Proposed Physiological and Neurobiological Mechanisms of Music’s Effect, with a Focus on the Perioperative Period: Literature Evidence from Human, Canine and Feline Medicine
Simple Summary
Abstract
1. Introduction
2. Methods
3. Physiology of Music Application and Proposed Neurobiological Mechanisms of Its Effect
3.1. Neurobiological Pathways Mediating Music’s Effects in Human Medicine
3.2. Proposed Theoretical Frameworks Justifying the Use of Music in Human Medicine
3.3. Evidence Deriving from Animal Studies
4. Music’s Effect on Stress and Anxiety
4.1. Literature Evidence on Humans
4.2. Literature Evidence on Dogs
4.3. Literature Evidence on Cats
5. Music’s Effect During the Perioperative Period
5.1. Literature Evidence on Humans
5.1.1. ICU
5.1.2. Perioperative Period
RCTs Regarding the Effect of Music During the Perioperative Period
Systematic Reviews and Meta-Analyses Regarding the Effect of Music During the Perioperative Period
Systematic Reviews and Meta-Analyses Regarding the Effect of Music Specifically During the Intraoperative Period, Under General Anaesthesia
5.2. Literature Evidence on Dogs and Cats
5.2.1. Preoperative Period
5.2.2. Intraoperative Period
5.2.3. Postoperative Period
6. Clinical Implications and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | auditory cortex |
ACC | anterior cingulate cortex |
ANS | autonomic nervous system |
BIS | bispectral index |
BP | blood pressure |
CHF | congestive heart failure |
dB | decibel |
EEG | electroencephalography |
fMRI | functional magnetic resonance imaging |
HPA | hypothalamic–pituitary–adrenal |
HR | heart rate |
HRV | heart rate variability |
ICU | intensive care unit |
kHz | kilohertz |
MEG | magnetoencephalography |
PAG | periaqueductal gray |
PD | pupillary diameter |
PET | positron emission tomography |
RCT | randomized controlled trial |
RR | respiratory rate |
SNS | sympathetic nervous system |
VAS | visual analogue scale |
References
- Nobakht, N.; Kamgar, M.; Tavanaei, M.; Bilder, R.M.; Nobakht, E. Music and Medicine: Promoting Harmony for Health. Am. J. Med. 2024, 137, 92–98. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, Z. Adjuvant music therapy for patients with hypertension: A meta-analysis and systematic review. BMC Complement. Med. Ther. 2023, 23, 110. [Google Scholar] [CrossRef]
- Quon, R.J.; Casey, M.A.; Camp, E.J.; Meisenhelter, S.; Steimel, S.A.; Song, Y.; Testorf, M.E.; Leslie, G.A.; Bujarski, K.A.; Ettinger, A.B.; et al. Musical components important for the Mozart K448 effect in epilepsy. Sci. Rep. 2021, 11, 16490. [Google Scholar] [CrossRef]
- Casey, M.A.; Quon, R.; Jobst, B.C. Eliciting neural mechanisms of music medicine for epilepsy. Interdiscip. Sci. Rev. 2022, 47, 129–146. [Google Scholar] [CrossRef]
- Piccicacchi, L.M.; Serino, D. A systematic review of the Mozart effect in adult and paediatric cases of drug-resistant epilepsy: A sound approach to epilepsy management. Epilepsy Behav. 2024, 154, 109743. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.W.; Huang, S.T.; Xu, N.; Cao, H.; Chen, L.W.; Chen, Q. Effect of Music Therapy on the Chronic Pain and Midterm Quality of Life of Patients after Mechanical Valve Replacement. Ann. Thorac. Cardiovasc. Surg. 2020, 26, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Gabriel, R.A.; Mariano, E.R. The expanding role of chronic pain interventions in multimodal perioperative pain management: A narrative review. Postgrad. Med. 2022, 134, 449–457. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, W. Multimodal non-invasive non-pharmacological therapies for chronic pain: Mechanisms and progress. BMC Med. 2023, 21, 372. [Google Scholar] [CrossRef]
- Brazoloto, T.M.; Fujarra, F.J.C. Music therapy and music-based interventions in the treatment of pain: State of the art. BrJP 2024, 7, e20240040. [Google Scholar] [CrossRef]
- Bradt, J.; Dileo, C.; Myers-Coffman, K.; Biondo, J. Music interventions for improving psychological and physical outcomes in people with cancer. Cochrane Database Syst. Rev. 2021, 10, CD006911. [Google Scholar] [CrossRef]
- Bradt, J.; Dileo, C.; Shim, M. Music interventions for preoperative anxiety. Cochrane Database Syst. Rev. 2013, 2013, CD006908. [Google Scholar] [CrossRef]
- Hole, J.; Hirsch, M.; Ball, E.; Meads, C. Music as an aid for postoperative recovery in adults: A systematic review and meta-analysis. Lancet 2015, 386, 1659–1671. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, D.A.; Kerin, A. How is Intraoperative Music Therapy Beneficial to Adult Patients Undergoing General Anesthesia? A Systematic Review. AEJ 2017, 5, 5–13. [Google Scholar] [CrossRef]
