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Abstract: We consider N = 4 conformal supergravity with an arbitrary holomorphic function of the
complex scalar S which parametrizes the SU(1, 1)/U(1) coset. Assuming non-vanishings vevs for S
and the scalars in a symmetric matrix Eij of the 10 of SU(4) R-symmetry group, we determine the
vacuum structure of the theory. We find that the possible vacua are classified by the number of zero
eigenvalues of the scalar matrix and the spacetime is either Minkowski, de Sitter, or anti-de Sitter.
We determine the spectrum of the scalar fluctuations and we find that it contains tachyonic states
which, however, can be removed by appropriate choice of the unspecified at the supergravity level
holomorphic function. Finally, we also establish that S-supersymmetry is always broken whereas
Q-supersymmetry exists only on flat Minkowski spacetime.

Keywords: supergravity; conformal symmetry; weyl gravity; conformal supergravity

1. Introduction

Conformal supergravity is the supersymmetric completion of conformal or Weyl
gravity, described by the Weyl square term. It is invariant under the full superconformal
group, which is the supergroup SU(2, 2|N ), the real form of SL(4|N ), where N counts
the number of supersymmetries. This number cannot be larger than four (N ≤ 4) since
otherwise, among others, the theory will contain higher spin fields [1]. The bosonic part
of the above supergroup is SO(2, 4) × U(N ) if N 6= 4 or SO(2, 4) × SU(4) if N = 4,
whereas the fermionic generators are in the (4,N ) + (4̄, N̄ ) for any N . In other words, the
superconformal group contains the standard generators of the conformal group (rotations—
M, translations—P, conformal boosts—K, and dilations—D) as well as the usual Q and the
special S supersymmetry.

Conformal supergravity employs the Weyl multiplet which is a unique off-shell
multiplet and has fewer fields than the corresponding Poincaré gravity multiplet. The
reason is the high degree of symmetry since the local Weyl symmetry implies that certain
modes should be absent [2,3]. Four dimensional conformal supergravity actions were
known for a long time for N < 4 [4–10] and the full off-shell action for the N = 4 has also
been recently found [11–13]. Part of the bosonic sector of the theory has previously been
obtained in [9] by utilizing the conformal anomaly of N = 4 vector multiplets while four
dimensional N = 4 solutions without conformal symmetry were studied in [14,15].

Conformal supergravity can also be obtained as the massless limit m → 0 of the
supersymmetric completion of m2R + Weyl2 gravity [16–18] (see also [19–22]). In general,
although such theories contain ghost propagating states [23–25], they are interesting as
they arise in the twistor-string theory via closed strings or gauge singlet open strings [26].
It is interesting that in the m→ 0 limit, the spectrum is re-organized so that the symmetry is
enhanced from super Poincaré to superconformal, whereas, at the same time R-symmetries
get promoted to local gauge symmetries. Let us notice that there are higher curvature
supergravities with physical spectrum [27–32] and a rich vacuum structure [33].
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A particular feature of conformal supergravity is that, although the N < 4 theories
are unique, the N = 4 one is not. In fact, the N = 4 theory contains a dimensionless scalar
φα, (α = 1, 2) that parametrize the coset SU(1, 1)/U(1). The U(1) is realized as a local
symmetry. The corresponding gauge field is composite with chiral action on the fermions
and therefore, the R-symmetry group is enhanced to SU(4)×U(1).

Then, the Weyl square term, among others in the supersymmetric action, is multiplied
by a holomorphic function H(φα). The existence of this ambiguity of the N = 4 confor-
mal supergravity was known for some time [34] and it has been explicitly worked out
in [12,13]. In this work our aim is to uncover the vacuum structure of the N = 4 confor-
mal supergravity where scalar fields are also excited looking for maximally symmetric
background solutions.

The structure of the paper is as follows: In Section 2, we describe the spectrum of the
N = 4 conformal supergravity and the corresponding action. In Section 3, we explore the
vacuum structure of the N = 4 theory, and finally, we conclude in Section 4.

2. Spectrum and Action

In order to establish notation, let us recall the spectrum of the N = 4 confromal
supergravity. Greek letters µ, ν, . . . denote space-time indices, a, b, . . . denote tangent space
indices, and i, j, . . . are SU(4) indices. The bosonic sector contains the vierbein ea

µ, the
SU(4) gauge field Vµ

i
j, and the gauge field bµ which gauges the dilatations. There are also

composite gauge fields describing the spin connection ωµ
a
b, the gauge field f a

