Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (461)

Search Parameters:
Keywords = nitrogen-doped activated carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2472 KB  
Communication
Phosphazene-Based Porous Polymer as Electrode Material for Electrochemical Applications
by Ekaterina A. Karpova, Alexander A. Sysoev, Ilya D. Tsvetkov, Alexey L. Klyuev, Oleg A. Raitman and Mikhail A. Soldatov
Polymers 2026, 18(3), 366; https://doi.org/10.3390/polym18030366 - 29 Jan 2026
Abstract
Porous highly cross-linked polymer (PIP) was synthesized by a polycondensation reaction between hexachlorocyclotriphosphazene and piperazine. The obtained polymer has a surface area of 76.9 m2/g and a mesoporous structure. After carbonization, the obtained product (PIP-C) has a surface area of 177 [...] Read more.
Porous highly cross-linked polymer (PIP) was synthesized by a polycondensation reaction between hexachlorocyclotriphosphazene and piperazine. The obtained polymer has a surface area of 76.9 m2/g and a mesoporous structure. After carbonization, the obtained product (PIP-C) has a surface area of 177 m2/g. The obtained carbon product contained nitrogen and phosphorus heteroatoms, which leads to a higher specific capacitance (155.6 F/g) and catalytical activity in the electroreduction of oxygen (15.9 A/g). This work shows the possibility of the use of such porous phosphazene polymers as precursors for heteroatom-doped carbon materials, which might be used in electrochemical devices like electrodes for supercapacitors or metal-free electrocatalysts in fuel cells. Full article
(This article belongs to the Section Smart and Functional Polymers)
20 pages, 8238 KB  
Article
Manganese–Iron-Supported Biomass-Derived Carbon Catalyst for Efficient Hydrazine Oxidation
by Karina Vjūnova, Huma Amber, Dijana Šimkūnaitė, Zenius Mockus, Aleksandrs Volperts, Ance Plavniece, Galina Dobele, Aivars Zhurinsh, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Molecules 2026, 31(2), 354; https://doi.org/10.3390/molecules31020354 - 19 Jan 2026
Viewed by 175
Abstract
This study presents a straightforward strategy for producing novel, effective and inexpensive functional non-noble metal-supported carbon materials made from abundant natural biomass. These materials offer a cost-effective alternative to noble metals for the oxidation of hydrazine (HzOR) and demonstrate the potential for widespread [...] Read more.
This study presents a straightforward strategy for producing novel, effective and inexpensive functional non-noble metal-supported carbon materials made from abundant natural biomass. These materials offer a cost-effective alternative to noble metals for the oxidation of hydrazine (HzOR) and demonstrate the potential for widespread adoption of green, energy-saving hydrazine-based technologies in energy applications. Highly efficient and cost-effective iron (Fe) and manganese–iron (MnFe)-supported nitrogen-doped carbon (N–C) materials were developed using hydrothermal synthesis. Meanwhile, the N–C material was obtained from biomass—birch-wood chips—using hydrothermal carbonisation (HTC), followed by activation and nitrogen doping of the resulting hydrochar. The morphology, structure, and composition of the MnFe, MnFe/N–C, and Fe/N–C catalysts were determined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS). The activity of the catalysts for HzOR in an alkaline medium was evaluated using cyclic voltammetry (CV). Depositing MnFe particles onto N–C was shown to significantly enhance electrocatalytic activity for HzOR compared to the Fe/N–C catalyst and especially to the MnFe particles catalyst in terms of highly developed porous structure, which offers the largest surface area, lowest onset potential, and highest current density response, resulting in the strongest catalytic activity. These results suggest that the MnFe/N–C catalyst could be a highly promising anode material for HzOR in direct hydrazine fuel cells (DHFCs). Full article
Show Figures

