Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = noise intervention measures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5636 KB  
Article
Identification of Noise Tonality in the Proximity of Wind Turbines—A Case Study
by Wolniewicz Katarzyna and Zagubień Adam
Appl. Sci. 2026, 16(2), 734; https://doi.org/10.3390/app16020734 (registering DOI) - 10 Jan 2026
Abstract
This paper presents a study of the tonality of sound emitted by a wind farm into the surrounding environment. The wind turbines installed at the site have a rated power of 3.0 MW. The aim of the study was to analyse the tonality [...] Read more.
This paper presents a study of the tonality of sound emitted by a wind farm into the surrounding environment. The wind turbines installed at the site have a rated power of 3.0 MW. The aim of the study was to analyse the tonality of sounds in the environment at the nearest residential area. The issue of tonal noise near the wind farm was identified during routine periodic noise monitoring. An experienced survey team identified the phenomenon and carried out preliminary field analyses. Detailed studies were then carried out to identify the environmental hazard and failure-free operation of the turbines. The recorded acoustic events are described in detail and an in-depth analysis is carried out. An action plan has been implemented in consultation with the wind farm operator to reduce tonal sound emissions to the surrounding environment. As a result of these interventions, tonal noise from the wind turbines was successfully reduced. It was determined that the detection of the potential tonality of the sounds emitted by wind turbines should take place during the analysis (active listening) of the .wav file, synchronised with Fast Fourier Transform (FFT) analysis. Conducting tonality assessments solely during field measurements may lead to incorrect identification of tonal sources. Full article
Show Figures

Figure 1

16 pages, 5203 KB  
Article
Traffic Modelling and Emission Calculation: Integration of the COPERT Method into the PTV-VISUM Software
by Anett Gosztola, Bence Verebélyi and Balázs Horváth
Appl. Sci. 2026, 16(2), 567; https://doi.org/10.3390/app16020567 - 6 Jan 2026
Viewed by 101
Abstract
The environmental impacts of road transport, in particular air pollution and noise, are receiving increasing attention in urban and regional planning, as they can not only predict vehicle movements but also provide detailed information on traffic volumes and speed distributions, which are indispensable [...] Read more.
The environmental impacts of road transport, in particular air pollution and noise, are receiving increasing attention in urban and regional planning, as they can not only predict vehicle movements but also provide detailed information on traffic volumes and speed distributions, which are indispensable for effective regulation, targeted interventions and health-conscious urban planning. This study presents an emission calculation module that can be integrated into traffic models and provides detailed estimates of pollutants emitted by road vehicles. The developed module builds on the COPERT methodology, which accounts not only for exhaust emissions such as CO2, NOx and PM, but also for non-exhaust emissions from brake wear, tyre wear, road abrasion and evaporation. The presented system has an open architecture, enabling further customisation, particularly when local measured data are available. This contributes to building a stronger, data-driven link between transport planning and environmental protection. Full article
Show Figures