µ associated to
conformal boosts, and the composite U(1) gauge field Aµ. The bosonic sector is completed
with a complex anti-self-dual tensor field Tab

ij which is in the 6 of SU(4), the complex
scalars Eij in the 10 and the auxiliary pseudoreal scalars Dij

kl in the 20′ of SU(4). Finally,
the bosonic sector is completed by the scalars φα (α = 1, 2) which parametrize the coset
SU(1, 1)/U(1). They are invariant under dilatations and transform as a doublet under
SU(1, 1) global transformations. The conditions and the constraints these fields satisfy are1

Tab
ij = −Tba

ij = −Tab
ji, Tab

ij = −1
2

εab
cdTcd

ij,

Dij
kl =

1
4

εijmnεklpqDpq
mn, Eij = Eji, Eij =

(
Eij)∗,

φαφα = 1, φ1 = (φ1)∗, φ2 = −(φ2)∗. (1)

The fields of theN = 4 conformal supergravity are completed by the positive chirality
fermions which are the gravitini ψi

µ, the S-supersymmetry composite φi
µ, and the two

spinor fields, Λi in the 4 and χij
k in the 20 of SU(4). The supersymmetry transformations

of the N = 4 fields can be found in [8].
The full off-shell action of the N = 4 conformal supergravity has been constructed

in [13]. The pure gravitational part contains the Weyl contribution

e−1L =
1
2
(
H+H

)
WµνκλWµνκλ + · · · , (2)

where H is a holomorphic function of φα. The equations of motion for vanishing fields
Tab

ij, Eij, Dik
kl and constant φα are

Bµν = 0,
(
∂αH+ ∂ᾱH

)
WµνκλWµνκλ = 0, (3)

where ∂α = ∂/∂φα, ∂ᾱ = ∂/∂φᾱ and

Bµν = ∇ρ∇σWσ
µρν +

1
2

RρσWρµσν (4)

is the Bach tensor. Clearly, conformally flat backgrounds are solutions of the equations
of motion Equation (3). In particular, Minkowski, de Sitter, and Anti-de Sitter spacetimes



Universe 2021, 7, 409 3 of 15

are maximally symmetric vacuum solutions. These solutions are however, trivial in the
sense that they do not involve any field other than the vierbein and are indistinguishable
in the Weyl theory (they are all maximally symmetric and have vanishing Weyl tensor).
Our aim here is to uncover (part of) the vacuum structure of the N = 4 conformal
supergravity where scalar fields are also excited. Since we are looking for maximally
symmetric backgrounds we will only assume non-vanishing scalars Eij and φα, since a
non-vanishing tensor field Tab

ij will in general reduce the background symmetry. In this
case, the relevant bosonic part of the action, in the bµ = 0 gauge, is

L =+H
[1

2
WµνρσWµνρσ +

1
4

EijDµDµEij +
1
8

Dij
kl D

kl
ij −

1
16

EijEjkEkl E
li +

1
48

(EijEij)2
]

+DH
[
+

1
16

Dij
kl(EimEjnεklmn)

]
+
D2H
384

EijEkl EmnEpqεikmpεjlnq + h.c. , (5)

where Dµ is the (super)conformal covariant derivative. The fields Dij
kl are auxiliaries as

they appear only algebraically in Equation (5). Integrating them out by using their equation
of motion

Dij
kl = −

1
4
DH
H EkmElnεijmn, (6)

we find that the lagrangian in Equation (5) is written as

L =H
[1

2
WµνρσWµνρσ −

1
4
∇µEij∇µEij − 1

24
REijEij − 1

16
EijEjkEklEli +

1
48

(EijEij)2
]

− 1
64

(DH)2

H EijEklEmnEpqεikmpεjlnq +
D2H
384

EijEklEmnEpqεikmpεjlnq + h.c. (7)

Note that apart from the usual Weyl square term, the scalars Eij are conformally
coupled to the curvature in the standard way. However, in order gravity to be attractive in
the infrared, vector multiplets coupled to the supergravity multiplet are needed [18,35–37].

We are interested in maximally symmetric vacuum solutions (Minkowski, de Sitter, or
anti-de Sitter) so that

Rµνρσ = Λ
(

gµρgνσ − gµσgνρ

)
, Eij = const. , φα = const. , (8)

where Λ is the cosmological constant which, in our conventions, it is positive, negative,
or zero for de Sitter, anti-de Sitter, or Minkowski spacetime, respectively. In this case, the
equations of motion which follow from the Lagrangian of Equation (7) are

ABµν + C
(

Rµν −
1
2

gµνR
)
+

1
2

Vgµν = 0 , (9)

R∂IC− ∂IV = 0 , (10)

where the index I enumerates collectively all scalar fields and Bµν is the Bach tensor defined
in Equation (4). We have also introduced the functions

A(φα, φα) = H+H , C(φα, φα, EI) = −
1

24
A EijEij ,

G(φα, φα) =
( (DH)2

H − D
2H
6

)
, (11)
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which, for shorthand, we will refer to them simply as A, C, and G. The scalar potential V
turns out to be