- Kühlmann, A.Y.R.; de Rooij, A.; Kroese, L.F.; van Dijk, M.; Hunink, M.G.M.; Jeekel, J. Meta-analysis evaluating music interventions for anxiety and pain in surgery. Br. J. Surg. 2018, 105, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Fu, V.X.; Oomens, P.; Sneiders, D.; van den Berg, S.A.A.; Feelders, R.A.; Wijnhoven, B.P.L.; Jeekel, J. The Effect of Perioperative Music on the Stress Response to Surgery: A Meta-analysis. J. Surg. Res. 2019, 244, 444–455. [Google Scholar] [CrossRef]
- Dale, V.H. The impact of perioperative music on abdominal surgery patients’ experience of postoperative pain: A systematic review and meta-analysis. J. Perioper. Pract. 2021, 31, 31–43. [Google Scholar] [CrossRef]
- Fu, V.X.; Oomens, P.; Klimek, M.; Verhofstad, M.H.J.; Jeekel, J. The Effect of Perioperative Music on Medication Requirement and Hospital Length of Stay: A Meta-analysis. Ann. Surg. 2020, 272, 961–972. [Google Scholar] [CrossRef]
- Li, T.; Guo, Y.; Lyu, D.; Xue, J.; Sheng, M.L.; Jin, X.; Yu, W.; Weng, Y.; Wu, Y. The effectiveness of music in improving the recovery of cardiothoracic surgery: A systematic review with meta-analysis and trial sequential analysis. BMC Anesthesiol. 2024, 24, 339. [Google Scholar] [CrossRef]
- Gan, T.J. Poorly controlled postoperative pain: Prevalence, consequences, and prevention. J. Pain Res. 2017, 10, 2287–2298. [Google Scholar] [CrossRef]
- Sobol-Kwapinska, M.; Bąbel, P.; Plotek, W.; Stelcer, B. Psychological correlates of acute postsurgical pain: A systematic review and meta-analysis. Eur. J. Pain 2016, 20, 1573–1586. [Google Scholar] [CrossRef]
- Semagn, M.A.; Yigrem, A.C.; Basu, B. Global prevalence and determinants of preoperative anxiety among surgical patients: A systematic review and meta-analysis. Int. J. Surg. Open 2020, 25, 6–16. [Google Scholar] [CrossRef]
- Robertson, S.A.; Gogolski, S.M.; Pascoe, P.; Shafford, H.L.; Sager, J.; Griffenhagen, G.M. AAFP feline anesthesia guidelines. J. Feline Med. Surg. 2018, 20, 602–634. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; St. Denis, K.; Collins, S.; Dowgray, N.; Ellis, S.L.; Heath, S.; Rodan, I.; Ryan, L. 2022 ISFM/AAFP Cat Friendly Veterinary Environment Guidelines. J. Feline Med. Surg. 2022, 24, 1133–1163. [Google Scholar] [CrossRef] [PubMed]
- Mariano, E.R.; Dickerson, D.M.; Szokol, J.W.; Harned, M.; Mueller, J.T.; Philip, B.K.; Baratta, J.L.; Gulur, P.; Robles, J.; Schroeder, K.M.; et al. A multisociety organizational consensus process to define guiding principles for acute perioperative pain management. Reg. Anesth. Pain Med. 2022, 47, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, B.P.; Lascelles, B.D.X.; Murrell, J.; Robertson, S.; Steagall, P.V.M.; Wright, B. 2022 WSAVA guidelines for the recognition, assessment and treatment of pain. J. Small Anim. Pract. 2023, 64, 177–254. [Google Scholar] [CrossRef]
- Kehlet, H.; Dahl, J.B. The value of “multimodal” or “balanced analgesia” in postoperative pain treatment. Anesth. Analg. 1993, 77, 1048–1056. [Google Scholar] [CrossRef]
- Gooding, L.; Swezey, S.; Zwischenberger, J.B. Using music interventions in perioperative care. South. Med. J. 2012, 105, 486–490. [Google Scholar] [CrossRef]
- Goel, S.K.; Kim, V.; Kearns, J.; Sabo, D.; Zoeller, L.; Conboy, C.; Kelm, N.; Jackovich, A.E.; Chelly, J.E. Music-Based Therapy for the Treatment of Perioperative Anxiety and Pain-A Randomized, Prospective Clinical Trial. J. Clin. Med. 2024, 13, 6139. [Google Scholar] [CrossRef]
- Wells, D.L.; Graham, L.; Hepper, P.G. The Influence of Auditory Stimulation on the Behaviour of Dogs Housed in a Rescue Shelter. Anim. Welf. 2002, 11, 385–393. [Google Scholar] [CrossRef]
- Kogan, L.R.; Schoenfeld-Tacher, R.; Simon, A.A. Behavioral effects of auditory stimulation on kenneled dogs. J. Vet. Behav. 2012, 7, 268–275. [Google Scholar] [CrossRef]
- Bowman, A.; Scottish, S.; Dowell, F.J.; Evans, N.P. ‘Four Seasons’ in an animal rescue centre; classical music reduces environmental stress in kennelled dogs. Physiol. Behav. 2015, 143, 70–82. [Google Scholar] [CrossRef]
- Brayley, C.; Montrose, V.T. The effects of audiobooks on the behaviour of dogs at a rehoming kennels. Appl. Anim. Behav. Sci. 2016, 174, 111–115. [Google Scholar] [CrossRef]
- Bowman, A.; Scottish, S.; Dowell, F.J.; Evans, N.P. The effect of different genres of music on the stress levels of kennelled dogs. Physiol. Behav. 2017, 171, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Koster, L.S.; Sithole, F.; Gilbert, G.E.; Artemiou, E. The potential beneficial effect of classical music on heart rate variability in dogs used in veterinary training. J. Vet. Behav. 2019, 30, 103–109. [Google Scholar] [CrossRef]
- Amaya, V.; Paterson, M.B.A.; Phillips, C.J.C. Effects of olfactory and auditory enrichment on the behaviour of shelter dogs. Animals 2020, 10, 581. [Google Scholar] [CrossRef]