Figure 1

25 pages, 610 KB  
Review
Assessment of Noise Exposure in United States Urban Public Parks: A Scoping Review
by Ugoji Nwanaji-Enwerem, Kevin M. Mwenda, Shira Dunsiger and Diana Grigsby-Toussaint
Int. J. Environ. Res. Public Health 2025, 22(12), 1882; https://doi.org/10.3390/ijerph22121882 - 18 Dec 2025
Viewed by 413
Abstract
Adverse exposure to noise pollution is increasingly recognized as a significant public health concern. Strong evidence links noise exposure with negative health outcomes such as cardiovascular disease, mental disorders, stress, and sleep disturbance. The presence of noise in parks, which are environmental settings [...] Read more.
Adverse exposure to noise pollution is increasingly recognized as a significant public health concern. Strong evidence links noise exposure with negative health outcomes such as cardiovascular disease, mental disorders, stress, and sleep disturbance. The presence of noise in parks, which are environmental settings associated with health promotion, recreation, and restoration, presents a paradox that warrants further exploration. The United States offers a distinct context for exploring this paradox, given its vast public park system and a wide array of anthropogenic and environmental noise sources. Our scoping review synthesized findings from fifteen research studies that investigated noise exposure and noise levels in United States public parks. The review examined how studies measured noise, the integration of subjective perceptions with objective assessments, and the role of park characteristics in shaping park visitor noise experiences. Results highlighted varying methodological approaches, with some studies employing sound level meters or modeling techniques, while others also incorporated surveys to capture visitor perceptions. Despite this variety, evidence on the direct health impacts of park noise exposure remains limited, and longitudinal studies are largely absent. Notably, few studies evaluated how noise interacts with other environmental exposures, such as air pollution or greenness, to influence visitor perception and wellness. By synthesizing the current evidence base, this review suggests knowledge gaps and few methodological inconsistencies that limit the field. Findings call for future research mobilizing standardized, multimodal noise assessment methods, and considerations for health outcome measures. Such advancements are important for informing public health interventions and guiding urban planning strategies to improve the acoustic quality and restorative potential of US parks. Full article
Show Figures

Figure 1

16 pages, 4015 KB  
Article
Noninvasive Seizure Onset Zone Localization Using Janashia–Lagvilava Algorithm-Based Spectral Factorization in Granger Causality
by Sofia Kasradze, Giorgi Lomidze, Lasha Ephremidze, Tamar Gagoshidze, Giorgi Japaridze, Maia Alkhidze, Tamar Jishkariani and Mukesh Dhamala
Brain Sci. 2025, 15(12), 1334; https://doi.org/10.3390/brainsci15121334 - 15 Dec 2025
Viewed by 317
Abstract
Background/Objectives: Precise identification of seizure onset zones (SOZs) and their propagation pathways is essential for effective epilepsy surgery and other interventional therapies and is typically achieved through invasive electrophysiological recordings such as intracranial electroencephalography (EEG). Previous research has demonstrated that analyzing information flow [...] Read more.
Background/Objectives: Precise identification of seizure onset zones (SOZs) and their propagation pathways is essential for effective epilepsy surgery and other interventional therapies and is typically achieved through invasive electrophysiological recordings such as intracranial electroencephalography (EEG). Previous research has demonstrated that analyzing information flow patterns, particularly in high-frequency oscillations (>80 Hz) using parametric and Wilson algorithm (WL)-based nonparametric Granger causality (GC), is valuable for SOZ identification. In this study, we analyzed scalp EEG recordings from epilepsy patients using an alternative nonparametric GC approach based on spectral density matrix factorization via the Janashia–Lagvilava algorithm (JLA). The aim of this study is to evaluate the effectiveness of JLA-based matrix factorization in nonparametric GC for noninvasively identifying seizure onset zones from ictal EEG recordings in patients with drug-resistant epilepsy. Methods: Two regions of interest (ROIs) in pairs were isolated across different time epochs in six patients referred for presurgical evaluation. To apply the nonparametric Granger causality (GC) estimation approach to the EEG recordings from these regions, the cross-power spectral density matrix was first computed using the multitaper method and subsequently factorized using the JLA. This factorization yielded the transfer function and noise covariance matrix required for GC estimation. GC values were then obtained at different prediction time steps (measured in milliseconds). These estimates were used to confirm the visually suspected seizure onset regions and their propagation pathways. Results: JLA-based spectral factorization applied within the Granger causality framework successfully identified SOZs and their propagation patterns from scalp EEG recordings, demonstrating alignment with positive surgical outcomes (Engel Class I) in all six cases. Conclusions: JLA-based spectral factorization in nonparametric Granger causality shows strong potential not only for accurate SOZ localization to support diagnosis and treatment, but also for broader applications in uncovering information flow patterns in neuroimaging and computational neuroscience. Full article
Show Figures

