Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = night-time ventilation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1328 KB  
Article
Spatiotemporal Patterns of Indoor Air Pollution and Its Association with Depressive Symptoms Among Schoolchildren in China
by Yaqi Wang, Di Shi, Xinyao Ye, Jiajia Dang, Jianhui Guo, Xinyao Lian, Shaoguan Wang, Jieyun Song, Yanhui Dong, Jing Li and Yi Song
Toxics 2025, 13(7), 563; https://doi.org/10.3390/toxics13070563 - 1 Jul 2025
Viewed by 612
Abstract
Despite spending a substantial proportion of their time indoors, the mental health effects of indoor air pollution on children and adolescents remain inadequately explored. This study aimed to elucidate the spatiotemporal variations and sociodemographic inequalities in exposure to multiple indoor pollutants and to [...] Read more.
Despite spending a substantial proportion of their time indoors, the mental health effects of indoor air pollution on children and adolescents remain inadequately explored. This study aimed to elucidate the spatiotemporal variations and sociodemographic inequalities in exposure to multiple indoor pollutants and to assess their potential associations with depressive symptoms among school-aged children in Beijing. Using real-time portable monitors, concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM10), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOC), temperature, and humidity in classrooms and bedrooms were measured during both weekdays and weekends. Moreover, substantial spatiotemporal heterogeneity was observed. It was found that concentrations of PM2.5, PM10, and TVOC peaked in classrooms during weekday daytime, while CO2 levels were highest in bedrooms on weekend nights. Exposure levels were notably higher among children whose mothers had lower educational attainment and those living in recently renovated homes, indicating marked socio-demographic disparities. In multivariable logistic regression models, indoor exposure to CO2 and TVOC was significantly associated with increased odds of depressive symptoms. These findings highlight the critical need to improve indoor air quality through enhanced ventilation and the mitigation of emissions from indoor sources, particularly within school and residential settings. The results offer valuable empirical evidence to guide the development of targeted environmental interventions and public health policies designed to support and enhance the psychological well-being of children. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