- Amaya, V.; Descovich, K.; Paterson, M.B.A.; Phillips, C.J.C. Effects of music pitch and tempo on the behaviour of kennelled dogs. Animals 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Engler, W.J.; Bain, M. Effect of different types of classical music played at a veterinary hospital on dog behavior and owner satisfaction. JAVMA 2017, 251, 195–200. [Google Scholar] [CrossRef]
- King, T.; Flint, H.E.; Hunt, A.B.G.; Werzowa, W.T.; Logan, D.W. Effect of Music on Stress Parameters in Dogs during a Mock Veterinary Visit. Animals 2022, 12, 187. [Google Scholar] [CrossRef]
- Hampton, A.; Ford, A.; Cox, R.E., 3rd; Liu, C.C.; Koh, R. Effects of music on behavior and physiological stress response of domestic cats in a veterinary clinic. J. Feline Med. Surg. 2020, 22, 122–128. [Google Scholar] [CrossRef]
- Paz, J.E.; da Costa, F.V.; Nunes, L.N.; Monteiro, E.R.; Jung, J. Evaluation of music therapy to reduce stress in hospitalized cats. J. Feline Med. Surg. 2022, 24, 1046–1052. [Google Scholar] [CrossRef]
- Mira, F.; Costa, A.; Mendes, E.; Azevedo, P.; Carreira, L.M. Influence of music and its genres on respiratory rate and pupil diameter variations in cats under general anaesthesia: Contribution to promoting patient safety. J. Feline Med. Surg. 2016, 18, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Mira, F.; Costa, A.; Mendes, E.; Azevedo, P.; Carreira, L.M. A pilot study exploring the effects of musical genres on the depth of general anaesthesia assessed by haemodynamic responses. J. Feline Med. Surg. 2016, 18, 673–678. [Google Scholar] [CrossRef]
- Albright, J.D.; Seddighi, R.M.; Ng, Z.; Sun, X.; Rezac, D.J. Effect of environmental noise and music on dexmedetomidine-induced sedation in dogs. PeerJ 2017, 5, e3659. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, S.G.; Sideri, A.I.; Anagnostou, T.L.; Gouletsou, P.G.; Tsioli, V.G.; Galatos, A.D. Effect of Classical Music on Depth of Sedation and Induction Propofol Requirements in Dogs. Vet. Sci. 2023, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Pennington, E.; Springer, C.; Albright, J.; Castel, A. Evaluation of different methods of environmental enrichment to control anxiety in dogs undergoing hemilaminectomy after acute intervertebral disc extrusion: A randomized double-blinded study. Front. Vet. Sci. 2023, 10, 1124982. [Google Scholar] [CrossRef]
- Georgiou, S.G.; Anagnostou, T.L.; Sideri, A.I.; Gouletsou, P.G.; Athanasiou, L.V.; Kazakos, G.; Tsioli, V.; Dermisiadou, E.; Galatos, A.D. Effect of classical music on light-plane anaesthesia and analgesia in dogs subjected to surgical nociceptive stimuli. Sci. Rep. 2024, 14, 19511. [Google Scholar] [CrossRef]
- McDonald, C.I.; Zaki, S. A role for classical music in veterinary practice: Does exposure to classical music reduce stress in hospitalised dogs? Aust. Vet. J. 2020, 98, 31–36. [Google Scholar] [CrossRef]
- Kinnaird, R.F.; Wells, D.L. The effect of auditory stimulation on pet dogs’ reactions to owner separation. Appl. Anim. Behav. Sci. 2022, 254, 105688. [Google Scholar] [CrossRef]
- Guérineau, C.; Lõoke, M.; Broseghini, A.; Mongillo, P.; Marinelli, L. Enjoy the silence: Preference and short-term effect of exposure to different acoustical stimuli in dogs. Appl. Anim. Behav. Sci. 2024, 281, 106452. [Google Scholar] [CrossRef]
- Snowdon, C.T.; Teie, D.; Savage, M. Cats prefer species-appropriate music. Appl. Anim. Behav. Sci. 2015, 166, 106–111. [Google Scholar] [CrossRef]
- Blood, A.J.; Zatorre, R.J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. USA 2001, 98, 11818–11823. [Google Scholar] [CrossRef]
- Boso, M.; Politi, P.; Barale, F.; Enzo, E. Neurophysiology and neurobiology of the musical experience. Funct. Neurol. 2006, 21, 187–191. [Google Scholar]
- Koelsch, S.; Fritz, T.; Cramon, D.Y.V.; Müller, K.; Friederici, A.D. Investigating emotion with music: An fMRI study. Hum. Brain Mapp. 2006, 27, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Salimpoor, V.; Benovoy, M.; Larcher, K.; Dagher, A.; Zattore, R.J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011, 14, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Särkämö, T.; Soto, D. Music listening after stroke: Beneficial effects and potential neural mechanisms. Ann. N. Y. Acad. Sci. 2012, 1252, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Dobek, C.E.; Beynon, M.E.; Bosma, R.L.; Stroman, P.W. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: A functional magnetic resonance imaging study. J. Pain 2014, 15, 1057–1068. [Google Scholar] [CrossRef]
- Lu, X.; Thompson, W.F.; Zhang, L.; Hu, L. Music Reduces Pain Unpleasantness: Evidence from an EEG Study. J. Pain Res. 2019, 12, 3331–3342. [Google Scholar] [CrossRef]