Figure 1

29 pages, 5138 KB  
Article
The Effect of Noise Level in Design Studios on Students
by Büşra Onay, Seda Mazlum, Şerife Ebru Okuyucu, Fatih Mazlum and Merve Çiftçi
Buildings 2025, 15(24), 4518; https://doi.org/10.3390/buildings15244518 - 14 Dec 2025
Viewed by 491
Abstract
This study investigates the acoustic conditions of a design studio (Studio 130) in the Department of Interior Architecture and Environmental Design at Afyon Kocatepe University by integrating 14 weeks of continuous noise measurements with perception data collected from 192 students. Noise measurements were [...] Read more.
This study investigates the acoustic conditions of a design studio (Studio 130) in the Department of Interior Architecture and Environmental Design at Afyon Kocatepe University by integrating 14 weeks of continuous noise measurements with perception data collected from 192 students. Noise measurements were conducted in accordance with ISO 3382-3:2022 guidelines at three locations—window front, door side, and studio midpoint—during morning, noon, and evening periods, with 10 min recordings at each session. The results indicate that when students were present, the equivalent continuous noise level (Leq) reached an average of 65.5 dB(A), with peak levels rising to 72.3 dB(A) during jury sessions. These values substantially exceed the recommended 35 dB(A) classroom threshold by the World Health Organization and the 35–45 dB(A) limits specified in national regulations for indoor educational spaces. Survey findings reveal that 88% of students experienced loss of concentration, 72% reported decreased productivity, 60% had difficulty communicating, and 52% reported fatigue due to noise exposure. Pearson correlation analysis demonstrated a strong relationship between measured noise levels and reported negative effects (r = 0.966). Moreover, independent samples t-test results confirmed that student presence significantly increased studio noise levels (t = 4.98, p < 0.001). The novelty of this research lies in its combined use of longitudinal objective measurements and subjective perception data, addressing the unique open-plan, collaborative, and critique-based pedagogical structure of design studios. The findings highlight that acoustic comfort is a critical component of learning quality in studio-based education. Based on the results, the study proposes several design and material interventions—including spatial dividers, acoustic ceiling panels, fabric-wrapped absorbers, and impact-reducing flooring—to enhance auditory comfort. Overall, the study emphasizes the necessity of integrating acoustic design strategies into studio pedagogy to support concentration, communication, and learning performance. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 3492 KB  
Article
Wearable-Sensor-Based Analysis of Aerial Archimedean Spirals for Early Detection of Parkinson’s Disease
by Hao Shi, Sanyun Chen, Zhuoying Jiang and Yuting Wang
Sensors 2025, 25(24), 7579; https://doi.org/10.3390/s25247579 - 13 Dec 2025
Viewed by 465
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder whose early symptoms, especially mild tremor, are often clinically imperceptible. Early detection is crucial for initiating neuroprotective interventions to slow dopaminergic neuronal degeneration. Current PD diagnosis relies predominantly on subjective clinical assessments due to the [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder whose early symptoms, especially mild tremor, are often clinically imperceptible. Early detection is crucial for initiating neuroprotective interventions to slow dopaminergic neuronal degeneration. Current PD diagnosis relies predominantly on subjective clinical assessments due to the absence of definitive biomarkers. This study proposes a novel approach for the early detection of PD through a custom-developed smart wristband equipped with an inertial measurement unit (IMU). Unlike previous paper-based or resting-tremor approaches, this study introduces a mid-air Archimedean spiral task combined with an attention-enhanced Long Short-Term Memory (LSTM) architecture, enabling substantially more sensitive detection of subtle early-stage Parkinsonian motor abnormalities. We propose LAFNet, a model based on an attention-enhanced LSTM network, which processes motion data that has been filtered using a Kalman algorithm for noise reduction, enabling rapid and accurate diagnosis. Clinical data evaluation demonstrated exceptional performance, with an accuracy of 99.02%. The proposed system shows significant potential for clinical translation as a non-invasive screening tool for early-stage Parkinson’s disease (PD). Full article
Show Figures