V =H
( 1

16
EijEjkEklEli − 1

48
(EijEij)2

)
+

1
64

( (DH)2

H − D
2H
6

)
EijEklEmnEpqεikmpεjlnq + h.c. (12)

Since the Bach tensor vanishes for conformally flat geometries as the ones we are after
(Minkowski, de Sitter, or anti-de Sitter), Equations (9) and (10) are simply

Λ =
V
2C

, 2V∂IC− C∂IV = 0 . (13)

The first equation of Equation (13) specifies the cosmological constant Λ and the
second one can be written as

C2

V
∂I

V
C2 =

1
Ve f f

∂IVe f f = 0 . (14)

Therefore, the vacua of the theory are specified by the extrema of the “effective” potential

Ve f f =
V
C2 . (15)

Our aim in the following is to determine these extrema.

3. Vacuum Solutions

In order to find the vacuum structure we should minimize the effective scalar potential
in Equation (15), which is explicitly written as

Ve f f =

(
24(

H+ H̄
)
EijEij

)2{
H
( 1

16
EijEjkEklEli − 1

48
(EijEij)2

)
+

1
64

( (DH)2

H − D
2H
6

)
EijEklEmnEpqεikmpεjlnq

}
+ h.c. (16)

Clearly, we cannot proceed without specifying the exact form of the holomorphic
functionH(φα). Therefore, we need to choose the explicit form ofH(φα) as, at this point, it
is totally arbitrary, although it is expected to be specified in a more fundamental theory.
However, before, we need to elaborate on its properties and structure which will be
discussed in the next sections.

3.1. Structure ofH
The derivatives D on the scalar manifold SU(1, 1)/U(1) which appear in the la-

grangian Equation (5) are defined as [12]

D = −φaεab
∂

∂φb
, D = +φaεab ∂

∂φb , D0 = φα ∂

∂φa
− φα

∂

∂φα
. (17)

Clearly with the definitions above, the derivative DH of the holomorphic function
H(φα) is also holomorphic (D̄DH = 0). Now, due to the constraint φαφα = 1, functions of
the formH(φ2/φ1) are holomorphic. Therefore it is convenient to define the fields S and
ψ as

S =
φ2

φ1
, S = −φ2

φ1 , e2iψ =
φ1

φ1
, (18)
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In this parametrization, the field S parametrize the Poincare disk 0 ≤ |S| < 1 whereas
the phase ψ describes the U(1). The derivatives Equation (17) are expressed now as

D = −e+2iψ
(
(1− SS)∂s +

i
2

S∂ψ

)
,

D = (D)∗ , D0 = −i∂ψ . (19)

Then, the operator D2 turns out to be

D2 = Se2iψD + e4iψ
(
− S(1− SS)∂S +

i
2

S(1− SS){∂S, ∂ψ}

− 1
4

S2
∂2

ψ + (1− SS)2∂2
S

)
. (20)

One can see that for any choice ofH(S) the first order derivative is also holomorphic
DDH = 0. With the expressions in Equations (19) and (20), we have for the quantities DH
and D2H that enter in the lagrangian

DH = −e+2iψ(1− SS)∂SH , (21)

D2H = −e+4iψ(1− SS)
(

2S∂SH− (1− SS)∂2
SH
)

, (22)

3.2. Vacua of the N = 4 Conformal Supergravity

The scalars Eij are in the 10 of SU(4) and therefore can be represented as a complex
symmetric 4× 4 matrix. One of the simplest configuration is the one where Eij is diagonal
and takes therefore the form

Eij =


E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4

 = Eiδij (no summation) . (23)

In order to proceed now, we will distinguish two different cases for the holomorphic
function H: (1) DH = DH0 = 0, and (2) DH 6= const. We will examine these cases
separately below.

3.2.1. Constant Holomorphic Function

The first case corresponds to a constant homolophic function H. We can take here
H(S) ≡ H0 = const., so that

A = H0 +H0 =
1
α2 , C = − 1

24α2 EijEij , G = 0 . (24)

Then, the effective potential in Equation (16) and the cosmological constant in
Equation (13) turn out to be

Ve f f = −12α2
(

∑i |Ei|2
)2 − 3 ∑i |Ei|4(

∑i |Ei|2
)2 , (25)

and

Λ = +
1
4

(
∑i |Ei|2

)2 − 3 ∑i |Ei|4

∑i |Ei|2
(26)

for i = 1 . . . 4, respectively. Note that, unlike the effective potential, the cosmological
constant does not depend on the overall factor A as it should for a constant holomorphicH.
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The effective potential, Ve f f is minimized at several points with different gauge symmetry
breaking patterns and different values of the cosmological constant reported below.