- Antioch, I.; Furuta, T.; Uchikawa, R.; Okumura, M.; Otogoto, J.; Kondo, E.; Sogawa, N.; Ciobica, A.; Tomida, M. Favorite Music Mediates Pain-related Responses in the Anterior Cingulate Cortex and Skin Pain Thresholds. J. Pain Res. 2020, 13, 2729–2737. [Google Scholar] [CrossRef]
- Chen, W.G.; Iversen, J.R.; Kao, M.H.; Loui, P.; Patel, A.D.; Zatorre, R.J.; Edwards, E. Music and Brain Circuitry: Strategies for Strengthening Evidence-Based Research for Music-Based Interventions. J. Neurosci. 2022, 42, 8498–8507. [Google Scholar] [CrossRef]
- Arnold, C.A.; Bagg, M.K.; Harvey, A.R. The psychophysiology of music-based interventions and the experience of pain. Front. Psychol. 2024, 15, 1361857. [Google Scholar] [CrossRef]
- Patterson, R.D.; Uppenkamp, S.; Johnsrude, I.S.; Griffiths, T.D. The processing of temporal pitch and melody information in auditory cortex. Neuron 2002, 36, 767–776. [Google Scholar] [CrossRef]
- Zattore, R.J.; Evans, A.C.; Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 1994, 14, 1908–1919. [Google Scholar] [CrossRef]
- Hyde, K.L.; Peretz, I.; Zatorre, R.J. Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia 2008, 46, 632–639. [Google Scholar] [CrossRef]
- Blood, A.; Zatorre, R.; Bermudez, P.; Evans, A.C. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 1999, 2, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Salamon, E.; Bernstein, S.R.; Kim, S.A.; Kim, M.; Stefano, G.B. The effects of auditory perception and musical preference on anxiety in naive human subjects. Med. Sci. Monit. 2003, 9, CR396–CR399. [Google Scholar] [PubMed]
- Chai, P.R.; Carreiro, S.; Ranney, M.L.; Karanam, K.; Ahtisaari, M.; Edwards, R.; Schreiber, K.L.; Ben-Ghaly, L.; Erickson, T.B.; Boyer, E.W. Music as an Adjunct to Opioid-Based Analgesia. J. Med. Toxicol. 2017, 13, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, J.P.; Raghunathan, K.; Bassi, G.; Ulloa, L. Review of Perioperative Music Medicine: Mechanisms of Pain and Stress Reduction Around Surgery. Front. Med. 2022, 9, 821022. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, L.; Chen, W.; Wang, Z.; Miao, C.; Zhong, J.; Xiong, W. Effect of music on hemodynamic fluctuations in women during induction of general anesthesia: A prospective randomized controlled multicenter trial. Clinics 2024, 79, 100462. [Google Scholar] [CrossRef]
- Nilsson, U.; Unosson, M.; Rawal, N. Stress reduction and analgesia in patients exposed to calming music postoperatively: A randomized controlled trial. Eur. J. Anaesthesiol. 2005, 22, 96–102. [Google Scholar] [CrossRef]
- Williams, C.; Hine, T. An investigation into the use of recorded music as a surgical intervention: A systematic, critical review of methodologies used in recent adult controlled trials. Complement. Ther. Med. 2018, 37, 110–126. [Google Scholar] [CrossRef]
- Okada, K.; Kurita, A.; Takase, B.; Otsuka, T.; Kodani, E.; Kusama, Y.; Atarashi, H.; Mizuno, K. Effects of music therapy on autonomic nervous system activity, incidence of heart failure events, and plasma cytokine and catecholamine levels in elderly patients with cerebrovascular disease and dementia. Int. Heart J. 2009, 50, 95–110. [Google Scholar] [CrossRef]
- Koelsch, S.; Jäncke, L. Music and the heart. Eur. Heart J. 2015, 36, 3043–3049. [Google Scholar] [CrossRef] [PubMed]
- Ooishi, Y.; Mukai, H.; Watanabe, K.; Kawato, S.; Kashino, M. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music. PLoS ONE 2017, 12, e0189075. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S.; Fuermetz, J.; Sack, U.; Bauer, K.; Hohenadel, M.; Wiegel, M.; Kaisers, U.X.; Heinke, W. Effects of Music Listening on Cortisol Levels and Propofol Consumption during Spinal Anesthesia. Front. Psychol. 2011, 2, 58. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S.; Boehlig, A.; Hohenadel, M.; Nitsche, I.; Bauer, K.; Sack, U. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood. Sci. Rep. 2016, 6, 23008. [Google Scholar] [CrossRef]
- Nilsson, U. Soothing music can increase oxytocin levels during bed rest after open-heart surgery: A randomised control trial. J. Clin. Nurs. 2009, 18, 2153–2161. [Google Scholar] [CrossRef]
- McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of stress in the brain. Nat. Neurosci. 2015, 18, 1353–1363. [Google Scholar] [CrossRef]
- Frickmann, F.C.S.; Urman, R.D.; Siercks, K.; Burgermeister, G.; Luedi, M.M.; Lersch, F.E. The Effect of Perioperative Auditory Stimulation with Music on Procedural Pain: A Narrative Review. Curr. Pain Headache Rep. 2023, 27, 217–226. [Google Scholar] [CrossRef]
- Roy, M.; Lebuis, A.; Hugueville, L.; Peretz, I.; Rainville, P. Spinal modulation of nociception by music. Eur. J. Pain 2012, 16, 870–877. [Google Scholar] [CrossRef]