Figure 1

20 pages, 4761 KB  
Article
High-Performance CoxNiy@NC/SiO2 Catalysts Derived from ZIF-67 for Enhanced Hydrogenation of 1-Nitronaphthalene
by Xuedong Lan, Ming Zhong, Weidi Dai and Pingle Liu
Catalysts 2026, 16(1), 93; https://doi.org/10.3390/catal16010093 - 16 Jan 2026
Viewed by 316
Abstract
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni [...] Read more.
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni alloys and modulates the electronic structure of the catalysts. The catalytic performance was found to be highly sensitive to the Co/Ni ratio, with Co2Ni1@NC/SiO2 exhibiting the most outstanding activity. Under optimized reaction conditions (90 °C, 0.6 MPa H2, 5.5 h), both the conversion of 1-nitronaphthalene and the selectivity toward 1-naphthylamine reached approximately 99%. The catalyst also demonstrated excellent stability and recyclability, attributed to the protective nitrogen-doped carbon shell and the synergistic interaction between the Co–Ni alloy and M–Nx active sites. This work provides a new strategy for designing efficient and robust non-noble-metal catalysts for hydrogenation reactions. Full article
(This article belongs to the Special Issue Catalysis and Sustainable Green Chemistry)
Show Figures

Graphical abstract

18 pages, 2590 KB  
Article
Co-Embedded N-Doped Carbon Composites Derived from CoZn-ZIFs for Peroxymonosulfate Activation Toward Efficient Tetracycline Degradation
by Hao Liu, Haoyue Shi, Qianyu Ma, Liwen Yin, Yuxin Li, Wei Wang, Huijun Yu and Zuoli He
Coatings 2026, 16(1), 89; https://doi.org/10.3390/coatings16010089 - 11 Jan 2026
Viewed by 164
Abstract
Zeolite imidazolate frameworks (ZIFs)-derived carbon materials have garnered widespread attention as peroxymonosulfate (PMS) activators in removing antibiotics because of their excellent catalytic performance. However, most carbon materials derived from ZIFs exhibit limited efficacy in treating high-concentration (>10 ppm) antibiotic wastewater, and their synthesis [...] Read more.
Zeolite imidazolate frameworks (ZIFs)-derived carbon materials have garnered widespread attention as peroxymonosulfate (PMS) activators in removing antibiotics because of their excellent catalytic performance. However, most carbon materials derived from ZIFs exhibit limited efficacy in treating high-concentration (>10 ppm) antibiotic wastewater, and their synthesis methods are environmentally unfriendly. Herein, we develop a simple and environmentally friendly preparation method to synthesize a new type of nitrogen-doped carbon-supported carbon nanotubes coated with cobalt nanoparticle (Co-CNTs@NC) composites via high-temperature calcination of cobalt–zinc bimetallic ZIFs. The material characterization results confirm the successful preparation of Co-CNTs@NC composites featuring a high specific surface area (512.13 m2/g) and a Co content of 5.38 wt%. Across an initial pH range of 3.24–9.00, the Co-CNTs@NC/PMS catalytic system achieved over 84.17% degradation of 20 mg/L tetracycline hydrochloride within 90 min, demonstrating its favorable pH tolerance. The singlet oxygen-dominated degradation mechanism was confirmed by quenching experiments and electron paramagnetic resonance characterization. This work can provide technical guidance and reference significance for the preparation of metal–carbon materials derived from ZIFs with excellent efficiency of removal of high-concentration antibiotics. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

16 pages, 4776 KB  
Article
Modification of taC:H Films via λ = 266 nm Picosecond Pulsed Laser Irradiation
by Teodor I. Milenov, Desislava Karaivanova, Anna Dikovska, Dimitar A. Dimov, Ivalina Avramova, Kiril Mladenov Kirilov, Kaloyan Genkov and Stefan K. Kolev
Coatings 2026, 16(1), 67; https://doi.org/10.3390/coatings16010067 - 7 Jan 2026
Viewed by 514
Abstract
Hydrogenated tetrahedral amorphous carbon (ta-C:H) thin films were modified using 266 nm picosecond laser pulses to investigate structural transformations at low and moderate fluences. Nitrogen-doped hydrogenated tetrahedral amorphous carbon layers 20–40 nm thick were deposited on silicon (Si) and silicon dioxide on silicon [...] Read more.
Hydrogenated tetrahedral amorphous carbon (ta-C:H) thin films were modified using 266 nm picosecond laser pulses to investigate structural transformations at low and moderate fluences. Nitrogen-doped hydrogenated tetrahedral amorphous carbon layers 20–40 nm thick were deposited on silicon (Si) and silicon dioxide on silicon (SiO2/Si) substrates and irradiated with picosecond pulses at 0.5–1.6 J cm−2 using a raster-scanned beam. Structural changes in morphology, composition, and bonding were evaluated via optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Even below 1.0 J cm−2, localized color shifts and slight swelling indicated early structural rearrangements without significant material removal. Above 1.0–1.2 J cm−2, the films were largely ablated, although a persistent 3–6 nm carbon layer remained on both substrate types. XPS showed an increase in sp2-bonded carbon by roughly 15%–20% in optimally modified regions, and Raman spectroscopy revealed defect-activated D-bands and the formation of multilayer defective graphene or reduced-graphene-oxide-like flakes at ablation boundaries. These results indicate that picosecond ultraviolet irradiation enables controllable graphitization and thinning of ta-C:H films while maintaining uniform processing over centimeter-scale areas, providing a route to thin, conductive, partially graphitized carbon coatings for optical and electronic applications. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