Graphical abstract

26 pages, 7556 KB  
Article
Reduction Characteristics of Stack-Effect Problems According to Applying Local Countermeasures by Pressure Distribution Measurement in Buildings
by Taeyon Hwang, Min-ku Hwang and Joowook Kim
Buildings 2025, 15(24), 4453; https://doi.org/10.3390/buildings15244453 - 10 Dec 2025
Viewed by 342
Abstract
Stack effects in high-rise buildings cause noise, drafts, and elevator door malfunctions during cold weather yet remain difficult to control. Because vertical shafts couple pressures between floors, local fixes at a single lobby can unintentionally disturb the pressure field elsewhere. To analyze these [...] Read more.
Stack effects in high-rise buildings cause noise, drafts, and elevator door malfunctions during cold weather yet remain difficult to control. Because vertical shafts couple pressures between floors, local fixes at a single lobby can unintentionally disturb the pressure field elsewhere. To analyze these interactions, we developed a measurement-calibrated CONTAM multizone model of a 43-story office building and evaluated representative local countermeasures. Under base winter conditions, the pressure difference across the problematic first-floor high-rise elevator doors is 56 Pa, driving approximately 1300 CMH of airflow through the door line. First-floor depressurization reduces this to 34 Pa (about 30% lower airflow) but simultaneously increases the pressure at the main entrance doors from 19 to 39 Pa. Additional first-floor partitions slightly reduce pressures on upper high-rise floors, whereas opening exterior windows in the high-rise zone increases shaft airflow by 7.7% and further amplifies elevator door pressures. We show that neutral pressure level (NPL) shifts into vertical shafts are a key mechanism limiting the effectiveness of purely local interventions. These results demonstrate that effective countermeasures must be designed at the whole-building scale, jointly controlling pressure redistribution and neutral-pressure-level movement while directing unavoidable pressure transfer toward the exterior envelope and away from sensitive interior spaces. Full article
(This article belongs to the Special Issue Built Environment and Building Energy for Decarbonization)
Show Figures

Figure 1

20 pages, 14159 KB  
Article
Mapping Invisible Risk: A Low-Cost Strategy for Identifying Air and Noise Pollution in Latin American Cities
by Lucas Ezequiel Romero Cortés, Iván Tavera Busso, Gabriela Alejandra Abril, Matías Ezequiel Reinaudi, Hebe Alejandra Carreras and Ana Carolina Mateos
Atmosphere 2025, 16(11), 1303; https://doi.org/10.3390/atmos16111303 - 18 Nov 2025
Cited by 1 | Viewed by 472
Abstract
Urban populations in Latin America are highly exposed to traffic-related pollutants, yet monitoring networks remain limited. This study proposes a low-cost methodology to identify urban pollution hotspots in the city of Córdoba, Argentina, by categorizing 20 sites based on traffic categories using Google [...] Read more.
Urban populations in Latin America are highly exposed to traffic-related pollutants, yet monitoring networks remain limited. This study proposes a low-cost methodology to identify urban pollution hotspots in the city of Córdoba, Argentina, by categorizing 20 sites based on traffic categories using Google Traffic data. Measurements of PM2.5, polycyclic aromatic hydrocarbons (PAHs), and equivalent sound pressure level (LAeq) were conducted over a 21-day cold-season period. Mean PM2.5 concentrations ranged from 7.5 to 27.3 µg/m3, and total PAHs ranged from 1.4 to 7.9 ng/m3. Sites with high and medium traffic density exhibited significantly higher PAH concentrations and noise levels, with LAeq5 values exceeding 65 dB at all urban core locations. Conversely, PM2.5 concentrations were higher at peripheral sites due to topography, dust resuspension, and wildfire events. Strong correlations were found between vehicular flow and noise (r = 0.94), and between heavy-vehicle proportion and noise (r = 0.60). The lifetime lung cancer risk associated with PAH exposure was classified as “low” according to USEPA criteria. This traffic-based categorization approach provides a rapid and cost-effective tool for identifying high-risk areas in resource-limited settings, supporting urban planning and public health interventions. Full article
Show Figures