- Pando-Naude, V.; Barrios, F.A.; Alcauter, S.; Pasaye, E.H.; Vase, L.; Brattico, E.; Vuust, P.; Garza-Villarreal, E.A. Functional connectivity of music-induced analgesia in fibromyalgia. Sci. Rep. 2019, 9, 15486. [Google Scholar] [CrossRef]
- Mallik, A.; Chanda, M.L.; Levitin, D.J. Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone. Sci. Rep. 2017, 7, 41952. [Google Scholar] [CrossRef]
- Roy, M.; Peretz, I.; Rainville, P. Emotional valence contributes to music-induced analgesia. Pain 2008, 134, 140–147. [Google Scholar] [CrossRef]
- Goldstein, A. Thrills in response to music and other stimuli. Psychobiology 1980, 8, 126–129. [Google Scholar] [CrossRef]
- Ferreri, L.; Mas-Herrero, E.; Zatorre, R.J.; Ripollés, P.; Gomez-Andres, A.; Alicart, H.; Olivé, G.; Marco-Pallarés, J.; Antonijoan, R.M.; Valle, M.; et al. Dopamine modulates the reward experiences elicited by music. Proc. Natl. Acad. Sci. USA 2019, 116, 3793–3798. [Google Scholar] [CrossRef] [PubMed]
- Mas-Herrero, E.; Ferreri, L.; Cardona, G.; Zatorre, R.J.; Pla-Juncà, F.; Antonijoan, R.M.; Riba, J.; Valle, M.; Rodriguez-Fornells, A. The role of opioid transmission in music-induced pleasure. Ann. N. Y. Acad. Sci. 2023, 1520, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef]
- Valevicius, D.; Lépine Lopez, A.; Diushekeeva, A.; Lee, A.C.; Roy, M. Emotional responses to favorite and relaxing music predict music-induced hypoalgesia. Front. Pain Res. 2023, 4, 1210572. [Google Scholar] [CrossRef]
- Lunde, S.J.; Vuust, P.; Garza-Villarreal, E.A.; Vase, L. Music-induced analgesia: How does music relieve pain? Pain 2019, 160, 989–993. [Google Scholar] [CrossRef]
- Arıcan, N.B.; Soyman, E. A between-subjects investigation of whether distraction is the main mechanism behind music-induced analgesia. Sci. Rep. 2025, 15, 2053. [Google Scholar] [CrossRef]
- Lu, X.; Hou, X.; Zhang, L.; Li, H.; Tu, Y.; Shi, H.; Hu, L. The effect of background liked music on acute pain perception and its neural correlates. Hum. Brain Mapp. 2023, 44, 3493–3505. [Google Scholar] [CrossRef]
- Nilsson, U.; Rawal, N.; Enqvist, B.; Unosson, M. Analgesia following music and therapeutic suggestions in the PACU in ambulatory surgery; a randomized controlled trial. Acta Anaesthesiol. Scand. 2003, 47, 278–283. [Google Scholar] [CrossRef]
- Simcock, X.C.; Yoon, R.S.; Chalmers, P.; Geller, J.A.; Kiernan, H.A.; Macaulay, W. Intraoperative music reduces perceived pain after total knee arthroplasty: A blinded, prospective, randomized, placebo-controlled clinical trial. J. Knee Surg. 2008, 21, 275–278. [Google Scholar] [CrossRef]
- Lunde, S.J.; Vuust, P.; Garza-Villarreal, E.A.; Kirsch, I.; Møller, A.; Vase, L. Music-Induced Analgesia in Healthy Participants Is Associated With Expected Pain Levels but Not Opioid or Dopamine-Dependent Mechanisms. Front. Pain Res. 2022, 3, 734999. [Google Scholar] [CrossRef]
- Rosenkjær, S.; Lunde, S.J.; Kirsch, I.; Vase, L. Expectations: How and when do they contribute to placebo analgesia? Front. Psychiatry 2022, 13, 817179. [Google Scholar] [CrossRef]
- Laeng, B.; Garvija, L.; Løseth, G.; Eikemo, M.; Ernst, G.; Leknes, S. ‘Defrosting’ music chills with naltrexone: The role of endogenous opioids for the intensity of musical pleasure. Conscious Cogn. 2021, 90, 103105. [Google Scholar] [CrossRef] [PubMed]
- Alworth, L.C.; Buerkle, S.C. The effects of music on animal physiology, behavior and welfare. Lab Anim. 2013, 42, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Lindig, A.M.; McGreevy, P.D.; Crean, A.J. Musical Dogs: A Review of the Influence of Auditory Enrichment on Canine Health and Behavior. Animals 2020, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Kriengwatana, B.P.; Mott, R.; ten Cate, C. Music for animal welfare: A critical review & conceptual framework. Appl. Anim. Behav. Sci. 2022, 251, 105641. [Google Scholar] [CrossRef]
- Sutoo, D.; Akiyama, K. Music improves dopaminergic neurotransmission: Demonstration based on the effect of music on blood pressure regulation. Brain Res. 2004, 1016, 255–262. [Google Scholar] [CrossRef]
- Akiyama, K.; Sutoo, D. Effect of different frequencies of music on blood pressure regulation in spontaneously hypertensive rats. Neurosci. Lett. 2011, 487, 58–60. [Google Scholar] [CrossRef]
- Lemmer, B. Effects of music composed by Mozart and Ligeti on blood pressure and heart rate circadian rhythms in normotensive and hypertensive rats. Chronobiol. Int. 2008, 25, 971–986. [Google Scholar] [CrossRef]
- Cooper, L.; Foster, I. The use of music to aid patients’ relaxation in a radiotherapy waiting room. Radiography 2008, 14, 184–188. [Google Scholar] [CrossRef]