The extrema of the effective potential are a solution of Equation (14) and they can be
classified according to the number of zero eigenvalues of the scalar-field matrix Eij. These
extrema fall in the following classes:

(a) The first class consists of configurations of only one non-zero eigenvalue of Eij (let
say |E1| = |E2| = |E3| = 0 and |E4| = |E| 6= 0). The associated cosmological constant
is negative

Λ = −|E|
2

2
, (27)

giving rise to an anti-de Sitter background, an unbroken SU(3) and positive effective
potential 〈Ve f f 〉 = +24α2.

(b) A second class of solutions is when two eigenvalues of the matrix are zero (let say
|E1| = |E2| = 0) while the others have equal modulus (|E3| = |E4| = |E|). This breaks
SU(4)→ SU(2) and the cosmological constant turns out to be again negative

Λ = −|E|
2

4
, (28)

corresponding to an anti-de Sitter background. The effective potential is positive in
this case 〈Ve f f 〉 = +6α2.

(c) A third class of solutions is obtained when there is a single zero eigenvalue (let say
|E1| = 0) and the modulus of the other eigenvalues are equal (|E2| = |E3| = |E4|).
In this case, it can easily be verified that the cosmological constant in Equation (26)
vanishes

Λ = 0 , (29)

corresponding to a Minkowski vacuum and an unbroken U(1) symmetry.
(d) A final class of extrema of the effective potential contains scalars Eij with non-zero

eigenvalues but with equal modulus (|E1| = |E2| = |E3| = |E4| = |E|). The cosmo-
logical constant is positive in this case and turns out to be

Λ = +
|E|2

4
, (30)

corresponding to a de Sitter background whereas the SU(4) symmetry is in generally
broken. However, when the fields Ei (i = 1, 2, 3, 4) are equal and not only their
modulus, the SU(4) is broken down to O(4). The effective energy turns out to be
〈Ve f f 〉 = −3α2.

The number of zero eigenvalues, the vacuum energy and the symmetry breaking for
each case are collected in the Table 1:

Table 1. The vacua of the theory in the case of a diagonal scalar matrix Eij are collectively presented
in this table. As we will see later, most of the vacua are non-supersymmetric.

Vacuum
Case

Zero
Eigenvalues

VEV of
Effective
Potential

Background Unbroken
Subgroup of SU(4)

a 3 〈Ve f f 〉 > 0 AdS SU(3)

b 2 〈Ve f f 〉 > 0 AdS SU(2)

c 1 〈Ve f f 〉 = 0 Minkowski U(1)

d 0 〈Ve f f 〉 < 0 dS completely broken
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3.2.2. Non-Constant Holomorphic Function

Let us now examine the effective potential in Equation (16) when the holomorphic
functionH is non-constant. In this case, the effective potential for a diagonal scalar-field
matrix Eij of the form (23) turns out to be

Ve f f = −
12

A(S, S)

(
∑i |Ei|2

)2 − 3 ∑i |Ei|4(
∑i |Ei|2

)2 +
216

A(S, S)2

{
∏i Ei × G(
∑i |Ei|2

)2 + h.c.

}
. (31)

Comparing the above potential to the one of the previous section (constant H), we
see that the first term is the same but the function A ≡ A(S, S) is not constant anymore.
The extra contribution in the brackets appears due to the presence of the derivatives of the
holomorphic functionH. It is important to notice that since the second term in the effective
potential in Equation (31) is a product of the eigenvalues of the scalar matrix Eij, it vanishes
when the determinant of Eij is zero, i.e., when at least one of its eigenvalues vanishes.

We will determine now the cosmological constant and compare it to Equation (26) of
the previous section. The effective potential in Equation (31) has schematically the form

Ve f f =
1

A(S, S)
VH +

1
A(S, S)2

VDH , (32)

where VH and VDH can be read off from Equation (31) to be

VH = −12

(
∑i |Ei|2

)2 − 3 ∑i |Ei|4(
∑i |Ei|2

)2 , (33)

VDH = 216

{
∏i Ei × G(
∑i |Ei|2

)2 + h.c.

}
. (34)

Then, from Equations (11) and (13) we see that the cosmological constant can always
be written as

Λ = −
Ve f f

48
A(S, S)∑

i
|Ei|2

= − 1
48

(
VH +

1
A(S, S)

VDH
)

∑
i
|Ei|2 . (35)

When the derivatives ofH vanish as was the case in the previous section, the cosmological
constant depends only on the vevs of the Eij fields as in the case with the constant holo-
morphic functionH. The derivative terms just add an extra contribution that depends on
the vev of the S field which parametrizes the manifold SU(1, 1)/U(1).