29 pages, 4633 KB  
Article
Impact of Heat Waves on the Well-Being and Risks of Elderly People Living Alone: Case Study in Urban and Peri-Urban Dwellings in the Atlantic Climate of Spain
by Urtza Uriarte-Otazua, Zaloa Azkorra-Larrinaga, Miriam Varela-Alonso, Iñaki Gomez-Arriaran and Olatz Irulegi-Garmendia
Buildings 2025, 15(13), 2274; https://doi.org/10.3390/buildings15132274 - 28 Jun 2025
Viewed by 787
Abstract
This study investigates the impact of heatwaves on the thermal comfort and well-being of elderly individuals living alone during heatwaves, focusing on two contrasting residential typologies in the Atlantic climate of Spain: a dense urban area and low-density peri-urban setting. A mixed-methods approach [...] Read more.
This study investigates the impact of heatwaves on the thermal comfort and well-being of elderly individuals living alone during heatwaves, focusing on two contrasting residential typologies in the Atlantic climate of Spain: a dense urban area and low-density peri-urban setting. A mixed-methods approach was used, combining in situ environmental monitoring, adaptive comfort modelling, and user-centred data from surveys and interviews based on the De Jong-Gierveld Loneliness Scale. The results show that both dwellings exceeded recommended indoor temperature thresholds during heatwaves, especially at night, contributing to sleep disturbance, cardiovascular stress, and emotional discomfort. Despite 85% of participants indicating that outdoor activities help them to mitigate not-wanted loneliness, architectural barriers often hinder such engagement. Over half reported having no balcony or terrace, which may have further intensified social isolation. Field data collected during 2022 summer heatwaves recorded maximum daytime temperatures of 30 °C and night-time peaks of 28.7 °C, exceeding the 25 °C threshold. The adaptive comfort evaluation classified both cases as Class 4 (severe discomfort). The urban dwelling showed consistent moderate discomfort (Category 3), likely due to poor ventilation and urban heat island effects. The peri-urban case, despite lacking the heat island influence, showed worse thermal conditions, especially during the day. Architectural barriers, poor thermal performance, and the lack of semi-outdoor spaces may exacerbate isolation among elderly people during extreme heat events. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 2107 KB  
Article
Integrating an Eco-Feedback Strategy to Enhance the Indoor Environmental Quality and Sleep Quality in Italian Bedrooms
by Michael T. Solomon, Laura Canale, Luca Stabile, Anderson D’Oliveira, Alexandro Andrade and Giorgio Buonanno
Buildings 2025, 15(13), 2269; https://doi.org/10.3390/buildings15132269 - 27 Jun 2025
Viewed by 369
Abstract
This study examines the short-term impact of an “eco-feedback” strategy, based on an awareness-raising information campaign and an experimental campaign, on indoor environmental quality (IEQ) parameters and sleep quality in Italian bedrooms. Forty-one participants from Cassino, Italy, monitored the IEQ in their bedroom [...] Read more.
This study examines the short-term impact of an “eco-feedback” strategy, based on an awareness-raising information campaign and an experimental campaign, on indoor environmental quality (IEQ) parameters and sleep quality in Italian bedrooms. Forty-one participants from Cassino, Italy, monitored the IEQ in their bedroom environments during the winter and spring seasons and assessed their sleep quality using the Groningen Sleep Quality Scale before and after receiving awareness-raising information. The experimental analysis revealed that, even if the IEQ and self-reported sleep quality before receiving the information were not representative of good sleep conditions (e.g., 94% of the volunteers slept in bedrooms with a median indoor CO2 concentration >800 ppm, the equivalent continuous sound pressure level was always >30 dB, and the self-reported sleep quality conditions were characteristic of disrupted sleep or intermediate sleep disturbance), the subjects were not able to obtain significant changes in IEQ parameters after the information campaign and that, consequently, no noticeable changes in sleep quality were obtained as well. The limited effectiveness of the eco-feedback strategy adopted in this study can be attributed to the fact that the proposed approach only led to behavioral changes characterized by a limited effect on the indoor environmental quality. This was mostly due to the period under investigation: as an example, the low nighttime outdoor temperatures did not allow for an improvement in the building ventilation during the night. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

25 pages, 3812 KB  
Article
Opportunities Arising from COVID-19 Risk Management to Improve Ultrafine Particles Exposure: Case Study in a University Setting
by Fabio Boccuni, Riccardo Ferrante, Francesca Tombolini, Sergio Iavicoli and Pasqualantonio Pingue
Sustainability 2025, 17(11), 4803; https://doi.org/10.3390/su17114803 - 23 May 2025
Viewed by 579
Abstract
Particulate matter (PM) is recognized as a leading health risk factor worldwide, causing adverse effects for people in living and working environments. During the COVID-19 pandemic, it was shown that ultrafine particles (UFP) and PM concentrations, may have played an important role in [...] Read more.
Particulate matter (PM) is recognized as a leading health risk factor worldwide, causing adverse effects for people in living and working environments. During the COVID-19 pandemic, it was shown that ultrafine particles (UFP) and PM concentrations, may have played an important role in the transmission of SARS-CoV-2. This study aims to investigate whether the mechanical ventilation system installed as a COVID-19 mitigation measure in a university dining hall can be effectively and sustainably used to improve indoor UFP exposure levels, integrated with a continuous low-cost sensor monitoring system. Measurements of particle number concentration (PNC), average diameter (Davg), and Lung Deposited Surface Area (LDSA) were performed over three working days divided into ten homogeneous daily time slots (from 12:00 am to 11:59 pm) using high-frequency (1 Hz) real-time devices. PM and other indoor pollutants (CO2 and TVOC) were monitored using low-cost handheld sensors. Indoor PNC (Dp < 700 nm) increased and showed great variability related to dining activities, reaching a maximum average PNC level of 30,000 part/cm3 (st. dev. 16,900). Davg (Dp < 300 nm) increased during lunch and dinner times, from 22 nm at night to 48 nm during post-dinner recovery activities. Plasma-based filter technology reduced average PNC (Dp < 700 nm) by up to three times, effectively mitigating UFP concentrations in indoor environments, especially during dining hall access periods. It could be successfully adopted also after the pandemic emergency, as a sustainable health and safety control measure to improve UFPs exposure levels. Full article
Show Figures