18 pages, 3990 KB  
Article
Novel Garlic Carbon Dot-Incorporated Starch Whey Protein Emulsion Gel for Apple Spoilage Sensing
by Hebat-Allah S. Tohamy
Gels 2026, 12(1), 47; https://doi.org/10.3390/gels12010047 - 1 Jan 2026
Viewed by 396
Abstract
This study presents the development of a smart packaging material utilizing garlic-derived nitrogen-doped carbon dots (CDs) integrated into a whey protein–starch (WP-S) emulsion. The research aimed to create a real-time, non-invasive biosensor capable of detecting microbial spoilage. The synthesized CDs demonstrated strong pH-sensitive [...] Read more.
This study presents the development of a smart packaging material utilizing garlic-derived nitrogen-doped carbon dots (CDs) integrated into a whey protein–starch (WP-S) emulsion. The research aimed to create a real-time, non-invasive biosensor capable of detecting microbial spoilage. The synthesized CDs demonstrated strong pH-sensitive photoluminescence, exhibiting distinct changes in CIE coordinates and fluorescence intensity in response to varying pH values. The WP-S-CDs emulsion was tested against E. coli, S. aureus, and C. albicans. The results showed that the composite film provided a clear colorimetric shift and fluorescence quenching, both of which are directly correlated with microbial metabolic activity. The physical and electronic properties of the composite were investigated to understand the sensing mechanism. Scanning electron microscopy (SEM) of the dried film revealed that the WP-S-CDs system formed a more porous structure with larger pore sizes (3.63–8.18 µm) compared to the control WP-S film (1.62–6.52 µm), which facilitated the rapid diffusion of microbial metabolites. Additionally, density functional theory (DFT) calculations demonstrated that the incorporation of CDs significantly enhanced the composite’s electronic properties by reducing its band gap and increasing its dipole moment, thereby heightening its reactivity and sensitivity to spoilage byproducts. In a practical application on apples, the WP-S-CDs coating produced a visible red spot, confirming its function as a dynamic sensor. The material also showed a dual-action antimicrobial effect, synergistically inhibiting C. albicans while exhibiting an antagonistic effect against bacteria. These findings validate the potential of the WP-S-CDs emulsion as a powerful, multi-faceted intelligent packaging system for food quality monitoring. Full article
(This article belongs to the Special Issue Hydrogels for Food Safety and Sensing Applications)
Show Figures