Figure 1

11 pages, 578 KB  
Communication
Precision Audiometry and Ecological Validity: Exploring the Link Between Patient-Reported Outcome Measures and Speech Testing in CI Users
by Matthias Hey and Thomas Hocke
Audiol. Res. 2025, 15(5), 142; https://doi.org/10.3390/audiolres15050142 - 21 Oct 2025
Viewed by 466
Abstract
Background/Objectives: Audiometric methods for hearing-impaired patients are constantly evolving as new therapeutic interventions and improved clinical standards are established. This study aimed to explore the relationship between patient-reported outcome measures in cochlear implant users and scores from audiometric test procedures in quiet and [...] Read more.
Background/Objectives: Audiometric methods for hearing-impaired patients are constantly evolving as new therapeutic interventions and improved clinical standards are established. This study aimed to explore the relationship between patient-reported outcome measures in cochlear implant users and scores from audiometric test procedures in quiet and noise. Methods: In a prospective study, 20 postlingually deafened CI users were included. Speech comprehension was measured in quiet (by Freiburg words) and in noise (by the Oldenburg sentence test), while stationary speech-simulating or temporally fluctuating noise was applied and the noise sources were varied. Subjective feedback from the patients was obtained using the HISQUI19 questionnaire. Results: Word scores in quiet showed a significant positive correlation with the user’s subjective assessment of hearing ability using the questionnaire (Spearman’s R = 0.57). A greater correlation of the subjective evaluation of comprehension against fluctuating background noise as compared with stationary background noise was evident. On the other hand, the test–retest accuracy was reduced by a substantial factor in the transition from stationary to fluctuating background noise. Conclusions: By introducing temporal fluctuations in the background noise, the ecological validity can be improved, but at the cost of a parallel decrease in the accuracy of the test procedure. Especially in the context of studies, this knowledge may help to improve the choice of the specific test method used in evaluating the relationship between ecological validity and precision audiometry. Full article
(This article belongs to the Section Hearing)
Show Figures

Figure 1

39 pages, 227035 KB  
Article
A Three-Stage Super-Efficient SBM-DEA Analysis on Spatial Differentiation of Land Use Carbon Emission and Regional Efficiency in Shanxi Province, China
by Ahui Chen, Huan Duan, Kaiming Li, Hanqi Shi and Dengrui Liang
Sustainability 2025, 17(20), 9086; https://doi.org/10.3390/su17209086 - 14 Oct 2025
Viewed by 797
Abstract
Achieving carbon peaking and neutrality is critical for global sustainability efforts and addressing climate change, yet improving land use carbon emission efficiency (LUCE) remains a challenge, especially in resource-dependent regions like Shanxi Province. Existing studies often overlook the spatial heterogeneity of LUCE and [...] Read more.
Achieving carbon peaking and neutrality is critical for global sustainability efforts and addressing climate change, yet improving land use carbon emission efficiency (LUCE) remains a challenge, especially in resource-dependent regions like Shanxi Province. Existing studies often overlook the spatial heterogeneity of LUCE and the mechanisms behind its driving factors. This study assesses LUCE disparities and explores low-carbon land use pathways in Shanxi to support its sustainable transition. Based on county-level land use data from 1990 to 2022, carbon emissions were estimated, and LUCE was measured using a three-stage super-efficient SBM-DEA model, with stochastic frontier analysis (SFA) to control for external noise. eXtreme Gradient Boosting (XGBoost) with SHAP values was used to identify key socio-economic and environmental drivers. The results show the following: (1) emissions rose 2.46-fold, mainly due to expanding construction land and shrinking cultivated land, with hotspots in Taiyuan, Jinzhong, and Linfen; (2) LUCE improved due to gains in technical and scale efficiency, while pure technical efficiency stayed stable; (3) urbanization and government intervention promoted LUCE, whereas higher per capita GDP constrained it; and (4) population density, economic growth, urbanization, and green technology were the dominant, interacting drivers of land use carbon emissions. This study integrates LUCE assessment with interpretable machine learning, demonstrating a framework that links efficiency evaluation with driver analysis. The findings provide critical insights for formulating regionally adaptive low-carbon land use policies, which are essential for achieving ecological sustainability and supporting the sustainable development of resource-based regions. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