Figure 1

21 pages, 9105 KB  
Article
Condensation Risk Under Different Window-Opening Behaviours in a Residential Building in Changsha During Plum Rains Season
by Yecong He, Miaomiao Liu, Zhigang Zhao, Sihui Li, Xiaofeng Zhang and Jifei Zhou
Buildings 2025, 15(9), 1536; https://doi.org/10.3390/buildings15091536 - 2 May 2025
Cited by 2 | Viewed by 526
Abstract
Condensation assessment of a residential building in Changsha, China-located in the hot summer and cold winter climate zone-was conducted during the Plum Rain Season (PRS) using Energy Plus simulations and field measurements. Window-opening behaviour significantly influences indoor air quality and thermal comfort. This [...] Read more.
Condensation assessment of a residential building in Changsha, China-located in the hot summer and cold winter climate zone-was conducted during the Plum Rain Season (PRS) using Energy Plus simulations and field measurements. Window-opening behaviour significantly influences indoor air quality and thermal comfort. This study specifically examines how window-opening patterns, including opening duration and opening degree, affect interior surface condensation risk in a rural residential building during PRS. Results indicate that window operational status (open/closed) exerts a dominant influence on condensation risk, while varying window opening degrees during identical opening duration showed negligible differential impacts. Critical temporal patterns emerged: morning window openings during PRS should be avoided, whereas afternoon (15:00–18:00) and nighttime (18:00–06:00) ventilation proves advantageous. Optimisation analysis revealed that implementing combined afternoon and nighttime ventilation windows (15:00–18:00 + 18:00–06:00) achieved the lowest condensation risk of 0.112 among evaluated scenarios. Furthermore, monthly-adjusted window operation strategies yielded eight recommended ventilation modes, maintaining condensation risks below 0.11 and providing occupant-tailored solutions for Changsha’s PRS conditions. These findings establish evidence-based guidelines for moisture control through optimised window operation in climate-responsive building management. Full article
(This article belongs to the Special Issue Research on Ventilation and Airflow Distribution of Building Systems)
Show Figures

Figure 1

17 pages, 6692 KB  
Article
A Lightweight Network Based on YOLOv8 for Improving Detection Performance and the Speed of Thermal Image Processing
by Huyen Trang Dinh and Eung-Tae Kim
Electronics 2025, 14(4), 783; https://doi.org/10.3390/electronics14040783 - 17 Feb 2025
Cited by 1 | Viewed by 2752
Abstract
Deep learning and image processing technology continue to evolve, with YOLO models widely used for real-time object recognition. These YOLO models offer both blazing fast processing and high precision, making them super popular in fields like self-driving cars, security cameras, and medical support. [...] Read more.
Deep learning and image processing technology continue to evolve, with YOLO models widely used for real-time object recognition. These YOLO models offer both blazing fast processing and high precision, making them super popular in fields like self-driving cars, security cameras, and medical support. Most YOLO models are optimized for RGB images, which creates some limitations. While RGB images are super sensitive to lighting conditions, infrared (IR) images using thermal data can detect objects consistently, even in low-light settings. However, infrared images present unique challenges like low resolution, tiny object sizes, and high amounts of noise, which makes direct application tricky in regard to the current YOLO models available. This situation requires the development of object detection models designed specifically for thermal images, especially for real-time recognition. Given the GPU and memory constraints in edge device environments, designing a lightweight model that maintains a high speed is crucial. Our research focused on training a YOLOv8 model using infrared image data to recognize humans. We proposed a YOLOv8s model that had unnecessary layers removed, which was better suited to infrared images and significantly reduced the weight of the model. We also integrated an improved Global Attention Mechanism (GAM) module to boost IR image precision and applied depth-wise convolution filtering to maintain the processing speed. The proposed model achieved a 2% precision improvement, 75% parameter reduction, and 12.8% processing speed increase, compared to the original YOLOv8s model. This method can be effectively used in thermal imaging applications like night surveillance cameras, cameras used in bad weather, and smart ventilation systems, particularly in environments requiring real-time processing with limited computational resources. Full article
Show Figures