3.2.3. Vacua for Non-Constant (General) Holomorphic Function

For non-constant holomorphic function and proceeding as before, the non-trivial
critical points of the effective potential in Equation (31) turns out to be (with i, j, k, l =
1, 2, 3, 4 and i 6= j 6= k 6= l)

(a) |Ei| = |Ej| = |Ej| = 0 , |Ek| = E 6= 0 (36)

(b) |Ei| = |Ej| 6= 0 , |Ek| = |El | = 0 . (37)

(c) Ei|Ei|2 =
A

3G
E∗j E∗k E∗l , or

Ei|Ei|2 =
27G∗|G|2

A3 E∗j E∗k E∗l and Ej|Ej|2 =
A

3G
E∗i E∗k E∗l , (38)

(d) Ei|Ei|2 =

(
G∗

G

)1/2
E∗j E∗k E∗l , (39)
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where, the functions A, G are evaluated at the S-critical points. The latter can be determined
whenever the explicit form ofH(S) is known. At the above points of Equations (36)–(39),
the vacua can be classified according to the number of zero eigenvalues of Eij as follows:

(a) With three zero and one non-zero eigenvalue E, corresponding to Equation (36), the
cosmological constant turns out to be

Λ = −1
2
|E|2 , (40)

and the effective potential is

Ve f f =
24

A(S, S)
. (41)

(b) For two zero (let say E1 = E2 = 0) and two non-zero eigenvalues of equal modulus
(|E3| = |E4| = |E|), corresponding to Equation (37), the cosmological constant is

Λ = −1
4
|E|2 , (42)

with

Ve f f =
6

A(S, S)
. (43)

As dictated by Equation (35) the cosmological constants found in these last two classes
of solutions are equal to those of Equations (27) and (28) respectively.

(c) For non-zero eigenvalues which satisfy the relations in Equation (38), the effective
potential and the cosmological constant have the form

Ve f f =
72

A(S, S)
|G|2

A(S, S)2 + 3|G|2
, Λ = −3

2
|G|2

A(S, S) + 3|G|2 ∑
i
|Ei|2 . (44)

In this case the effective potential is always positive and the cosmological constant
is always negative. Since the derivatives of H also shape the vacuum structure, it
is interesting to study them explicitly using the expression in Equation (11) and the
derivative operator in Equation (21)

G = e4iψ(1− |S|2)
( (1− |S|2)H′2

H +
2SH′ − (1− |S|2)H′′

6

)
, (45)

where the prime denotes partial derivative with respect to the S field. The first part of
this function is always positive definite since the target space of S is the Poincare disk,
while the sign of the second part depends on the choice of the holomorphic function.
One can require the function G to vanish or only the second part to vanish which
leads to a second-order differential equation forH(S). Solving both these cases the
solution is a non-holomorphic function thus neither the second part nor the whole G
can vanish with a proper selection ofH(S).

(d) Finally, if eigenvalues that satisfy Equation (39), the effective potential and cosmologi-
cal constant turn out to be

Ve f f = −
3

A(S, S)
∓ 27|G|

A(S, S)2
, Λ =

1
16

(
1± 9|G|

A(S, S)

)
∑

i
|Ei|2 . (46)

Whether the cosmological constant is zero, positive or negative depends on the values
of G and A. In the first case, corresponding to the plus sign in Equation (46), the
cosmological constant is always positive. In the second case, corresponding to the
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minus sign in Equation (46), there are three possibilities according to the value of
λ=A− 9|G|: anti-de Sitter for λ < 1, de Sitter for λ > 1 and Minkowski for λ = 0.

We sum up our results in the Table 2:

Table 2. In this table, we collectively present the vacua of the theory, indicating the number of
eigenvalues and their relation to the cosmological constant and the symmetry breaking pattern. The
Minkowski vacuum exists only if we fine tune λ = 0.

Vacuum
Case

Number of Zero
Eigenvalues VEVs of Eij

Cosmological
Constant Λ

Symmetry
Breaking of SU(4)

a 3 〈Ve f f 〉 > 0 AdS SU(3)

b 2 〈Ve f f 〉 > 0 AdS SU(2)

c 0 〈Ve f f 〉 > 0 AdS completely broken

d 0
〈Ve f f 〉 < 0
〈Ve f f 〉 = 0
〈Ve f f 〉 > 0

dS
Minkowski

AdS
completely broken

3.2.4. Explicit Examples for Non-Constant Holomorphic Function

So far we have kept the discussion general and have classified the possible vacua
according to the number of eigenvalues that vanish in the vacuum. In the case where the
holomorphic function is constant the effective potential and the cosmological constant
are independent of H(S) (since in this case H is an overall coupling constant) and the
vacua are defined in Section 3.2.1. On the other hand, when the holomorphic function is
non-constant, the value of the cosmological constant depends on the choice ofH(S) which
shapes the vacuum structure in a different way.

