Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = niobium nitride alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14649 KiB  
Article
Microstructure, Mechanical, and Tribological Behaviour of Spark Plasma Sintered TiN, TiC, TiCN, TaN, and NbN Ceramic Coatings on Titanium Substrate
by Ganesh Walunj, Amit Choudhari, Satyavan Digole, Anthony Bearden, Omar Kolt, Praful Bari and Tushar Borkar
Metals 2024, 14(12), 1437; https://doi.org/10.3390/met14121437 - 14 Dec 2024
Cited by 3 | Viewed by 1308
Abstract
Titanium (Ti) is widely used in structural, maritime, aerospace, and biomedical applications because of its outstanding strength-to-weight ratio, superior corrosion resistance, and excellent biocompatibility. However, the lower surface hardness and inferior wear resistance of the Ti and Ti alloys limit their industrial applications. [...] Read more.
Titanium (Ti) is widely used in structural, maritime, aerospace, and biomedical applications because of its outstanding strength-to-weight ratio, superior corrosion resistance, and excellent biocompatibility. However, the lower surface hardness and inferior wear resistance of the Ti and Ti alloys limit their industrial applications. Coating Ti surfaces can initiate new possibilities to give unique characteristics with significant improvement in the Ti component’s functionality. The current research designed and synthesized titanium nitride (TiN), titanium carbide (TiC), titanium carbonitride (TiCN), tantalum nitride (TaN), and niobium nitride (NbN) ceramic coating layers (400 µm) over a Ti substrate using a spark plasma sintering process (SPS). The coatings on the Ti substrate were compact and consolidated at an SPS temperature of 1500 °C, pressure of 50 MPa, and 5 min of holding time in a controlled argon atmosphere. Microstructure investigation revealed a defect-less coating-substrate interface formation with a transition/diffusion zone ranging from 10 µm to 20 µm. Among all of the ceramic coatings, titanium carbide showed the highest improvement in surface hardness, equal to 1817 ± 25 HV, and the lowest coefficient of friction, equal to 0.28 for NbN. Full article
(This article belongs to the Special Issue Design and Development of Metal Matrix Composites)
Show Figures

Figure 1

8 pages, 1242 KiB  
Article
Dual Mobility Hip Arthroplasty: Innovative Technological Advances
by Domenico Tigani, Ludovica Solito, Stefano Stallone, Corrado Maria Leonida, Tommaso Dieterich, Francesco Taverniti, Lorenzo Banci and Giuseppe Melucci
Prosthesis 2024, 6(2), 393-400; https://doi.org/10.3390/prosthesis6020029 - 17 Apr 2024
Cited by 1 | Viewed by 2844
Abstract
The use of 3D-printed highly porous titanium acetabular cups in total hip arthroplasty (THA) is increasing. The porosity and mechanical properties of such highly porous titanium structures mimic those of natural cancellous bone, possibly allowing biological implant fixation to be improved. Recently, a [...] Read more.
The use of 3D-printed highly porous titanium acetabular cups in total hip arthroplasty (THA) is increasing. The porosity and mechanical properties of such highly porous titanium structures mimic those of natural cancellous bone, possibly allowing biological implant fixation to be improved. Recently, a 3D-printed highly porous Dual Mobility (DM) monobloc construct fully manufactured using Ti6Al4V alloy, with a titanium–niobium nitride (TiNbN) ceramic coating on the articular side to allow articulation against the mobile liner by improving the titanium vs. polyethylene tribological behavior, was introduced in THA. To the best of our knowledge, this is the first highly porous titanium monobloc DM implant on the market. The reasons for using a Ti alloy highly porous DM are multifarious: to prevent any possible adverse reactions due to the corrosion of Cobalt–Chromium–Molybdenum Alloy (CoCrMo) and Stainless Steel (SS) implants and to improve implant primary and secondary stability, particularly in cases of poor bone quality. Finally, with the introduction of an inner TiNbN ceramic coating surface, it was possible to overcome the poor tribological quality of titanium. Another interesting characteristic is this material’s higher implant radiolucency, which might facilitate the radiographic assessment of cup orientation, which can, in turn, facilitate the detection of any intraprosthetic dislocation (IPD) and the measurement of polyethylene wear, which is very important in the study of the durability of THA. Full article
(This article belongs to the Special Issue State of Art in Hip, Knee and Shoulder Replacement (Volume 2))
Show Figures