Figure 1

16 pages, 2967 KB  
Article
Study on the Effect of Non-Uniform Ventilation on Energy and Plant Growth in a Greenhouse
by Ziteng Wang, Aiqun Bao, Jialei Li, Jinhong He, Kaiwen Wang, Xinke Wang and Xianpeng Sun
Horticulturae 2025, 11(2), 166; https://doi.org/10.3390/horticulturae11020166 - 5 Feb 2025
Viewed by 1065
Abstract
The progress of local environmental regulation in protected agriculture is sluggish, particularly concerning the local air supply, which poses a significant obstacle to greenhouse energy-saving research. This study establishes a test platform for local air supply in winter and summer by integrating design [...] Read more.
The progress of local environmental regulation in protected agriculture is sluggish, particularly concerning the local air supply, which poses a significant obstacle to greenhouse energy-saving research. This study establishes a test platform for local air supply in winter and summer by integrating design principles from human settlements’ supply air bag models with crop growth requirements. By utilizing a supply air bag to direct fresh air from the air conditioning system to specific areas within the greenhouse, non-uniform ventilation is created. Research has revealed that varying air supply levels in summer exerts a significant influence on environmental conditions, crop growth, and energy efficiency. Noticeable temperature stratification and cooling effects were observed within the conditioning greenhouse. The growth of lettuce was moderately enhanced, with mid-level local air supply demonstrating superior cooling effectiveness and range compared to the other two levels. Optimal control efficacy and energy conservation were achieved through mid-level local air supply. During daytime experiments in winter, this system did not have a significant impact on the greenhouse environment; however, during nighttime experiments, it consistently provided warming effects to maintain temperatures above the minimum requirement for lettuce growth. Therefore, utilizing air supply bags at secure specific positions and implementing targeted air supply methods within cultivation areas in greenhouses can facilitate the creation of suitable local environments for crop growth while achieving energy savings. Future research in this field could focus on further refining air supply bag models to enhance energy efficiency and local environmental control effects. Full article
(This article belongs to the Special Issue Latest Advances in Horticulture Production Equipment and Technology)
Show Figures

Figure 1

12 pages, 1189 KB  
Article
Delirium Management Quality Improvement Project to Improve Awareness and Screening in a Medical ICU
by Hirsh Makhija, Kyle Digrande, Omar Awan, Russell G. Buhr, Rajan Saggar, Victoria Ramirez, Rainbow Tarumoto, Janelle M. Fine, Atul Malhotra, Dale M. Needham, Jennifer L. Martin and Biren B. Kamdar
Nurs. Rep. 2025, 15(1), 6; https://doi.org/10.3390/nursrep15010006 - 30 Dec 2024
Viewed by 2200
Abstract
Background/Objectives: Although delirium is common during critical illness, standard-of-care detection and prevention practices in real-world intensive care unit (ICU) settings remain inconsistent, often due to a lack of provider education. Despite availability for over 20 years of validated delirium screening tools such as [...] Read more.
Background/Objectives: Although delirium is common during critical illness, standard-of-care detection and prevention practices in real-world intensive care unit (ICU) settings remain inconsistent, often due to a lack of provider education. Despite availability for over 20 years of validated delirium screening tools such as the Confusion Assessment Method in the ICU (CAM-ICU), feasible and rigorous educational efforts continue to be needed to address persistent delirium standard-of-care practice gaps. Methods: Spanning an 8-month quality improvement project period, our single-ICU interdisciplinary effort involved delivery of CAM-ICU pocket cards to bedside nurses, and lectures by experienced champions that included a live delirium detection demonstration using the CAM-ICU, and a comprehensive discussion of evidence-based delirium prevention strategies (e.g., benzodiazepine avoidance). Subsequent engagement by health system leadership motivated the development of an electronic health record dataset to evaluate unit-level outcomes, including CAM-ICU documentation and benzodiazepine administration. Results: Using a dataset that spanned 9 pre- and 37 post-project months and included 3612 patients, 4470 admissions, and 33,913 patient days, we observed that delirium education was followed by a dramatic rise in CAM-ICU documentation, from <1% for daytime and nighttime shifts to peaks of 73% and 71%, respectively (p < 0.0001 for trend), and a fall in the proportion of mechanically ventilated patients ever receiving benzodiazepine infusions (69% to 41%; p < 0.0001). Conclusions: An interdisciplinary delirium project comprising rigorous lectures on standard-of-care practices can yield significant improvements in documentation and sedative administration. This approach can help ICUs jumpstart efforts to build awareness and address longstanding gaps in standard-of-care delirium practices. Full article
Show Figures