As we have discussed above, the function H(S) is arbitrary and is expected to be
specified in a more fundamental theory. However, in order to be more explicit and for
illustrative purposes, we will explore here some explicit examples with different forms of
the function H(S). For this, we have to distinguish the possible vacua into two groups,
group I, which contains the cases (a) and (b) and group II which contains the cases (c)
and (d). The reason is that the effective potential in group I is determined entirely in
terms of the function A, whereas the effective potential for group II is determined from
both functions A and G. We start from the vacua I in Equations (40) and (42) where the
cosmological constant does not depending on the S field. If we choose the holomorphic
function to be linear

H(S) = S , (47)

it is obvious that the effective potential

Ve f f (S, S) =
3

Re S
, (48)

has a runaway behavior and no critical points. Critical point of the potential exist only
when the functionH(S) has critical points itself. As a particular example for

H(S) = ±S2 + S , (49)

the effective potential has its extrema at S0 = ∓ 1
2 for the solution in Equation (42)

〈Ve f f 〉 =
6

∓S2 + S + h.c.

∣∣∣
S0=S0

= ∓12, Λ = −|E3|2
2

. (50)

Note that the critical points of the effective potential should lie inside the Poincare
disk 0 ≤ |S| < 1.
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Next, we examine the vacua II where all the eigenvalues of Eij are non-zero. For
convenience we assume that Eij = Eδij and by minimizing the effective potential in
Equation (31) we find

E∗ = ±E
( G

G∗
)1/4

with Λ =
1
4

(
1 +

9|G|
A(S, S)

)
|E|2 , (51)

E∗ = ±iE
( G

G∗
)1/4

with Λ =
1
4

(
1− 9|G|

A(S, S)

)
|E|2 . (52)

In the previous subsection we saw that the derivatives of H, which are contained
in the functions G and G∗ in Equation (11), give an extra contribution to the effective
potential and the cosmological constant. By setting them to zero we arrive at the maximally
symmetric solutions independent of the S fields. The critical points agree with the general
solutions in Equation (39). The solutions in Equations (51) and (52) belong to the class
d) (i.e., Equation (46)) where all the maximally symmetric cases are possible and thus the
holomorphic functionH(S) has to be specified in order to find the vacuum. To see how this
works and in order to proceed further, we choose a power-law form for the holomorphic
function H(S) = Sn as an example. Note that in the case we are discussing, since both
functions A and G appear in the effective potential, it is not necessaryH to have a critical
point. Then, the cosmological constant in Equation (51) turns out to be

Λ =
1
4

(
1 +

3
2

√
n2S−2+nS −2+n(−1 + |S|2)2(−1− 5n + (−1 + 5n)|S|2)2

Sn + S n

)
|E|2 . (53)

The value of S is determined by minimizing the effective potential. Indeed, the critical
points of the effective potential can be found for integer values of n at S = S0 = S0. We
find for example that for n = −1, there are two critical points S0 ∼ −0.87 with Λ ∼ 0.2|E|2
and S0 ∼ 0.93 with Λ ∼ 0.28|E|2, for n = −2, |S0| ∼ 0.97 with Λ ∼ 0.28|E|2, in general,
S0 lies within the Poincaré disk for n ≤ 0. At these points, the cosmological constant in
Equation (53) is always positive (Λ > 0) corresponding to a de Sitter background and
increases for larger values of n. For n > 0, S0 is outside the Poincaré disk and should not
be considered. Similarly, the cosmological constant in Equation (52) and for our specific
choice of function H leads to de Sitter backgrounds (for small negative values of n) and
both de Sitter and anti-de Sitter solutions (for large negative values of n).

3.3. Stability

In order to determine whether the vacua found in the previous sections are stable,
we have to calculate the masses of the fluctuations around these vacua. We consider the
simplest case where H = const and the only scalar fields considered are Eij and their
conjugates since this is the case where the masses can be calculated analytically. In the
more general case, numerical calculations are necessary. A small perturbation δEij around
the vacuum satisfies the equation

∇µ∇µδEij −
(2

3
Λ + 4

∂2V
∂Eij∂Ekl

δEkl + 4
∂2V

∂Eij∂Ekl δEkl
)
= 0 , (54)

where the second derivative of the potential is calculated on the vacuum and we have used
that R = 4Λ. The 20 real degrees of freedom of δEij corresponding to the 10 + 10 fields can
be arranged so that Equation (54) can be written as ∇2δE−M2δE = 0. The square of the
20× 20 mass matrixM2 is of the form