Graphical abstract

14 pages, 4219 KB  
Article
In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction
by Mingyuan Zhang, Jinru Wang, Caihan Zhu, Yuning Zhang, Dewei Li and Shuozhen Hu
Int. J. Mol. Sci. 2026, 27(1), 434; https://doi.org/10.3390/ijms27010434 - 31 Dec 2025
Cited by 1 | Viewed by 265
Abstract
Developing efficient and durable oxygen reduction reaction (ORR) catalysts is crucial for advancing fuel cell technology and sustainable energy conversion. In this study, a scalable strategy was employed to synthesize ZIF-derived nitrogen-sulfur co-doped carbon nanosheets embedded with in situ generated ZnS and Co [...] Read more.
Developing efficient and durable oxygen reduction reaction (ORR) catalysts is crucial for advancing fuel cell technology and sustainable energy conversion. In this study, a scalable strategy was employed to synthesize ZIF-derived nitrogen-sulfur co-doped carbon nanosheets embedded with in situ generated ZnS and Co9S8 nanoparticles. The synergistic effect of heteroatom doping and metal sulfide modification effectively modulated the electronic structure, optimized charge transfer pathways, and enhanced structural stability. The optimized catalyst exhibited a half-wave potential of 0.83 V vs. RHE, close to that of commercial 20 wt% Pt/C (0.85 V), excellent 4e ORR selectivity, and exceptional stability, with only a ~15 mV degradation after 10,000 cycles. These results demonstrate that the combination of nitrogen sulfur co-doping and in situ metal sulfide addition pro-vides an effective approach for designing highly active and durable non-precious metal catalysts for the ORR. This synthetic concept provides practical guidance for the scalable preparation of multifunctional nanomaterial-based catalysts for electrochemical energy applications. Full article
(This article belongs to the Special Issue Molecular Insight into Catalysis of Nanomaterials)
Show Figures

Figure 1

30 pages, 17342 KB  
Article
Design and Synthesis of Dy2TmSbO7/BiHoO3 Heterojunction: The Mechanism and Application for Photocatalytic Degradation of Sulphamethoxypyridazine
by Jingfei Luan, Minghe Ma, Liang Hao, Hengchang Zeng and Anan Liu
Molecules 2026, 31(1), 24; https://doi.org/10.3390/molecules31010024 - 22 Dec 2025
Viewed by 341
Abstract
A novel Z-scheme Dy2TmSbO7/BiHoO3 heterostructure photocatalyst was synthesized with the ultrasound-assisted solvothermal method. The Dy2TmSbO7/BiHoO3 heterojunction photocatalyst (DBHP) reflected wonderful separation efficiency of photogenerated electrons and photogenerated holes owing to the efficient direct [...] Read more.
A novel Z-scheme Dy2TmSbO7/BiHoO3 heterostructure photocatalyst was synthesized with the ultrasound-assisted solvothermal method. The Dy2TmSbO7/BiHoO3 heterojunction photocatalyst (DBHP) reflected wonderful separation efficiency of photogenerated electrons and photogenerated holes owing to the efficient direct Z-scheme heterojunction structure characteristic. The lattice parameter and the bandgap energy of the Dy2TmSbO7 were 10.52419 Å and 2.58 eV, simultaneously, the lattice parameter and the bandgap energy of the BiHoO3 were 5.42365 Å and 2.25 eV, additionally, the bandgap energy of the DBHP was 2.32 eV. Above results indicated that DBHP, Dy2TmSbO7 or BiHoO3 possessed an excellent ability for absorbing visible light energy, therefore, DBHP, Dy2TmSbO7 or BiHoO3 owned superior photocatalytic activity for degrading the sulphamethoxypyridazine (SMP) under visible light irradiation. The removal rate of the SMP after visible light irradiation of 135 min with the DBHP was 99.47% for degrading the SMP during the photocatalytic degradation (PADA) process, correspondingly, the removal rate of the total organic carbon (TOC) concentration after visible light irradiation of 135 min with the DBHP was 98.02% for degrading the SMP during the PADA process. The removal rate of the SMP after visible light irradiation of 135 min with the DBHP was 1.15 times, 1.29 times or 2.60 times that with Dy2TmSbO7, BiHoO3 or nitrogen-doped TiO2 (N-T). Therefore, the DBHP displayed higher photocatalytic activity for degrading the SMP under visible light irradiation compared with Dy2TmSbO7, BiHoO3 or N-T. Specifically, the mineralization rate for removing the TOC concentration during the PADA process of the SMP with the DBHP was 1.18 times, 1.32 times or 2.79 times that with Dy2TmSbO7, BiHoO3 or N-T. In addition, the stability and reusability of the DBHP were systematically evaluated, confirming that the DBHP owned potential applicability for degrading the antibiotic pollutant, which derived from the practical industrial wastewater. Trapping radicals experiments and the electron paramagnetic resonance measurement experiments were conducted for identifying the reactive radicals, such as the hydroxyl radicals (•OH), the superoxide anions (•O2) and the photogenerated holes (h+), which were generated with the DBHP for degrading the SMP during the PADA process under visible light irradiation, as a result, the •O2 possessed the maximal oxidative capability compared with the •OH or the h+. Above results indicated the degradation mechanism and the degradation pathways which were related to the SMP. In conclusion, this study makes a significant contribution for the development of the efficient Z-scheme heterostructure photocatalysts and provides a key opinion to the development of the sustainable remediation method with the view of mitigating the antibiotic pollution. Full article
(This article belongs to the Special Issue Progress in Nanomaterials for Pollutant Removal)
Show Figures