Figure 1

14 pages, 316 KB  
Article
Impact of Kitchen Natural Gas Use on Indoor NO2 Levels and Human Health: A Case Study in Two European Cities
by Nelson Barros and Tânia Fontes
Appl. Sci. 2024, 14(18), 8461; https://doi.org/10.3390/app14188461 - 19 Sep 2024
Cited by 1 | Viewed by 1805
Abstract
Natural gas (NG) is commonly used in kitchens, powering stoves, ovens, and other appliances. While it is known for its efficiency and convenience, NG contributes to the release of nitrogen dioxide (NO2) and can have significant implications for human health. In [...] Read more.
Natural gas (NG) is commonly used in kitchens, powering stoves, ovens, and other appliances. While it is known for its efficiency and convenience, NG contributes to the release of nitrogen dioxide (NO2) and can have significant implications for human health. In this study, the importance of the use of NG in kitchens on human exposure to NO2 was analyzed. An extensive literature review in the field was conducted, and the NO2 levels were assessed in kitchens with NG cookers in Aveiro and electric cookers in Porto, both in Portugal. Higher levels of NO2 were found in kitchens in Aveiro, where NO2 levels outdoors are lower than in Porto. This pollutant can spread to other rooms, especially when ventilation is lacking, which is particularly concerning during colder seasons and at night. As around 70% of the time is spent at home, this can have a significant impact on human exposure to NO2. Therefore, although Aveiro has low levels of NO2 outdoors, its population may be exposed to much higher levels of this pollutant than the Porto population, a city with air quality issues, but predominantly using electric cookers. This finding emphasizes the need for the stricter regulation of NG use indoors to protect human health and also suggests a shift in human health protection policies from mere monitoring/control of outdoor air quality to a comprehensive assessment of human exposure, including exposure to indoor air quality. Full article
(This article belongs to the Special Issue Research on Environmental Health: Sustainability and Innovation)
Show Figures