10 pages, 294 KB  
Article
Performance Differences Between Spanish AzBio and Latin American HINT: Implications for Test Selection
by Chrisanda Marie Sanchez, Jennifer Coto, Sandra Velandia, Ivette Cejas and Meredith A. Holcomb
Audiol. Res. 2025, 15(5), 129; https://doi.org/10.3390/audiolres15050129 - 2 Oct 2025
Viewed by 458
Abstract
Background/Objectives: Spanish-speaking patients face persistent barriers in accessing equitable audiological care, particularly when standardized language-appropriate tools are lacking. Two Spanish-language sentence recognition tests, the Spanish AzBio Sentence (SAzB) and the Latin American Hearing in Noise Test (LAH), are commonly used to evaluate speech [...] Read more.
Background/Objectives: Spanish-speaking patients face persistent barriers in accessing equitable audiological care, particularly when standardized language-appropriate tools are lacking. Two Spanish-language sentence recognition tests, the Spanish AzBio Sentence (SAzB) and the Latin American Hearing in Noise Test (LAH), are commonly used to evaluate speech perception in adults with hearing loss. However, performance differences between these measures may influence referral decisions for hearing intervention, such as cochlear implantation. This study compared test performance under varying noise and spatial conditions to guide appropriate test selection and reduce the risk of misclassification that may contribute to healthcare disparities. Methods: Twenty-one bilingual Spanish/English speaking adults with normal bilateral hearing completed speech perception testing using both the SAzB and LAH. Testing was conducted under two spatial configurations: (1) speech and noise presented from the front (0° azimuth) and (2) speech to the simulated poorer ear and noise to the better ear (90°/270° azimuth). Conditions included quiet and three signal-to-noise ratios (+10, +5, and 0 dB). Analyses included paired t-tests and one-way ANOVAs. Results: Participants scored significantly higher on the LAH than on the SAzB across all SNR conditions and configurations, with ceiling effects observed for the LAH. SAzB scores varied by language dominance, while LAH scores did not. No other differences were observed based on any further demographic information. Conclusions: The SAzB provides a more challenging and informative assessment of speech perception in noise. Relying on easier tests like the LAH may obscure real-world difficulties and delay appropriate referrals for hearing loss intervention, including cochlear implant evaluation. Selecting the most appropriate test is critical to avoiding under-referral and ensuring Spanish-speaking patients receive equitable and accurate care. Full article
(This article belongs to the Section Speech and Language)
Show Figures