Graphical abstract

18 pages, 5893 KB  
Article
Overall Water Splitting Performance of Nitrogen-Doped Graphene Oxide-Supported Fe-Co-Ni Single-Atom Catalysts
by Heng Yang, Chuang Zhu, Yongwei Zhang and Manting Gu
Catalysts 2025, 15(12), 1108; https://doi.org/10.3390/catal15121108 - 28 Nov 2025
Viewed by 561
Abstract
Single-atom catalysts are highly efficient electrocatalysts for water splitting with exceptional atomic utilization, but atomic aggregation can impair their catalytic performance. To address this challenge, a Fe-Co-Ni single-atom bifunctional catalyst supported on nitrogen-doped graphene oxide was designed and employed for overall water splitting [...] Read more.
Single-atom catalysts are highly efficient electrocatalysts for water splitting with exceptional atomic utilization, but atomic aggregation can impair their catalytic performance. To address this challenge, a Fe-Co-Ni single-atom bifunctional catalyst supported on nitrogen-doped graphene oxide was designed and employed for overall water splitting in alkaline electrolyte. The catalyst’s composition, structure, and morphology were systematically characterized using XRD, XPS, SEM, and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Electrochemical evaluations were performed to assess its activity and stability toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The results demonstrate that strong metal-nonmetal interactions between the Fe, Co and Ni single atoms and the nitrogen-doped graphene oxide support facilitate stable and uniform anchoring of the metal centers on the wrinkled carbon framework. The total metal loading reaches approximately 6.78 wt%, ensuring a high density of accessible active sites. Furthermore, synergistic electronic coupling among the Fe, Co, and Ni centers enhances charge transfer kinetics and modulates the D-band electronic states of the metal atoms. This effect weakens the adsorption strength of hydrogen and oxygen-containing intermediates, thus promoting faster reaction kinetics for both HER and OER. Consequently, the FeCoNi/CNG catalyst delivers low overpotentials of 77 mV for HER and 355 mV for OER at a current density of 10 mA cm−2 in alkaline conditions. When integrated into an alkaline water electrolyzer, the system achieves a cell voltage of only 1.68 V to attain a current density of 10 mA cm−2, underscoring its outstanding bifunctional catalytic performance. Full article
(This article belongs to the Special Issue Carbon-Based Materials Catalysts for Energy and Hydrogen Productions)
Show Figures

Figure 1

18 pages, 5658 KB  
Article
A Facile Synthesis Strategy for N-Doped Graphene Quantum Dots Electrode Materials: Electrochemical Behaviors and Universal Energy Storage Mechanism
by Yongbo Wang, Shichao Dai, Jinghe Guo, Yanxiang Wang and Bo Tang
Materials 2025, 18(23), 5373; https://doi.org/10.3390/ma18235373 - 28 Nov 2025
Viewed by 403
Abstract
In this paper, a simple hydrothermal approach is employed to prepare nitrogen-doped graphene quantum dots (N-GQDs) with controllable size and structural features, where citric acid and ethylenediamine served as the carbon and nitrogen precursors, respectively. The influence of hydrothermal temperature and duration on [...] Read more.
In this paper, a simple hydrothermal approach is employed to prepare nitrogen-doped graphene quantum dots (N-GQDs) with controllable size and structural features, where citric acid and ethylenediamine served as the carbon and nitrogen precursors, respectively. The influence of hydrothermal temperature and duration on the structural features, surface chemistry, and electrochemical behavior of N-GQDs is systematically investigated. The capacitive behavior of N-GQD electrodes exhibits typical pseudocapacitive characteristics, primarily attributed to the surface functional groups. The NG-2 electrode (180 °C, 6 h) demonstrates a specific capacitance of 309.8 F g−1 at 1 A g−1 and maintains 98.1% of its initial capacitance after 8000 cycles, confirming excellent stability. Density functional theory (DFT) results demonstrate that the co-presence of graphitic and pyrrolic nitrogen induces a synergistic modulation of the electronic structure, resulting in improved charge-transfer kinetics and surface reactivity of N-GQDs compared to single-type nitrogen doping. Additionally, NG-2//activated carbon (AC)-asymmetric supercapacitor (ASC) achieves an energy density of 22.5 Wh kg−1 at 500 W kg−1 and maintains outstanding cycling stability. This work provides valuable insights into the design and application of N-GQDs for advanced energy storage devices. Full article
Show Figures