- Garza-Villarreal, E.A.; Pando, V.; Vuust, P.; Parsons, C. Music-Induced Analgesia in Chronic Pain Conditions: A Systematic Review and Meta-Analysis. Pain Physician 2017, 20, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Mercadillo, R.E.; Garza-Villarreal, E.A. Case Report: “I got my brain back” A patient’s experience with music-induced analgesia for chronic pain. Front. Psychol. 2023, 14, 1141829. [Google Scholar] [CrossRef] [PubMed]
- Kartashova, I.A.; Ganina, K.K.; Karelina, E.A.; Tarasov, S.A. How to evaluate and manage stress in dogs—A guide for veterinary specialist. Appl. Anim. Behav. Sci. 2021, 243, 105458. [Google Scholar] [CrossRef]
- Hammerle, M.; Horst, C.; Levine, E.; Overall, K.; Radosta, L.; Rafter-Ritchie, M.; Yin, S. 2015 AAHA Canine and Feline Behavior Management Guidelines. J. Am. Anim. Hosp. Assoc. 2015, 51, 205–221. [Google Scholar] [CrossRef]
- Nibblett, B.M.; Ketzis, J.K.; Grigg, E.K. Comparison of stress exhibited by cats examined in a clinic versus a home setting. Appl. Anim. Behav. Sci. 2015, 173, 68–75. [Google Scholar] [CrossRef]
- Bragg, R.F.; Bennett, J.S.; Cummings, A.; Quimby, J.M. Evaluation of the effects of hospital visit stress on physiologic variables in dogs. J. Am. Vet. Med. Assoc. 2015, 246, 212–215. [Google Scholar] [CrossRef]
- Quimby, J.M.; Smith, M.L.; Lunn, K.F. Evaluation of the effects of hospital visit stress on physiologic parameters in the cat. J. Feline Med. Surg. 2011, 13, 733–737. [Google Scholar] [CrossRef]
- Coppola, C.L.; Enns, R.M.; Grandin, T. Noise in the animal shelter environment: Building design and the effects of daily noise exposure. J. Appl. Anim. Welf. Sci. 2006, 9, 1–7. [Google Scholar] [CrossRef]
- Barber, A.L.A.; Wilkinson, A.; Montealegre-Z, F.; Ratcliffe, V.F.; Guo, K.; Mills, D.S. A comparison of hearing and auditory functioning between dogs and humans. Comp. Cogn. Behav. Rev. 2020, 15, 45–80. [Google Scholar] [CrossRef]
- Hennessy, M.B.; Davis, H.N.; Williams, M.T.; Mellott, C.; Douglas, C.W. Plasma cortisol levels of dogs at a county animal shelter. Physiol. Behav. 1997, 62, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Döring, D.; Roscher, A.; Scheipl, F.; Küchenhoff, H.; Erhard, M.H. Fear-related behaviour of dogs in veterinary practice. Vet. J. 2009, 182, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Mandese, W.W.; Griffin, F.C.; Reynolds, P.S.; Blew, A.C.; Deriberprey, A.S.; Estrada, A.H. Stress in client-owned dogs related to clinical exam location: A randomised crossover trial. J. Small Anim. Pract. 2021, 62, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Herron, M.E.; Shreyer, T. The pet-friendly veterinary practice: A guide for practitioners. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 451–481. [Google Scholar] [CrossRef]
- Mofredj, A.; Alaya, S.; Tassaioust, K.; Bahloul, H.; Mrabet, A. Music therapy, a review of the potential therapeutic benefits for the critically ill. J. Crit. Care 2016, 35, 195–199. [Google Scholar] [CrossRef]
- Chlan, L.L.; Weinert, C.R.; Heiderscheit, A.; Tracy, M.F.; Skaar, D.J.; Guttormson, J.L.; Savik, K. Effects of patient-directed music intervention on anxiety and sedative exposure in critically ill patients receiving mechanical ventilatory support: A randomized clinical trial. JAMA 2013, 309, 2335–2344. [Google Scholar] [CrossRef]
- Khan, S.H.; Kitsis, M.; Golovyan, D.; Wang, S.; Chlan, L.L.; Boustani, M.; Khan, B.A. Effects of music intervention on inflammatory markers in critically ill and post-operative patients: A systematic review of the literature. Heart Lung. 2018, 47, 489–496. [Google Scholar] [CrossRef]
- Gerbershagen, H.J.; Aduckathil, S.; van Wijck, A.J.; Peelen, L.M.; Kalkman, C.J.; Meissner, W. Pain intensity on the first day after surgery: A prospective cohort study comparing 179 surgical procedures. Anesthesiology 2013, 118, 934–944. [Google Scholar] [CrossRef]
- Kane, E.O. Phonograph in operating-room. JAMA 1914, 62, 1829. [Google Scholar] [CrossRef]
- Fu, V.X.; Sleurink, K.J.; Janssen, J.C.; Wijnhoven, B.P.L.; Jeekel, J.; Klimek, M. Perception of auditory stimuli during general anesthesia and its effects on patient outcomes: A systematic review and meta-analysis [Perception de stimuli auditifs pendant l’anesthésie générale et ses effets sur les devenirs des patients: Revue systématique et méta-analyse]. Can. J. Anaesth. 2021, 68, 1231–1253. [Google Scholar] [CrossRef] [PubMed]
- Leardi, S.; Pietroletti, R.; Angeloni, G.; Necozione, S.; Ranalletta, G.; Del Gusto, B. Randomized clinical trial examining the effect of music therapy in stress response to day surgery. Br. J. Surg. 2007, 94, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Migneault, B.; Girard, F.; Albert, C.; Chouinard, P.; Boudreault, D.; Provencher, D.; Todorov, A.; Ruel, M.; Girard, D.C. The effect of music on the neurohormonal stress response to surgery under general anesthesia. Anesth. Analg. 2004, 98, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Berbel, P.; Moix, J.; Quintana, S. Estudio comparativo de la eficacia de la música frente al diazepam para disminuir la ansiedad prequirúirgica: Un ensayo clínico controlado y aleatorizado [Music versus diazepam to reduce preoperative anxiety: A randomized controlled clinical trial]. Rev. Esp. Anestesiol. Reanim. 2007, 54, 355–358. [Google Scholar]