Figure 1

19 pages, 5492 KB  
Article
Development and Performance Assessment of Sensor-Mounted Solar Dryer for Micro-Climatic Modeling and Optimization of Dried Fish Quality in Cambodia
by Lyhour Hin, Chan Makara Mean, Meng Chhay Kim, Chhengven Chhoem, Borarin Bunthong, Lytour Lor, Taingaun Sourn and P. V. Vara Prasad
Clean Technol. 2024, 6(3), 954-972; https://doi.org/10.3390/cleantechnol6030048 - 26 Jul 2024
Cited by 1 | Viewed by 3127
Abstract
Fish are one of the main sources of protein in Cambodia but they are highly perishable. This requires immediate consumption or processing for later use. In processing, fish drying is very common, but most processors practice traditional drying methods although solar dryers have [...] Read more.
Fish are one of the main sources of protein in Cambodia but they are highly perishable. This requires immediate consumption or processing for later use. In processing, fish drying is very common, but most processors practice traditional drying methods although solar dryers have been introduced, or gradually used, in Cambodia. There is a large variation in terms of drying efficiency due to large differences in solar radiation, temperature, and humidity conditions in traditional drying methods and solar dryers. However, there is limited information on the actual variation in these two systems, which should be documented in Cambodia. Using sensors to monitor micro-climatic changes inside the drying chamber will be useful to improve efficiency and performance. Therefore, the objectives of this research were to (1) design a fish dryer from locally available inputs; (2) determine changes in solar radiation over time; (3) compare relative humidity and temperatures between traditional sun-drying and the solar dryer; (4) determine the relationship among the climatic parameters; and (5) compare some physical, chemical, and biological properties of dried fish in both drying techniques with the Cambodian dried fish standards. The study was conducted in collaboration with a fish processor in the Siem Reap Province between December 2023 and January 2024 using a sensor-mounted solar dryer fabricated by the Royal University of Agriculture to dry fish and compared with traditional sun-drying. Three experiments were carried out from 8:00 to 16:00 following the common drying practices in Cambodia. In each experiment, 80–100 kg of raw giant snakehead, or 56–70 kg of prepared fish (1.04 ± 0.05 kg each fish), was prepared for drying. Data on environmental conditions were measured and analyzed. The results show that the solar dryer had higher temperatures (almost 60 °C) and lower relative humidity (about 20%) during peak hours when compared with traditional sun-drying (36.8 °C and 40%, respectively). In all cases, relative humidity decreased with rising solar radiation and temperatures. The final weight and moisture of dried fish in the solar dryer were lower than those in traditional sun-drying in eight hours. Salmonella was detected with traditional sun-drying but E. coli was not. Bacterial presence may be harmful to human health. Nevertheless, the time spent for drying in both techniques was the same, so future studies should focus on improving ventilation to remove moisture faster out of the solar dryer, which can help with faster drying and more time saving. Hybrid solar dryers should also be considered to maintain high temperatures at night, while bacteria should be counted for safety reasons. Full article
Show Figures

Figure 1

16 pages, 6033 KB  
Article
A Method to Optimize Dormitory Environments Based on Personnel Behavior Regulation
by Xiaojun Yang, Junji Zhang, Yiming Cheng, Xin Weng, Ruyu Yin, Luyao Guo and Zhu Cheng
Buildings 2024, 14(7), 2111; https://doi.org/10.3390/buildings14072111 - 10 Jul 2024
Cited by 1 | Viewed by 1430
Abstract
With the development of the economy, the indoor environment of college dormitories has received significant attention. This study focused on the problems of high population densities and poor indoor environments in Chinese dormitories. CO2 and formaldehyde concentrations were measured using field tests [...] Read more.
With the development of the economy, the indoor environment of college dormitories has received significant attention. This study focused on the problems of high population densities and poor indoor environments in Chinese dormitories. CO2 and formaldehyde concentrations were measured using field tests and satisfaction was investigated using a questionnaire. In this study, a questionnaire survey was conducted on the indoor environment of student dormitories. The results demonstrated that poor indoor air quality was a common occurrence in student dormitories. The students proposed several improvement measures, including increasing the number of window openings and using mechanical ventilation. This study conducted real-time monitoring of indoor and outdoor CO2 concentrations at night when students were asleep. The results demonstrated that when the windows were closed, indoor CO2 concentrations could exceed 3000 ppm, while when the windows were fully open, the indoor CO2 concentration was about 500 ppm. Formaldehyde concentrations in the dormitory were measured after the windows had been closed for more than 12 h. Additionally, the air exchange rates—calculated based on the tracer gas method—ranged from 0.034 to 0.395, with the smallest value observed when the windows were completely closed and the largest value observed when the windows were completely open. Based on the above conclusions, a window-opening mode was proposed that considers the Chinese students’ routine. This pattern could satisfy the indoor thermal comfort needs in winter as well as improve indoor air quality. Full article
Show Figures