Figure 1

18 pages, 15025 KB  
Article
Preparation and CO2 Adsorption Performance of Nitrogen-Doped Carbon Derived from Phenolic Resin
by Liang Xu, Jie Peng, Zhaoyang Niu, Wenbin Li and Donghui Zhang
C 2025, 11(4), 84; https://doi.org/10.3390/c11040084 - 18 Nov 2025
Cited by 1 | Viewed by 1119
Abstract
Carbon dioxide emissions, particularly from large point sources such as fossil-fuel power plants, represent a primary driver of global warming. Although various carbon-based adsorbents have been developed for carbon capture applications, most existing materials exhibit limited CO2 adsorption capacity at flue gas-relevant [...] Read more.
Carbon dioxide emissions, particularly from large point sources such as fossil-fuel power plants, represent a primary driver of global warming. Although various carbon-based adsorbents have been developed for carbon capture applications, most existing materials exhibit limited CO2 adsorption capacity at flue gas-relevant partial pressures and are susceptible to interference from impurity components. In this study, a series of nitrogen-doped carbons was prepared from commercial phenolic resin and melamine via a two-step carbonization–activation process. The effects of precursor-to-dopant ratio and thermal conditions on CO2 adsorption were systematically investigated. The results indicated that CO2 uptake was influenced by specific surface area, nitrogen content, micropore volume, and total pore volume, with a maximum adsorption capacity of 2.455 mmol·g−1 and selectivity over 28 at 25 °C and 1 bar. The series also exhibited excellent cycling stability (<1% loss after 5 cycles) and fast kinetics (>90% uptake within 3 min), suggesting its potential applicability in flue gas CO2 capture. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Figure 1

12 pages, 4715 KB  
Article
Nitrogen-Doped Carbon Coated Zn0.17Co0.83P as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution
by Guo-Ping Shen, Xiao-Mei Men, Si-Jia Guo, Na Xu and Bin Dong
Catalysts 2025, 15(11), 1071; https://doi.org/10.3390/catal15111071 - 12 Nov 2025
Viewed by 752
Abstract
Zeolitic imidazolate frameworks (ZIFs) can provide fascinating stereo morphology and tunable metal active sites, which plays an important role in the synthesis of various catalytic materials. However, it is still a problem to make use of these advantages to design efficient hydrogen evolution [...] Read more.
Zeolitic imidazolate frameworks (ZIFs) can provide fascinating stereo morphology and tunable metal active sites, which plays an important role in the synthesis of various catalytic materials. However, it is still a problem to make use of these advantages to design efficient hydrogen evolution reaction (HER) catalysts. Herein, we use covalent coordination strategy to synthesize bimetallic CoxZn1−x(2-MeIM)2 precursors with regular dodecahedral structures for providing uniform active sites and stable carbon skeleton. Furthermore, the ratio of Co and Zn atoms was optimized to balance the electron density and give full play to the synergistic catalytic effect. And then, the subsequent high temperature annealing process is used to construct the amorphous carbon layer, which can improve the overall stability of the material. The gas phase phosphating process realizes the transformation from ZIF material to metal phosphide resulting in enhanced hydrogen evolution activity. Finally, the optimized amorphous nitrogen-doped carbon (NC)-coated Zinc-doped cobalt phosphide (Zn0.17Co0.83P@NC) requires only 237.60 mV to reach the current density of 10 mA cm−2 in alkaline medium, which is 223.22 mV lower than that of CoP, and has a stability of up to 18 h. This work provides a reference for the rational design of efficient and stable compound electrocatalysts for alkaline hydrogen evolution based on the bimetallic ZIF as a precursor. Full article
(This article belongs to the Special Issue Non-Noble Metal Electrocatalytic Materials for Clean Energy)
Show Figures

Figure 1

30 pages, 7754 KB  
Article
Metronidazole Degradation via Visible Light-Driven Z-Scheme BiTmDySbO7/BiEuO3 Heterojunction Photocatalyst
by Jingfei Luan, Zhe Li, Ye Yao, Jian Wang and Liang Hao
Sustainability 2025, 17(22), 10024; https://doi.org/10.3390/su172210024 - 10 Nov 2025
Cited by 1 | Viewed by 758
Abstract
This study presented the successful synthesis of a visible light responsive Z-scheme BiTmDySbO7/BiEuO3 heterojunction photocatalyst (BBHP) via the hydrothermal method, exhibiting outstanding removal efficiency for degrading the metronidazole (MNZ) in wastewater. The BBHP exhibited exceptional photocatalytic activity during the degradation [...] Read more.
This study presented the successful synthesis of a visible light responsive Z-scheme BiTmDySbO7/BiEuO3 heterojunction photocatalyst (BBHP) via the hydrothermal method, exhibiting outstanding removal efficiency for degrading the metronidazole (MNZ) in wastewater. The BBHP exhibited exceptional photocatalytic activity during the degradation process of the MNZ which was a widely detected pharmaceutical pollutant in aquatic environments. The key to the high photocatalytic activity of the BBHP was the formation of a Z-scheme photogenerated carrier transport channel which existed between BiTmDySbO7 and BiEuO3 within the heterojunction structure. This innovative structural design was experimentally confirmed for enhancing the separation efficiency of the photogenerated charge carriers significantly, thereby, the efficient photocatalytic activity of the BBHP was promoted. After visible light irradiation for 130 min, the BBHP achieved a removal efficiency of 99.56% for degrading MNZ and a mineralization rate of 98.11% for removing the total organic carbon (TOC) concentration. In contrast to a single photocatalyst, the removal rate of the MNZ by using the BBHP was 1.14 times that by using the BiEuO3, 1.26 times that by using the BiTmDySbO7, and 2.65 times that by using the nitrogen-doped TiO2 (N-T) under visible light irradiation. The mineralization rate for removing the TOC concentration during the degradation process of the MNZ by using the BBHP was 1.17 times that by using the BiEuO3, 1.29 times that by using the BiTmDySbO7, and 2.86 times that by using the N-T under visible light irradiation. The photocatalytic degradation process of the MNZ by using the BBHP followed first-order kinetics model, concurrently, a dynamics rate constant of 0.0345 min−1 was obtained. Furthermore, the BBHP demonstrated excellent stability and durability in accordance with multiple cyclic degradation experiments. According to the capturing radicals experiments and the electron paramagnetic resonance test experiments, it was determined that the hydroxyl radicals (•OH) and the superoxide anions (•O2) played key role during the photocatalytic degradation process of the MNZ by using the BBHP under visible light irradiation. Finally, the intermediate products that were produced during the degradation process of the MNZ were analyzed by using liquid chromatography-mass spectrometer, as a result, a potential degradation pathway for the MNZ was proposed. Overall, this study could provide valuable references for future research on composite photocatalysts and effectively maintain the safety and sustainable utilization of water resource. Full article
Show Figures

Figure 1

27 pages, 3114 KB  
Review
Carbon Nitride-Based Catalysts for Photocatalytic NO Removal
by Sheng Wang, Fu Chen, Xiyao Niu and Huagen Liang
Catalysts 2025, 15(11), 1043; https://doi.org/10.3390/catal15111043 - 3 Nov 2025
Viewed by 1040
Abstract
Nitrogen oxides (NOx) are major atmospheric pollutants, and their escalating emissions, driven by rapid economic development and urbanization, pose a severe threat to both the ecological environment and human health. Conventional denitrification technologies are often hampered by high costs, significant energy [...] Read more.
Nitrogen oxides (NOx) are major atmospheric pollutants, and their escalating emissions, driven by rapid economic development and urbanization, pose a severe threat to both the ecological environment and human health. Conventional denitrification technologies are often hampered by high costs, significant energy consumption, and stringent operational conditions, making them increasingly inadequate in the face of tightening environmental regulations. In this context, photocatalytic technology, particularly systems based on graphitic carbon nitride (g-C3N4), has garnered significant research interest for NOx removal due to its visible-light responsiveness, high stability, and environmental benignity. To advance the performance of g-C3N4, numerous modification strategies have been explored, including morphology control, elemental doping, defect engineering, and heterostructure construction. These approaches effectively broaden the light absorption range, enhance the separation efficiency of photogenerated electron-hole pairs, and improve the adsorption and conversion capacities for NOx. Notably, constructing heterojunctions between g-C3N4 and other materials (e.g., metal oxides, noble metals, metal–organic frameworks (MOFs)) has proven highly effective in boosting catalytic activity and stability. Furthermore, the underlying photocatalytic mechanisms, encompassing the generation and migration pathways of charge carriers, the redox reaction pathways of NOx, and the influence of external factors like light intensity and reaction temperature, have been extensively investigated. From an application perspective, g-C3N4-based photocatalysis demonstrates considerable potential in flue gas denitrification, vehicle exhaust purification, and air purification. Despite these advancements, several challenges remain, such as limited solar energy utilization, rapid charge carrier recombination, and insufficient long-term stability, which hinder large-scale implementation. Future research should focus on further optimizing the material structure, developing greener synthesis routes, enhancing catalyst stability and poison resistance, and advancing cost-effective engineering applications to facilitate the practical deployment of g-C3N4-based photocatalytic technology in air pollution control. Full article
Show Figures

Figure 1

15 pages, 2541 KB  
Article
Rational Design of N-Doped Carbon Aerogel with Well-Defined Micropore Structure to Adsorb Dye from Water for High-Performance Lithium-Ion Battery Cathodes
by Yuang Xiong, Kelin Zhu, Lixia Yang, Rong Huang, Xingtang Liang, Binbin Zhang, Yanzhen Yin, Xia Chen and Zirun Chen
Gels 2025, 11(11), 857; https://doi.org/10.3390/gels11110857 - 27 Oct 2025
Viewed by 460
Abstract
N-doped carbon aerogels have garnered increasing research interest in the field of energy and environment due to their unique structural features. Organic dyes, which contain redox-active sites and act as pollutants, are attractive candidates for cathode materials in Li-ion batteries but still suffer [...] Read more.
N-doped carbon aerogels have garnered increasing research interest in the field of energy and environment due to their unique structural features. Organic dyes, which contain redox-active sites and act as pollutants, are attractive candidates for cathode materials in Li-ion batteries but still suffer from poor cycle stability and rate performance. Therefore, there is still a lack of an easy and effective approach to rationally design the pore structure of N-doped carbon aerogels for efficiently and stably trapping dye molecules and converting them into high-performance cathode materials. Herein, we propose an innovative strategy for preparing nitrogen-doped carbon aerogels with a well-defined micropore structure (MNCAs) for efficient adsorption of dye molecules, subsequently converting them into high-performance lithium-ion battery cathode materials. MNCAs were synthesized via Schiff-based polymerization using polyhedral oligomeric silsesquioxane (POSS) as a template, resulting in a carbon framework with well-defined micropores. Benefiting from their high specific surface area and well-defined micropore structure, MNCAs exhibited a maximum adsorption capacity at equilibrium of 2273 mg g−1 for indigo. Notably, the indigo@nitrogen-doped carbon aerogel composite (IDG@MNCAs) exhibits high specific capacity, outstanding cycling stability, and remarkable rate capability. The discharge specific capacity of IDG@MNCAs retains 89% of its capacity (120 mAh g−1) after 200 cycles at 100 mA g−1 and maintains 70% capacity retention after 1200 cycles at the higher current density of 1000 mA g−1, surpassing many recently reported organic cathode materials. Full article
(This article belongs to the Special Issue Polysaccharide Gels for Biomedical and Environmental Applications)
Show Figures

Graphical abstract

Back to TopTop