Figure 1

10 pages, 1854 KiB  
Article
Structural and Mechanical Properties of NbN Alloyed with Hf, In, and Zr for Orthopedic Applications: A First-Principles Study
by Adel Bandar Alruqi and Nicholas O. Ongwen
Inorganics 2024, 12(2), 43; https://doi.org/10.3390/inorganics12020043 - 27 Jan 2024
Cited by 2 | Viewed by 2211
Abstract
The search for biocompatible, non-toxic, and wear-resistant materials for orthopedic implant applications is on the rise. Different materials have been investigated for this purpose, some of which have proved successful. However, one challenge that has proven difficult to overcome is the balance between [...] Read more.
The search for biocompatible, non-toxic, and wear-resistant materials for orthopedic implant applications is on the rise. Different materials have been investigated for this purpose, some of which have proved successful. However, one challenge that has proven difficult to overcome is the balance between ductility and hardness of these materials. This study employed ab initio calculations to investigate the structural and mechanical properties of niobium nitride (NbN) alloyed with hafnium, indium, and zirconium, with the aim of improving its hardness. The calculations made use of density function theory within the quantum espresso package’s generalized gradient approximation, with Perdew–Burke–Ernzerhof ultrasoft pseudopotentials in all the calculations. It was found that addition of the three metals led to an improvement in both the shear and Young’s moduli of the alloys compared to those of the NbN. However, both the bulk moduli and the Poisson’s ratios reduced with the introduction of the metals. The Young’s moduli of all the samples were found to be higher than that of bone. The Vickers hardness of the alloys were found to be significantly higher than that of NbN, with that of indium being the highest. The alloys are therefore good for wear-resistant artificial bone implants in ceramic acetabulum, and also in prosthetic heads. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

16 pages, 23806 KiB  
Article
Improved Tribological Performance of Nitride-Reinforced Biocompatible Titanium–Niobium–Zirconium–Tantalum (TNZT) Alloys for Advanced Orthopedic Applications
by Satyavan Digole, Jay Desai, Calvin Christopher, Smriti Bohara, Chathuranga Sandamal Witharamage, Chandra Kothapalli, Rajeev Kumar Gupta and Tushar Borkar
Metals 2024, 14(1), 122; https://doi.org/10.3390/met14010122 - 20 Jan 2024
Cited by 7 | Viewed by 2563
Abstract
β-titanium (β-Ti) alloys are used in various biomedical applications, especially for orthopedic implants, due to their superior biocompatibility, excellent corrosion resistance, and enhanced mechanical properties. However, the inferior tribological properties of β-Ti alloys lead to fretting wear and a strong tendency to seize, [...] Read more.
β-titanium (β-Ti) alloys are used in various biomedical applications, especially for orthopedic implants, due to their superior biocompatibility, excellent corrosion resistance, and enhanced mechanical properties. However, the inferior tribological properties of β-Ti alloys lead to fretting wear and a strong tendency to seize, which is a major concern in orthopedic applications involving continuous friction. This work aims to address this issue by incorporating biocompatible nitrides in Ti-Nb-Zr-Ta (TNZT) β-Ti alloys. TNZT composites comprising 2 wt.% of biocompatible nitrides (TiN, NbN, ZrN, and TaN) were prepared using high-energy ball milling followed by spark plasma sintering. All the nitrides improved the hardness and wear resistance of TNZT alloys and showed excellent biocompatibility. TNZT-2 wt.% TiN showed the average highest hardness of 311.8 HV and the lowest coefficient of friction of 0.659, suggesting the highest efficiency of TiN in improving the tribological performance of TNZT alloys. The underlying mechanisms behind the superior performance of nitride-reinforced TNZT composites are discussed in detail. The effect of TiN concentration was also studied by preparing TNZT composites with 5 and 10 wt.% TiN, which showcased a higher hardness of 388.5 HV and 444.3 HV, respectively. This work will aid in producing superior β-Ti alloys for advanced orthopedic applications. Full article
(This article belongs to the Special Issue Recent Advances in Metallic Biomaterials)
Show Figures

Figure 1

12 pages, 2835 KiB  
Article
The Influence of Niobium and Zirconium Addition on the Structural and Mechanical Properties of Yttrium Nitride: A First-Principles Study
by Adel Bandar Alruqi
Coatings 2023, 13(12), 2078; https://doi.org/10.3390/coatings13122078 - 13 Dec 2023
Viewed by 1478
Abstract
Yttrium nitride (YN) is a hard and refractory material with a high melting point. It is a semiconductor that has been investigated for its potential applications in the field of semiconductor technology, including as a material for electronic devices. It is also of [...] Read more.
Yttrium nitride (YN) is a hard and refractory material with a high melting point. It is a semiconductor that has been investigated for its potential applications in the field of semiconductor technology, including as a material for electronic devices. It is also of interest for its optical properties and its potential for use in optoelectronics. However, investigating its mechanical properties for a possible application in optical coatings has not been completed. This study involved the exploration of the mechanical properties of YN alloyed with niobium (Nb) and zirconium (Zr) for possible application in optical coatings using a first-principles approach. The result showed that the addition of Nb and Zr into the YN matrix had a profound effect on the mechanical properties of the modeled structures, with the Y-N-Nb (CYN_5) sample having the best mechanical properties. The bulk modulus was the most affected, with an increase of 26.48%, while the Vickers hardness had the smallest increase of 6.128% compared with those of pure YN. The modeled structures were thus found to be ideal alternative materials for optical coatings due to their improved mechanical properties. Full article
Show Figures

Figure 1

12 pages, 3797 KiB  
Article
The Use of Electrochemical Methods to Determine the Effect of Nitrides of Alloying Elements on the Electrochemical Properties of Titanium β-Alloys
by Jitřenka Jírů, Vojtěch Hybášek, Petr Vlčák and Jaroslav Fojt
Int. J. Mol. Sci. 2023, 24(2), 1656; https://doi.org/10.3390/ijms24021656 - 14 Jan 2023
Viewed by 1887
Abstract
Titanium beta alloys represent the new generation of materials for the manufacturing of joint implants. Their Young’s modulus is lower and thus closer to the bone tissue compared to commonly used alloys. The surface tribological properties of these materials should be improved by [...] Read more.
Titanium beta alloys represent the new generation of materials for the manufacturing of joint implants. Their Young’s modulus is lower and thus closer to the bone tissue compared to commonly used alloys. The surface tribological properties of these materials should be improved by ion implantation. The influence of this surface treatment on corrosion behaviour is unknown. The surface of Ti-36Nb-6Ta, Ti-36Nb-4Zr, and Ti-39Nb titanium β-alloys was modified using nitrogen ion implantation. X-ray photoelectron spectroscopy was used for surface analysis, which showed the presence of titanium, niobium, and tantalum nitrides in the treated samples and the elimination of less stable oxides. Electrochemical methods, electrochemical impedance spectra, polarisation resistance, and Mott–Schottky plot were measured in a physiological saline solution. The results of the measurements showed that ion implantation does not have a significant negative effect on the corrosion behaviour of the material. The best results of the alloys investigated were achieved by the Ti-36Nb-6Ta alloy. The combination of niobium and tantalum nitrides had a positive effect on the corrosion resistance of this alloy. After surface treatment, the polarization resistance of this alloy increased, 2.3 × 106 Ω·cm2, demonstrating higher corrosion resistance of the alloy. These results were also supported by the results of electrochemical impedance spectroscopy. Full article
(This article belongs to the Special Issue Feature Papers in Physical Chemistry and Chemical Physics 2022)
Show Figures

Figure 1

15 pages, 5998 KiB  
Article
Effect of Alloying Elements and Low Temperature Plasma Nitriding on Corrosion Resistance of Stainless Steel
by Yanjie Liu, Daoxin Liu, Xiaohua Zhang, Wenfeng Li, Amin Ma, Kaifa Fan and Wanzi Xing
Materials 2022, 15(19), 6575; https://doi.org/10.3390/ma15196575 - 22 Sep 2022
Cited by 10 | Viewed by 2120
Abstract
Although nitriding treatment usually improves the hardness and wear resistance of stainless steel, it also reduces its corrosion resistance. The effects of different nitriding temperatures and time and main alloying elements in stainless steel on the properties of the martensitic precipitation hardening of [...] Read more.
Although nitriding treatment usually improves the hardness and wear resistance of stainless steel, it also reduces its corrosion resistance. The effects of different nitriding temperatures and time and main alloying elements in stainless steel on the properties of the martensitic precipitation hardening of stainless steel were studied by first-principles calculations and experiments in this study. The results showed that the corrosion resistance of the martensitic stainless steel 0Cr17Ni4Cu4Nb was much lower than that of 1Cr15Ni2Mo2Cu before and after nitriding. According to the density functional theory calculation results, the molybdenum-containing stainless steel had higher stability and corrosion resistance and a lower Fermi level, electron conduction concentration and electrochemical activity than the niobium-containing stainless steel before and after nitriding. In addition, at the same temperature, the surface hardness of the 1Cr15Ni2Mo2Cu steel increased linearly with the prolongation of nitriding time, but its corrosion resistance decreased. Under the same nitriding time (24 h), the nitriding temperature increased from 300 to 450 °C, and the surface hardness and nitriding layer depth of the nitriding steel increased gradually, while the corrosion resistance decreased gradually. These results were attributed to the Cr-poor phenomenon caused by the formation of CrN. The 1Cr15Ni2Mo2Cu martensitic stainless steel obtained a high surface hardness after nitriding at 300 °C for 24 h, and the corrosion resistance did not decrease. Full article
Show Figures

Figure 1

14 pages, 12599 KiB  
Article
Synthesis, Surface Nitriding and Characterization of Ti-Nb Modified 316L Stainless Steel Alloy Using Powder Metallurgy
by Sadaqat Ali, Muhammad Irfan, Usama Muhammad Niazi, Ahmad Majdi Abdul Rani, Imran Shah, Stanislaw Legutko, Saifur Rahman, Mohammed Jalalah, Mabkhoot A. Alsaiari, Adam Glowacz and Fahad Salem AlKahtani
Materials 2021, 14(12), 3270; https://doi.org/10.3390/ma14123270 - 13 Jun 2021
Cited by 7 | Viewed by 2696
Abstract
The powder metallurgy (PM) technique has been widely used for producing different alloy compositions by the addition of suitable reinforcements. PM is also capable of producing desireable mechanical and physical properties of the material by varying process parameters. This research investigates the addition [...] Read more.
The powder metallurgy (PM) technique has been widely used for producing different alloy compositions by the addition of suitable reinforcements. PM is also capable of producing desireable mechanical and physical properties of the material by varying process parameters. This research investigates the addition of titanium and niobium in a 316L stainless steel matrix for potential use in the biomedical field. The increase of sintering dwell time resulted in simultaneous sintering and surface nitriding of compositions, using nitrogen as the sintering atmosphere. The developed alloy compositions were characterized using OM, FESEM, XRD and XPS techniques for quantification of the surface nitride layer and the nitrogen absorbed during sintering. The corrosion resistance and cytotoxicity assessments of the developed compositions were carried out in artificial saliva solution and human oral fibroblast cell culture, respectively. The results indicated that the nitride layer produced during sintering increased the corrosion resistance of the alloy and the developed compositions are non-cytotoxic. This newly developed alloy composition and processing technique is expected to provide a low-cost solution to implant manufacturing. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 4273 KiB  
Article
Tribological and Mechanical Properties of Multicomponent CrVTiNbZr(N) Coatings
by Yin-Yu Chang and Cheng-Hsi Chung
Coatings 2021, 11(1), 41; https://doi.org/10.3390/coatings11010041 - 2 Jan 2021
Cited by 25 | Viewed by 3811
Abstract
Multi-element material coating systems have received much attention for improving the mechanical performance in industry. However, they are still focused on ternary systems and seldom beyond quaternary ones. High entropy alloy (HEA) bulk material and thin films are systems that are each comprised [...] Read more.
Multi-element material coating systems have received much attention for improving the mechanical performance in industry. However, they are still focused on ternary systems and seldom beyond quaternary ones. High entropy alloy (HEA) bulk material and thin films are systems that are each comprised of at least five principal metal elements in equally matched proportions, and some of them are found possessing much higher strength than traditional alloys. In this study, CrVTiNbZr high entropy alloy and nitrogen contained CrVTiNbZr(N) nitride coatings were synthesized using high ionization cathodic-arc deposition. A chromium-vanadium alloy target, a titanium-niobium alloy target and a pure zirconium target were used for the deposition. By controlling the nitrogen content and cathode current, the CrNbTiVZr(N) coating with gradient or multilayered composition control possessed different microstructures and mechanical properties. The effect of the nitrogen content on the chemical composition, microstructure and mechanical properties of the CrVTiNbZr(N) coatings was investigated. Compact columnar microstructure was obtained for the synthesized CrVTiNbZr(N) coatings. The CrVTiNbZrN coating (HEAN-N165), which was deposited with nitrogen flow rate of 165 standard cubic centimeters per minute (sccm), exhibited slightly blurred columnar and multilayered structures containing CrVN, TiNbN and ZrN. The design of multilayered CrVTiNbZrN coatings showed good adhesion strength. Improvement of adhesion strength was obtained with composition-gradient interlayers. The CrVTiNbZrN coating with nitrogen content higher than 50 at.% possessed the highest hardness (25.2 GPa) and the resistance to plastic deformation H3/E*2 (0.2 GPa) value, and therefore the lowest wear rate was obtained because of high abrasion wear resistance. Full article
Show Figures

Figure 1

12 pages, 2296 KiB  
Article
The Influence of Nitrogen Absorption on Microstructure, Properties and Cytotoxicity Assessment of 316L Stainless Steel Alloy Reinforced with Boron and Niobium
by Sadaqat Ali, Ahmad Majdi Abdul Rani, Riaz Ahmad Mufti, Farooq I. Azam, Sri Hastuty, Zeeshan Baig, Murid Hussain and Nasir Shehzad
Processes 2019, 7(8), 506; https://doi.org/10.3390/pr7080506 - 2 Aug 2019
Cited by 16 | Viewed by 4477
Abstract
In the past, 316L stainless steel (SS) has been the material of choice for implant manufacturing. However, the leaching of nickel ions from the SS matrix limits its usefulness as an implant material. In this study, an efficient approach for controlling the leaching [...] Read more.
In the past, 316L stainless steel (SS) has been the material of choice for implant manufacturing. However, the leaching of nickel ions from the SS matrix limits its usefulness as an implant material. In this study, an efficient approach for controlling the leaching of ions and improving its properties is presented. The composition of SS was modified with the addition of boron and niobium, which was followed by sintering in nitrogen atmosphere for 8 h. The X-ray diffraction (XRD) results showed the formation of strong nitrides, indicating the diffusion of nitrogen into the SS matrix. The X-ray photoelectron spectroscopy (XPS) analysis revealed that a nitride layer was deposited on the sample surface, thereby helping to control the leaching of metal ions. The corrosion resistance of the alloy systems in artificial saliva solution indicated minimal weight loss, indicating improved corrosion resistance. The cytotoxicity assessment of the alloy system showed that the developed modified stainless steel alloys are compatible with living cells and can be used as implant materials. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Biomedical Materials)
Show Figures

Graphical abstract

Back to TopTop