- Bringman, H.; Giesecke, K.; Thörne, A.; Bringman, S. Relaxing music as pre-medication before surgery: A randomised controlled trial. Acta Anaesthesiol. Scand. 2009, 53, 759–764. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, L.; Chen, L.W.; Luo, Z.R. Music therapy for pain and anxiety in patients after cardiac valve replacement: A randomized controlled clinical trial. BMC Cardiovasc. Disord. 2023, 23, 32. [Google Scholar] [CrossRef]
- Ganidagli, S.; Cengiz, M.; Yanik, M.; Becerik, C.; Unal, B. The effect of music on preoperative sedation and the bispectral index. Anesth. Analg. 2005, 101, 103–106. [Google Scholar] [CrossRef]
- Lepage, C.; Drolet, P.; Girard, M.; Grenier, Y.; DeGagné, R. Music decreases sedative requirements during spinal anesthesia. Anesth. Analg. 2001, 93, 912–916. [Google Scholar] [CrossRef]
- Koch, M.E.; Kain, Z.N.; Ayoub, C.; Rosenbaum, S.H. The sedative and analgesic sparing effect of music. Anesthesiology 1998, 89, 300–306. [Google Scholar] [CrossRef]
- Ayoub, C.M.; Rizk, L.B.; Yaacoub, C.I.; Gaal, D.; Kain, Z.N. Music and ambient operating room noise in patients undergoing spinal anesthesia. Anesth. Analg. 2005, 100, 1316–1319. [Google Scholar] [CrossRef]
- Zhang, X.W.; Fan, Y.; Manyande, A.; Tian, Y.K.; Yin, P. Effects of music on target-controlled infusion of propofol requirements during combined spinal-epidural anaesthesia. Anaesthesia 2005, 60, 990–994. [Google Scholar] [CrossRef]
- Szmuk, P.; Aroyo, N.; Ezri, T.; Muzikant, G.; Weisenberg, M.; Sessler, D.I. Listening to music during anesthesia does not reduce the sevoflurane concentration needed to maintain a constant bispectral index. Anesth. Analg. 2008, 107, 77–80. [Google Scholar] [CrossRef]
- Kalyani, N.; Poonam, G.; Shalini, K. Impact of intraoperative music therapy on the anesthetic requirement and stress response in laparoscopic surgeries under general anesthesia. Ain Shams J. Anaesthes. 2015, 8, 580. [Google Scholar] [CrossRef]
- Nilsson, U.; Rawal, N.; Uneståhl, L.E.; Zetterberg, C.; Unosson, M. Improved recovery after music and therapeutic suggestions during general anaesthesia: A double-blind randomised controlled trial. Acta Anaesthesiol. Scand. 2001, 45, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Kahloul, M.; Mhamdi, S.; Nakhli, M.S.; Sfeyhi, A.N.; Azzaza, M.; Chaouch, A.; Naija, W. Effects of music therapy under general anesthesia in patients undergoing abdominal surgery. Libyan J. Med. 2017, 12, 1260886. [Google Scholar] [CrossRef] [PubMed]
- Gökçek, E.; Kaydu, A. The effects of music therapy in patients undergoing septorhinoplasty surgery under general anesthesia. Braz. J. Otorhinolaryngol. 2020, 86, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.K.; Baek, J.; Lee, D.; Kim, D.Y. Effect on music therapy on quality of recovery and postoperative pain after gynecological laparoscopy. Medicine 2023, 102, e33071. [Google Scholar] [CrossRef]
- Fu, V.X.; Lagarde, S.M.; Favoccia, C.T.; Heisterkamp, J.; van Oers, A.E.; Coene, P.L.O.; Koopman, J.S.H.A.; van den Berg, S.A.A.; Dik, W.A.; Jeekel, J.; et al. Intraoperative Music to Promote Patient Outcome (IMPROMPTU): A Double-Blind Randomized Controlled Trial. J. Surg. Res. 2024, 296, 291–301. [Google Scholar] [CrossRef]
- Maskal, S.M.; Gentle, C.K.; Ellis, R.C.; Tu, C.; Rosen, M.J.; Petro, C.C.; Miller, B.T.; Beffa, L.R.A.; Chang, J.H.; Messer, N.; et al. Does selective intraoperative music reduce pain following abdominal wall reconstruction? A double-blind randomized controlled trial. Hernia 2024, 28, 1831–1841. [Google Scholar] [CrossRef]
- Dueck, M.H.; Petzke, F.; Gerbershagen, H.J.; Paul, M.; Hesselmann, V.; Girnus, R.; Krug, B.; Sorger, B.; Goebel, R.; Lehrke, R.; et al. Propofol attenuates responses of the auditory cortex to acoustic stimulation in a dose-dependent manner: A FMRI study. Acta Anaesthesiol. Scand. 2005, 49, 784–791. [Google Scholar] [CrossRef]
- Gross, W.L.; Lauer, K.K.; Liu, X.; Roberts, C.J.; Liu, S.; Gollapudy, S.; Binder, J.R.; Li, S.J.; Hudetz, A.G. Propofol Sedation Alters Perceptual and Cognitive Functions in Healthy Volunteers as Revealed by Functional Magnetic Resonance Imaging. Anesthesiology 2019, 131, 254–265. [Google Scholar] [CrossRef]
- Krom, A.J.; Marmelshtein, A.; Gelbard-Sagiv, H.; Tankus, A.; Hayat, H.; Hayat, D.; Matot, I.; Strauss, I.; Fahoum, F.; Soehle, M.; et al. Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex. Proc. Natl. Acad. Sci. USA 2020, 117, 11770–11780. [Google Scholar] [CrossRef]
- Heffner, R.S.; Heffner, H.E. Hearing range of the domestic cat. Hear. Res. 1985, 19, 85–88. [Google Scholar] [CrossRef]
Study (Author, Year) | Species | Surgical Intervention | Type of Music (Genre) | Tempo (BPM 1) | Volume (dB 2) | Delivery Method | Timing of Intervention | Duration of Intervention | Sample Size | Outcome Measures | Key Findings |
---|---|---|---|---|---|---|---|---|---|---|---|
Mira et al., 2016a [41] | cat | Ovariohysterectomy | 1. Classical 2. Pop 3. Heavy metal | Not reported | <80 dB | Head-phones covering the whole ear | Intraoperatively (under general anaesthesia) | 8 min in total (2 min of each condition) | 12 female cats | 1. Respiratory rate (RR 3) 2. Pupillary diameter (PD 4) | 1. Cats under general anaesthesia perform auditory sensory stimuli processing 2. Music-dependent RR, PD responses, associated with ANS 5 activity |
Mira et al., 2016b [42] | cat | Ovariohysterectomy | 1. Classical 2. Pop 3. Heavy metal | Not reported | <80 dB | Head-phones covering the whole ear | Intraoperatively (under general anaesthesia) | 8 min in total (2 min of each condition) | 12 female cats | 1. Heart rate (HR 6) 2. Systolic blood pressure (SBP 7) | 1. Cats under general anaesthesia perform auditory sensory stimuli processing 2. Music-dependent HR, SBP responses, associated with ANS activity |
Albright et al., 2017 [43] | dog | No surgery | Specifically designed for dogs (Through a Dog’s Ear) | Low-tempo music (approx. 50–60 BPM) | 40–85 dB | Speakers | Preoperatively | 20 min | 10 dogs | Depth of sedation (spontaneous behaviour scoring, accelerometry, restraint test scoring) | 1. Noise up to 85 dB has negative impact on sedation 2. Music did not improve dexmedetomidine sedative effects |
Georgiou et al., 2023 [44] | dog | No surgery | Classical (Chopin, Mozart) | Slow-tempo excerpts (lento sostenuto, andante) | 50–65 dB | Speakers | Preoperatively | 90 min | 20 dogs | 1. Depth of sedation 2. Induction propofol requirements | 1. Music contributed to increased depth of sedation 2. Music contributed to 20% lower propofol requirements |
Pennington et al., 2023 [45] | dog | After hemilaminectomy surgery | Specifically designed for dogs (Through a Dog’s Ear) | Low-tempo music (approx. 50–60 BPM) | Not mentioned | Not mentioned | Postoperatively | 8 h per day for 48 h | 20 dogs | 1. Postoperative pain (pain scores, rescue opioid requirements) 2. Level of postoperative anxiety (trazodone requirements, number of meals consumed) | 1. Lower postoperative rescue methadone requirements for the first 24 h postoperatively in dogs recovering in an enriched environment 2. The same dogs consumed more food in the first 48 h postoperatively, with that being attributed to lower anxiety levels |
Georgiou et al., 2024 [46] | dog | Skin surgery | Classical (Chopin, Mozart) | Slow-tempo excerpts (lento sostenuto, andante) | 65 dB | Headphones covering the whole ear | Intraoperatively (under light-plane anaesthesia) | Approximately 90 min | 20 dogs | 1. Intraoperative anaesthetic requirements (isoflurane concentrations) 2. Intraoperative analgesic requirements (fentanyl requirements) 3. Substance-P concentrations 4. Physiologic variables | 1. Isoflurane- and fentanyl-sparing effect of intraoperative music in dogs under light-plane anaesthesia 2. Rapid increases in Substance-P concentrations after skin incision, being related to acute pain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiou, S.G.; Galatos, A.D. Proposed Physiological and Neurobiological Mechanisms of Music’s Effect, with a Focus on the Perioperative Period: Literature Evidence from Human, Canine and Feline Medicine. Vet. Sci. 2025, 12, 770. https://doi.org/10.3390/vetsci12080770
Georgiou SG, Galatos AD. Proposed Physiological and Neurobiological Mechanisms of Music’s Effect, with a Focus on the Perioperative Period: Literature Evidence from Human, Canine and Feline Medicine. Veterinary Sciences. 2025; 12(8):770. https://doi.org/10.3390/vetsci12080770
Chicago/Turabian StyleGeorgiou, Stefanos G., and Apostolos D. Galatos. 2025. "Proposed Physiological and Neurobiological Mechanisms of Music’s Effect, with a Focus on the Perioperative Period: Literature Evidence from Human, Canine and Feline Medicine" Veterinary Sciences 12, no. 8: 770. https://doi.org/10.3390/vetsci12080770
APA StyleGeorgiou, S. G., & Galatos, A. D. (2025). Proposed Physiological and Neurobiological Mechanisms of Music’s Effect, with a Focus on the Perioperative Period: Literature Evidence from Human, Canine and Feline Medicine. Veterinary Sciences, 12(8), 770. https://doi.org/10.3390/vetsci12080770