M2 =

(
M2

ijkl
M2

ijkl

M2
ijkl

M2
ijkl

)
. (55)
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Stability requires the eigenvalues of the matrixM2 to be non-zero for Minkowski
and de Sitter backgrounds. However, in the case of AdS vacua Equations (27) and (28) the
eigenvalues m2 should satisfy the BF-bound [38,39]

m2
ij ≥ −

3
4
|Λ| . (56)

For the AdS vacuum obtained from an Eij with one non-zero eigenvalue of
Equation (27), we find that the following eigenvalues of the mass matrix

m2
11 =

1
6
(−|E|2 + 4Λ) = −1

2
|E|2 , m = 6 (57)

m2
22 =

1
2

m2
11 = −1

4
|E|2 , m = 6 (58)

m2
33 =

1
6
(2|E|2 + 4Λ) = 0 , m = 6 (59)

m2
44 =

1
12

(2|E|2 + 4Λ) = 0 , m = 1 (60)

m2
55 =

1
12

(6|E|2 + 4Λ) =
1
3
|E|2 , m = 1 (61)

where m is the multiplicity of the eigenvalues. There are six negative eigenvalues in
Equation (57) which do not satisfy the BF bound and therefore the corresponding AdS
background is unstable. The rest of the vacua have more complicated structures since the
matrix Eij has more than one non-zero eigenvalues and extra non-diagonal terms appear in
the mass matrixM2. For the second AdS vacuum in Equation (28), the eigenvalues are

m2
11 =

1
6
(|E|2 + 4Λ) = 0 , m = 9 (62)

m2
22 =

1
2

m2
11 = 0 , m = 2 (63)

m2
33 =

1
6
(−2|E|2 + 4Λ) = −1

2
|E|2 , m = 2 (64)

m2
44 =

1
2

m2
33 = −1

4
|E|2 , m = 4 (65)

m2
55 =

1
6
(7|E|2 + 4Λ) = |E|2 , m = 1 (66)

m2
66 =

1
24

(6|E|2 + 8Λ) =
1
6
|E|2 , m = 1 (67)

m2
77 =

1
24

(14|E|2 + 8Λ) =
1
2
|E|2 , m = 1 (68)

where again two of the negative eigenvalues violate the BF bound leading to an unstable
AdS. Similarly, for the Minkowski vacuum of Equation (29), the eigenvalues of the mass
matrix are

m2
11 = 0 , m = 13 (69)

m2
22 = −1

4
|E|2 , m = 2 (70)

m2
33 =

1
2
|E|2 , m = 2 (71)

m2
44 = |E|2 . m = 3 (72)
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and therefore the Minkowski vacuum is unstable due to tachyonic modes. Lastly, the de
Sitter vacuum of Equation (30) is also unstable since the mass spectrum is

m2
11 =

1
6
(−|E|2 + 4Λ) = 0 , m = 6 (73)

m2
22 =

1
2

m2
11 = 0 , m = 4 (74)

m2
33 =

1
6
(5|E|2 + 4Λ) = |E|2 , m = 6 (75)

m2
44 =

1
2

m2
33 =

1
2
|E|2 , m = 3 (76)

m2
55 =

1
12

(−3|E|2 + 4Λ) = −1
6
|E|2 , m = 1 (77)

and contains one tachyonic mode.
The tachyonic modes in the spectrum can be lifted by considering non-constant

holomorphic functionH. Indeed, whenH has not trivial derivatives the equation for the
scalar fluctuations takes the form

∇µ∇µδEij −
{

2
3

Λ +
4

H+H

(
∂2V

∂Eij∂Ekl
δEkl +

∂2V
∂Eij∂Ekl δEkl

)}
= 0 , (78)

where the potential V now is given by Equation (16). Clearly, a suitable non-trivial holo-
morphic functionH can shift the masses of the perturbations such that the tachyonic states
of the spectrum are removed. Some simple examples we worked out indicate that when the
contribution of the derivatives ofH to the potential is appropriately positive, the masses
are shifted accordingly. However, since the exact form ofH is not known, we can not say
something more concrete at this point. We should note that it is also expected that when
matter fields are coupled to the theory, the above instabilities will be further removed.

3.4. Non-Diagonal Eij

The previous results exclude all vacua with a diagonal form of the scalars Eij. More
general forms of Eij may also be considered but at the cost of increasing complexity. A
relatively simple case that can be solved analytically is for a non-diagonal Eij of the form

Eij :


0 0 0 0
0 0 0 0
0 0 E33 E34
0 0 E43 E44

 . (79)

Analogously to the diagonal matrix with two non-zero eigenvalues, the gauge sym-
metry breaks in SU(4)→ SU(2) and the effective potential takes the form

Ve f f = −
12

A(S, S)
+

36
A(S, S)

∑ij |Eij|4 + 2
(

∑i |Eii|2|E34|2 + h.c.) + (E∗44E∗33E2
34 + h.c.)

)
(

∑ij |Eij|2
)2 (80)

Then, the critical points of the potential turns out to be

(1) E33E44 = E2
34 (81)

where

Ve f f (S, S) =
24

A(S, S)
, Λ = −1

2 ∑
ij
|Eij|2 (82)

and
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(2) E44E∗34 = −E∗33E34, |E44|2 = |E33|2 (83)

where

Ve f f (S, S) =
6

A(S, S)
, Λ = −1

8 ∑
ij
|Eij|2 (84)

The minimization of the effective potential Ve f f leads to two different vacua of the
same form as the 2× 2 diagonal case with a negative cosmological constant (corresponding
to an anti-de Sitter vacuum). Note that the cosmological constant here differs to the
diagonal case because of the non-diagonal elements contribution as we have noticed above.
In the contrary, comparing the effective potential energy in Equations (82) and (84) to
the case of the 2× 2 diagonal matrix given in Equations (41) and (43), we see that they
are equal.

3.5. Partial Supersymmetry Breaking

Let us now examine whether supersymmetry is preserved by the vacua we found
above. The Q and S- supersymmetry transformations are generated by the opposite chirality
spinors εi and ηi, respectively. The fermion shifts under Q and S- supersymmetry, when
only the φa and Eij fields are turned on, are the following2

δQΛi = 2εabφa /Dφbεi + Eijε
j , (85)

δQχ
ij

k = −
1
2

εijlm /DEklεm + Dij
klε

l , (86)

δQψ i
µ = 2(∂µεi +

1
2

bµεi − 1
2

ωµ · σεi −V i
µ jε

j) , (87)

and

δSΛi = 0 , (88)

δSχ
ij

k = −
1
2

εijlmEklηm , (89)

δSψ i
µ = −γµηi , (90)

respectively. Clearly, S-supersymmetry is always broken since the gravitino shifts are
non-zero for not trivial ηi. Similarly, the conditions for unbroken Q-supersymmetry are

Eijε
j = 0 , (91)

1
4
DH
H EktEl f εijt f εl = 0 , (92)(

∂µ −
1
2

ωµ · σ
)

εi = 0. (93)

Then, the supersymmetric background are necessarily Minkowski and the scalars
matrix (E)ij = Eij should satisfy

det Eij = 0. (94)

In particular, the number of unbroken supersymmetries is the number of zero eigen-
values. We should also mention that another possibility is the fermionic shifts under
Q-supersymmetry to be canceled by an S-fermionic shift. However, one can show that there
are no no-trivial supersymmetry parameters εi and ηi in the same direction (same index i)
that would allow for anti-de Sitter supersymmetric backgrounds. Therefore, the only super-
symmetric backgrounds in Weyl superconformal supergravity are Minkowski spacetimes.
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4. Conclusions

We have studied possible vacua of maximal N = 4 conformal supergravity which
is the supersymmetric completion of conformal or Weyl gravity. It is invariant under the
full superconformal group SU(2, 2|4), the real form of SL(4|4). Although such theories
are considered to need UV completion, they may emerge as a low-energy theory of string
theory [17]. In particular, it has been claimed that it is not originating from closed strings,
but it is an effective open string theory, localized on D3-branes. We should notice that the
superconformal symmetry we discuss here is a classical symmetry. The latter is broken
by quantum effects since, although the theory is power-counting renormalizable, it has
non-vanishing one-loop beta-functions [34]. Thus it suffer from conformal anomaly so that
(super)conformal symmetry is broken. However, since conformal symmetry is a gauge
symmetry here, it poses a threat and leads to inconsistencies [40,41].

We have studied the vacuum of this theory by turning on the scalars Eij in the 10
of SU(4) and the scalars φa which parametrize SU(1, 1)/U(1) coset. The scalars Eij have
Weyl weight w = +1 and therefore, their non-zero vev breaks both conformal and SU(4)
symmetry. We have found that the theory admits de Sitter, anti-de Sitter, and Minkowski
vacua determined by the vev of the scalars Eij and φa. In addition, S-supersymmetry is
always broken, whereas Q-supersymmetry is preserved only on Minkowski backgrounds.
The vacua we have found are unstable as the fluctuations around them are tachyonic. This
pathology indicates that a UV completion is necessary which will remove the instability
and project out the ghost massive graviton state inherited in Weyl gravity.
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Notes
1 We use the notation

εab =

(
0 −1
+1 0

)
, εab =

(
0 +1
−1 0

)
and ηab =

(
1 0
0 −1

)
2 The full fermionic transformations can be found in [8].
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