Figure 1

6 pages, 194 KB  
Case Report
Successfully Anticipated Difficult Airway Management of a “Can Ventilate, but Cannot Intubate” Situation for Urgent Laparoscopic Appendectomy in a Patient with Duchenne Muscular Dystrophy
by Fabian P. Brunner, Philippe Neth and Alexander Kaserer
Reports 2024, 7(2), 47; https://doi.org/10.3390/reports7020047 - 14 Jun 2024
Viewed by 1497
Abstract
Background: Airway management in Duchenne patients can be challenging. We present a case of an anticipated difficult airway in a 24-year-old Duchenne patient that was managed by planning different suitable strategies based on the unanticipated difficult airway algorithm of the Difficult Airway Society [...] Read more.
Background: Airway management in Duchenne patients can be challenging. We present a case of an anticipated difficult airway in a 24-year-old Duchenne patient that was managed by planning different suitable strategies based on the unanticipated difficult airway algorithm of the Difficult Airway Society (DAS). Case presentation: The patient initially presented with appendicitis, requiring a laparoscopic appendectomy within 6 h. Due to the underlying condition and a known difficult airway, we anticipated potential airway problems and successfully managed the “can ventilate but cannot intubate” situation using the algorithm. The difficult airway was attributed to reduced mandibular mobility, limited inclination or reclination, a large tongue, prominent incisors, and a posteriorly positioned epiglottis. Despite thorough preparation and team briefing, we experienced three failed intubation attempts. Considering limited nighttime resources, the urgency of the surgery, the need for a tube for laparoscopy, and the risk of exacerbating airway issues, we made the decision to awaken the patient and wait for a second attempt after the epiglottis swelling had subsided. We used reversible, short-acting agents for induction, enabling us to continue with the algorithm within the allotted timeframe. In a second stage, we successfully performed fiberoptic-guided intubation via a supraglottic airway device using the Aintree intubation catheter, utilizing more favorable resources. Conclusions: For a patient with Duchenne muscular dystrophy and a difficult airway, advanced expertise is critical. Detailed anesthesia planning, clear team communication, and the use of reversible, short-acting agents are crucial. Adherence to the Difficult Airway Society guidelines is essential for safe airway management. Full article
26 pages, 8278 KB  
Article
Investigating Stagnant Air Conditions in Almaty: A WRF Modeling Approach
by Tatyana Dedova, Larissa Balakay, Edige Zakarin, Kairat Bostanbekov and Galymzhan Abdimanap
Atmosphere 2024, 15(6), 633; https://doi.org/10.3390/atmos15060633 - 24 May 2024
Cited by 3 | Viewed by 2733
Abstract
This study investigates stagnant atmospheric conditions in Almaty, Kazakhstan, a city nestled within a complex terrain. These conditions, characterized by weak local winds and inversion layers, trap pollutants within the city, particularly during winter. The Weather Research & Forecasting (WRF) model was employed [...] Read more.
This study investigates stagnant atmospheric conditions in Almaty, Kazakhstan, a city nestled within a complex terrain. These conditions, characterized by weak local winds and inversion layers, trap pollutants within the city, particularly during winter. The Weather Research & Forecasting (WRF) model was employed to simulate atmospheric conditions using Local Climate Zone data. Verification of the model’s accuracy was achieved through comparisons with data from weather stations and the Landsat-9 satellite. The model successfully reproduced the observed daily temperature variations and weak winds during the testing period (13–23 January 2023). Comparisons with radiosonde data revealed good agreement for morning temperature profiles, while underestimating the complexity of the evening atmospheric structure. The analysis focused on key air quality factors, revealing cyclical patterns of ground-level and elevated inversions linked to mountain-valley circulation. The model effectively captured anabatic and katabatic flows. The study further examined the urban heat island (UHI) using a virtual rural method. The UHI exhibited daily variations in size and temperature, with heat transported by prevailing winds and katabatic flows. Statistical analysis of temperature and wind patterns under unfavorable synoptic situations revealed poor ventilation in Almaty. Data from three Januaries (2022/2023/2024) were used to create maps showing average daytime and nighttime air temperatures, wind speed, and frequency of calm winds. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 4575 KB  
Article
Evaluation of Air Quality and Thermal Comfort in University Dormitories in China
by Yanpeng Wu, Xiaoyu Li, Sheng Zhao, Qianglong Wang, Shanxin Wang, Liyang Yu and Faming Wang
Atmosphere 2024, 15(5), 586; https://doi.org/10.3390/atmos15050586 - 11 May 2024
Cited by 2 | Viewed by 1605
Abstract
Most studies on Chinese dormitories are carried out in summer, while few focus on a transition season or winter. This study evaluated the air quality of a student dormitory in a university in the Beijing area by using a questionnaire survey and on-site [...] Read more.
Most studies on Chinese dormitories are carried out in summer, while few focus on a transition season or winter. This study evaluated the air quality of a student dormitory in a university in the Beijing area by using a questionnaire survey and on-site measurements. The CO2 concentration was used as an indoor air quality evaluation index to characterize the freshness of the air, and different window opening conditions in the dormitory were simulated, with corresponding improvement plans proposed. The results of this study revealed that the air quality and thermal comfort of the student dormitories during a transition season and winter fell short of expectations. According to the survey, students who opened their windows frequently had a better subjective perception of the air quality. However, due to the large temperature difference between day and night, more than 80% of the students felt too cold when opening the windows. For daytime conditions, the area of unilateral ventilation window opening should not be less than 0.39 m2, the area of bilateral ventilation window opening should not be less than 0.13 m2, and the time taken to close the windows and doors should not exceed the maximum ventilation interval. Empirical equations were fitted for nighttime conditions based on the CO2 concentration, number of people in the room, and window opening area, resulting in a reasonable window opening area of 0.349 m2~0.457 m2. In sum, this study assessed the air quality status within typical university dormitories across varying seasons, gaining a clear understanding of how different ventilation strategies and occupant densities influence air freshness and thermal comfort. Based on these insights, a practical and optimized window area recommendation was formulated to enhance the indoor environmental quality in these dormitories. Full article
(This article belongs to the Special Issue Contributions of Emission Inventory to Air Quality)
Show Figures