Figure 1

34 pages, 5426 KB  
Article
A Combined Weighting Method to Assess Indoor Environmental Sub-Factors for Human Comfort in Offices in China’s Severe Cold Regions
by Zheng Li, Guoqing Song, Qingwen Zhang, Jiangtao Yu and Yuliang Liu
Buildings 2025, 15(19), 3529; https://doi.org/10.3390/buildings15193529 - 1 Oct 2025
Viewed by 802
Abstract
Indoor environmental quality in offices, comprising thermal, acoustic, lighting, and air quality domains, is known to influence human comfort, yet the relative importance of their sub-factors—particularly in severe cold regions—remains unclear. This study addresses this gap by integrating objective (Criteria Importance Through Intercriteria [...] Read more.
Indoor environmental quality in offices, comprising thermal, acoustic, lighting, and air quality domains, is known to influence human comfort, yet the relative importance of their sub-factors—particularly in severe cold regions—remains unclear. This study addresses this gap by integrating objective (Criteria Importance Through Intercriteria Correlation, CRITIC) and subjective (Analytic Hierarchy Process, AHP) weighting methods, supported by field measurements and questionnaire surveys in open-plan offices in three provinces in northeastern China. Cluster analysis categorized acoustic sub-factors into outdoor traffic, outdoor entertainment, people conversation, burst sound, and people movement. Results show that temperature is the dominant thermal comfort driver (39.7% CRITIC; 45.5% AHP), exceeding air velocity and humidity, which had nearly equal influence. Indoor sound exerted greater impact than outdoor sound, with people conversation ranked highest among indoor noise sources, and burst sound and movement showing similar but slightly lower weights. Natural light outweighed artificial light in importance (54.2% CRITIC; 61.0% AHP), while air freshness and pollution were nearly equally influential. Compared to CRITIC, AHP produced more dispersed weights, reflecting subjective bias toward pronounced differences. These findings provide a quantitative basis for prioritizing environmental design interventions—such as controlling indoor conversational noise, optimizing natural lighting, and stabilizing temperature—to enhance comfort in offices in severe cold regions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 4739 KB  
Article
Operational Performance of an MVHR System in a Retrofitted Heritage Dwelling: Indoor Air Quality, Efficiency and Duct Constraints
by Catalina Giraldo-Soto, Zaloa Azkorra-Larrinaga, Amaia Uriarte, Naiara Romero-Antón and Moisés Odriozola-Maritorena
Sustainability 2025, 17(18), 8493; https://doi.org/10.3390/su17188493 - 22 Sep 2025
Cited by 2 | Viewed by 1059
Abstract
The integration of Mechanical Ventilation with Heat Recovery (MVHR) systems into heritage buildings poses a series of challenges, largely attributable to architectural constraints and conservation requirements. The present study offers an operational campaign of an MVHR system installed during the energy retrofit of [...] Read more.
The integration of Mechanical Ventilation with Heat Recovery (MVHR) systems into heritage buildings poses a series of challenges, largely attributable to architectural constraints and conservation requirements. The present study offers an operational campaign of an MVHR system installed during the energy retrofit of a protected residential heritage dwelling in Vitoria-Gasteiz, Spain. Although environmental monitoring was carried out throughout the year, representative spring, autumn and winter days of continuous operation were analysed, as the occupants frequently avoided using the system due to noise perception. This limitation highlights the importance of considering acoustic comfort and user acceptance as critical factors in the long-term viability of MVHR in heritage contexts. The system was assessed under real-life conditions using continuous environmental monitoring, with a focus on indoor air quality (IAQ), thermal efficiency, airflow balance, and pressure losses. Despite the acceptable mean apparent thermal effectiveness (0.74) and total useful efficiency (0.96), the system’s performance was found to be constrained by significant flow imbalance (up to 106%) and elevated pressure drops, which were attributed to the legacy of the duct geometry. The results obtained demonstrate IAQ improved overall, with mean CO2 concentrations below ~650 ppm across the analysed dataset; however, daily means occasionally exceeded 900–1000 ppm during high-occupancy periods and in the absence of spatially distributed demand control. These exceedances are consistent with the measured outdoor baseline (~400–450 ppm) and reflect the need for post-commissioning balancing and room-level sensing to sustain Category II performance in heritage dwellings. This study provides empirical evidence on the limitations and opportunities of MVHR deployment in historic retrofits, thus informing future guidelines for sustainable interventions in heritage contexts. Full article
Show Figures

Figure 1

18 pages, 615 KB  
Article
Auditory Processing and Speech Sound Disorders: Behavioral and Electrophysiological Findings
by Konstantinos Drosos, Paris Vogazianos, Dionysios Tafiadis, Louiza Voniati, Alexandra Papanicolaou, Klea Panayidou and Chryssoula Thodi
Audiol. Res. 2025, 15(5), 119; https://doi.org/10.3390/audiolres15050119 - 19 Sep 2025
Viewed by 1498
Abstract
Background: Children diagnosed with Speech Sound Disorders (SSDs) encounter difficulties in speech perception, especially when listening in the presence of background noise. Recommended protocols for auditory processing evaluation include behavioral linguistic and speech processing tests, as well as objective electrophysiological measures. The present [...] Read more.
Background: Children diagnosed with Speech Sound Disorders (SSDs) encounter difficulties in speech perception, especially when listening in the presence of background noise. Recommended protocols for auditory processing evaluation include behavioral linguistic and speech processing tests, as well as objective electrophysiological measures. The present study compared the auditory processing profiles of children with SSD and typically developing (TD) children using a battery of behavioral language and auditory tests combined with auditory evoked responses. Methods: Forty (40) parents of 7–10 years old Greek Cypriot children completed parent questionnaires related to their children’s listening; their children completed an assessment comprising language, phonology, auditory processing, and auditory evoked responses. The experimental group included 24 children with a history of SSDs; the control group consisted of 16 TD children. Results: Three factors significantly differentiated SSD from TD children: Factor 1 (auditory processing screening), Factor 5 (phonological awareness), and Factor 13 (Auditory Brainstem Response—ABR wave V latency). Among these, Factor 1 consistently predicted SSD classification both independently and in combined models, indicating strong ecological and diagnostic relevance. This predictive power suggests real-world listening behaviors are central to SSD differentiation. The significant correlation between Factor 5 and Factor 13 may suggest an interaction between auditory processing at the brainstem level and higher-order phonological manipulation. Conclusions: This research underscores the diagnostic significance of integrating behavioral and physiological metrics through dimensional and predictive methodologies. Factor 1, which focuses on authentic listening environments, was identified as the strongest predictor. These results advocate for the inclusion of ecologically valid listening items in the screening for APD. Poor discrimination of speech in noise imposes discrepancies between incoming auditory information and retained phonological representations, which disrupts the implicit processing mechanisms that align auditory input with phonological representations stored in memory. Speech and language pathologists can incorporate pertinent auditory processing assessment findings to identify potential language-processing challenges and formulate more effective therapeutic intervention strategies. Full article
(This article belongs to the Section Speech and Language)
Show Figures

Figure 1

29 pages, 787 KB  
Review
Proposed Physiological and Neurobiological Mechanisms of Music’s Effect, with a Focus on the Perioperative Period: Literature Evidence from Human, Canine and Feline Medicine
by Stefanos G. Georgiou and Apostolos D. Galatos
Vet. Sci. 2025, 12(8), 770; https://doi.org/10.3390/vetsci12080770 - 17 Aug 2025
Cited by 2 | Viewed by 3874
Abstract
There is growing evidence regarding non-pharmacological therapies such as music as a supportive approach for the treatment of various clinical conditions in humans. Physiological and neurobiological research suggests that music exposure is related to endorphin, endocannabinoid and dopamine release, favourable effects on autonomic [...] Read more.
There is growing evidence regarding non-pharmacological therapies such as music as a supportive approach for the treatment of various clinical conditions in humans. Physiological and neurobiological research suggests that music exposure is related to endorphin, endocannabinoid and dopamine release, favourable effects on autonomic nervous system functioning and is associated with decreased pain perception and reduced stress response. Further evidence in humans demonstrates a beneficial role of music application during the perioperative period by improving various outcome measures, such as the perioperative stress and anxiety levels, the sedation or general anaesthetic requirements, the pain levels, the analgesic requirements and other parameters related to patient prognosis, without reported side effects. Accordingly, such interventions have been considered as a method of environmental enrichment for animal welfare enhancement, by masking potentially disturbing background noises and by ameliorating anxiety or aggressive behaviours in different stressful settings in dogs and cats. Furthermore, research has been lately extended to the potential music’s effect in these species during the perioperative period, considered a stressful setting, as well. This review presents the existing evidence of music application focusing on the perioperative period of dogs and cats, as part of a multimodal approach, to improve their surgical outcome and welfare. Full article
Show Figures

Figure 1

Back to TopTop