass parameter for the
mentioned two models in the following simplified and compact form:

AdS FLRW + Radiation: νisland(a) =
1
2

√
1 + ∆AdS(a), (A14)

dS FLRW + Radiation: νisland(a) =
1
2

√
1 + ∆dS(a). (A15)

where the newly introduced scale factor dependent factors, ∆AdS and ∆dS are defined
as follows:

∆AdS(a) :=

8

1− 1
3


(

1 + 3
(

a
a0

)4
)

(
1−

(
a
a0

)4
)



1 +


(

1 + 3
(

a
a0

)4
)

(
1−

(
a
a0

)4
)



2 , (A16)

∆dS(a) :=

8

1− 1
3


(

1− 3
(

a
a0

)4
)

(
1 +

(
a
a0

)4
)



1 +


(

1− 3
(

a
a0

)4
)

(
1 +

(
a
a0

)4
)



2 . (A17)

Neglecting the phase contributions, we get a very simplified expression for Ωk(τ),
which is given by:

Ωk(τ) = 22νisland−2

∣∣∣∣∣Γ(νisland)

Γ
( 3

2
) ∣∣∣∣∣

2[
3k
4

(
cosh2 rk(τ) + sinh2 rk(τ)

)
− k

4
sinh rk(τ) cos 2φk(τ)

− 1√
2

λk(τ) sinh 2rk(τ) sin 2φk(τ)

]
.

(A18)

Now we consider a specific situation in the time line of our FLRW universe, where it is
expected to have very small contribution from the squeezed parameter, rk(τ) for which
one can use the following approximations:

cosh rk(τ) ≈ 1, sinh rk(τ) ≈ rk(τ). (A19)
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Consequently, we get the following result for the island dispersion relation:

Ωk(τ) ≈ 3k 22(νisland−2)

∣∣∣∣∣Γ(νisland)

Γ
( 3

2
) ∣∣∣∣∣

2

︸ ︷︷ ︸
Leading contribution

(
1 + r2

k(τ) + · · ·
)

,
(A20)

which is basically dependent on the co-moving wave number and the time dependent
quantity νisland. Further, if we assume that the contributions appearing through the factors
∆AdS(a) and ∆dS(a) are appearing as a correction terms due to its smallness the by applying
the binomial approximation the conformal time dependent generalized mass parameter
νisland can be approximately written by considering the contribution up to the next-to-
leading order term as:

AdS FLRW + Radiation: νisland(a) ≈
(

1
2
+

1
4

∆AdS(a) + · · ·
)

, (A21)

dS FLRW + Radiation: νisland(a) ≈
(

1
2
+

1
4

∆dS(a) + · · ·
)

. (A22)

The similar approximation can also be realised in terms of the effective equation of state
parameter as well, which can written as:

νisland ≈
(

1
2
+

4(1− weff)

(1 + 3weff)2 + · · ·
)

. (A23)

where we have neglected the contributions of all higher order small correction terms
appearing as · · · from AdS+radiation and dS+radiation sectors, respectively. Now after
substituting the above mentioned expression for the mass parameter νisland one can further
write the following simplified form of the dispersion relation, Ωk(τ), which is given by:

Ωk(τ) ≈
3
2

k 2

(
8(1− weff)

(1 + 3weff)2 + · · ·
) ∣∣∣∣∣∣∣∣

Γ
(

1
2
+

4(1− weff)

(1 + 3weff)2 + · · ·
)

Γ
(

1
2

)
∣∣∣∣∣∣∣∣
2(

1 + r2
k(τ) + · · ·

)

=
3

2π
k 2

(
8(1− weff)

(1 + 3weff)2 + · · ·
) ∣∣∣∣Γ(1

2
+

4(1− weff)

(1 + 3weff)2 + · · ·
)∣∣∣∣2(1 + r2

k(τ) + · · ·
)

(A24)

≈ 3
2

k
(

1 + 8 ln 2
(1− weff)

(1 + 3weff)2 + · · ·
)[

1 +
8(1− weff)

(1 + 3weff)2 ψ(0)
(

1
2

)
+ · · ·

](
1 + r2

k(τ) + · · ·
)

≈ 3
2

k
[

1 +
8(1− weff)

(1 + 3weff)2

(
ln 2 + ψ(0)

(
1
2

))
+ · · ·

](
1 + r2

k(τ) + · · ·
)

.

Here for the above computation we have used the following important results for the
series expansion:

2

(
8(1− weff)

(1 + 3weff)2 + · · ·
)

=

(
1 + 8 ln 2

(1− weff)

(1 + 3weff)2 + · · ·
)

, (A25)∣∣∣∣Γ(1
2
+

4(1− weff)

(1 + 3weff)2 + · · ·
)∣∣∣∣2 = π

[
1 +

8(1− weff)

(1 + 3weff)2 ψ(0)
(

1
2

)
+ · · ·

]
. (A26)

Now after substituting the above mentioned expression for the mass parameter νisland
one can further write the following simplified form of the dispersion relation, Ωk(a),
in terms of the FLRW scale factor for AdS+radiation and dS+radiation are given by the
following expressions:
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Ωk(a) ≈ 3
2

k 2

(
1
4

∆AdS/dS(a) + · · ·
) ∣∣∣∣∣∣∣∣

Γ
(

1
2
+

1
4

∆AdS/dS(a) + · · ·
)

Γ
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1
2

)
∣∣∣∣∣∣∣∣
2(

1 + r2
k(τ) + · · ·

)

=
3

2π
k 2

(
1
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∆AdS/dS(a) + · · ·
) ∣∣∣∣Γ(1

2
+

1
4

∆AdS/dS(a) + · · ·
)∣∣∣∣2(1 + r2

k(τ) + · · ·
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(A27)

≈ 3
2

k
(

1 +
1
4

∆AdS/dS(a) + · · ·
)[

1 +
1
4

∆AdS/dS(a)ψ(0)
(

1
2

)
+ · · ·

](
1 + r2

k(τ) + · · ·
)

≈ 3
2

k
[

1 +
1
4

∆AdS/dS(a)
(

ln 2 + ψ(0)
(

1
2
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+ · · ·

](
1 + r2

k(τ) + · · ·
)

.

Here for the above computation we have used the following important results for the
series expansion:

2

(
1
4

∆AdS/dS(a) + · · ·
)

=

(
1 +

1
4

ln 2 ∆AdS/dS(a) + · · ·
)

, (A28)∣∣∣∣Γ(1
2
+

1
4

∆AdS/dS(a) + · · ·
)∣∣∣∣2 = π

[
1 +

1
4

∆AdS/dS(a)ψ(0)
(

1
2

)
+ · · ·

]
. (A29)
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