Figure 1

31 pages, 8872 KB  
Article
Long-Term Analysis of Energy Consumption and Thermal Comfort in a Passivhaus Apartment in Spain
by Iñigo Rodríguez-Vidal, Rufino J. Hernández-Minguillón and Jorge Otaegi
Buildings 2024, 14(4), 878; https://doi.org/10.3390/buildings14040878 - 25 Mar 2024
Cited by 2 | Viewed by 2211
Abstract
This study presents a detailed analysis of thermal comfort and energy consumption in a Passivhaus-certified apartment in Bolueta Tower, Bilbao, Spain, over a period of three years (2020–2022). Utilizing a comprehensive, long-term monitoring approach, the research investigates the effectiveness of the Passivhaus standard [...] Read more.
This study presents a detailed analysis of thermal comfort and energy consumption in a Passivhaus-certified apartment in Bolueta Tower, Bilbao, Spain, over a period of three years (2020–2022). Utilizing a comprehensive, long-term monitoring approach, the research investigates the effectiveness of the Passivhaus standard in achieving both energy efficiency and occupant comfort in a temperate climate. Using calibrated data loggers to record indoor temperature, humidity, and CO2 levels were used alongside the collection of utility bills to assess energy consumption and thermal comfort, as well as IAQ, against several international standards. Significant issues with overheating were confirmed, in line with previous research. During the warmer months, indoor temperatures frequently exceeded the Passivhaus comfort threshold of 25 °C, reaching as high as 31.3 °C, particularly in the living room and bedroom. This resulted in discomfort during summer, with the percentage of hours above 25 °C reaching 23.21% in 2022. Nighttime temperatures often surpassed 24 °C, impacting sleep quality. Conversely, heating consumption was minimal, corroborating the building’s energy efficiency in colder months. The findings highlight a critical gap in the Passivhaus standard when applied in milder climates, where overheating becomes a significant issue. This study suggests the need for an integrated approach in sustainable building design, one that balances energy efficiency with adaptive strategies to mitigate overheating, such as improved natural ventilation and thermal mass. These insights contribute to the ongoing discourse on optimizing energy-efficient buildings for occupant comfort in various climatic conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop