Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (713)

Search Parameters:
Keywords = new degradation pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10625 KiB  
Article
Regenerating Landscape Through Slow Tourism: Insights from a Mediterranean Case Study
by Luca Barbarossa and Viviana Pappalardo
Sustainability 2025, 17(15), 7005; https://doi.org/10.3390/su17157005 (registering DOI) - 1 Aug 2025
Abstract
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as [...] Read more.
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as long-distance cycling and walking paths, can act as a vital connection, stimulating regeneration in peripheral territories by enhancing environmental and landscape assets, as well as preserving heritage, local identity, and culture. The regeneration of peri-urban landscapes through soft mobility is recognized as the cornerstone for accessibility to material and immaterial resources (including ecosystem services) for multiple categories of users, including the most vulnerable, especially following the restoration of green-area systems and non-urbanized areas with degraded ecosystems. Considering the forthcoming implementation of the Magna Grecia cycling route, the southernmost segment of the “EuroVelo” network traversing three regions in southern Italy, this contribution briefly examines the necessity of defining new development policies to effectively integrate sustainable slow tourism with the enhancement of environmental and landscape values in the coastal areas along the route. Specifically, this case study focuses on a coastal stretch characterized by significant morphological and environmental features and notable landscapes interwoven with densely built environments. In this area, environmental and landscape values face considerable threats from scattered, irregular, low-density settlements, abandoned sites, and other inappropriate constructions along the coastline. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
20 pages, 6787 KiB  
Article
PKC-ι Regulates an Oncogenic Positive Feedback Loop Between the MAPK/JNK Signaling Pathway, c-Jun/AP-1 and TNF-α in Breast Cancer
by Nuzhat Nowshin Oishee, Mahfuza Marzan, Abigail Oluwafisayo Olatunji, Khandker Mohammad Khalid, Abiral Hasib Shourav, Radwan Ebna Noor, Anna Kharitonova, Aaron Joshua Astalos, James W. Leahy and Mildred Acevedo-Duncan
Int. J. Mol. Sci. 2025, 26(15), 7288; https://doi.org/10.3390/ijms26157288 - 28 Jul 2025
Viewed by 286
Abstract
Breast cancer is the second most common cancer in the United States and consists of 30% of all new female cancer each year. PKC iota (PKC-ι) is a bonafide human oncogene and is overexpressed in many types of cancer, including breast [...] Read more.
Breast cancer is the second most common cancer in the United States and consists of 30% of all new female cancer each year. PKC iota (PKC-ι) is a bonafide human oncogene and is overexpressed in many types of cancer, including breast cancer. This study explores the role of PKC-ι in regulating the transcription factor Jun proto-oncogene (c-Jun), pro-inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-α), and the Mitogen-Activated Protein Kinase/Jun N-terminal kinase (MAPK/JNK) pathway, which also exhibits an oncogenic role in breast cancer. ICA-1S, a PKC-ι specific inhibitor, was used to inhibit PKC-ι to observe the subsequent effect on the levels of c-Jun, TNF-α, and the MAPK/JNK signaling pathway. To obtain the results, cell proliferation assay, Western blotting, co-immunoprecipitation, small interfering RNA (siRNA), immunofluorescence, flow cytometry, cycloheximide (CHX) chase assay, and reverse transcription quantitative PCR (RT-qPCR) techniques were implemented. ICA-1S significantly inhibited cell proliferation and induced apoptosis in both breast cancer cell lines. Treatment with ICA-1S and siRNA also reduced the expression levels of the MAPK/JNK pathway protein, c-Jun, and TNF-α in both cell lines. PKC-ι was also found to be strongly associated with c-Jun, via which it regulated the MAPK/JNK pathway. Additionally, ICA-1S was found to promote the degradation of c-Jun and decrease the mRNA levels of c-Jun. We concluded that PKC-ι plays a crucial role in regulating breast cancer, and the inhibition of PKC-ι by ICA-1S reduces breast cancer cell proliferation and induces apoptosis. Therefore, targeting PKC-ι as a potential therapeutic target in breast cancer could be a significant approach in breast cancer research. Full article
(This article belongs to the Special Issue Molecular Research and Cellular Biology of Breast Cancer)
Show Figures

Figure 1

30 pages, 2885 KiB  
Review
Targeting Lipophagy in Liver Diseases: Impact on Oxidative Stress and Steatohepatitis
by Jin Seok Hwang, Trang Huyen Lai and Deok Ryong Kim
Antioxidants 2025, 14(8), 908; https://doi.org/10.3390/antiox14080908 - 24 Jul 2025
Viewed by 501
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of liver conditions, from simple hepatic steatosis to its more severe inflammatory form known as metabolic dysfunction-associated steatohepatitis (MASH). Despite its growing clinical significance and association with cirrhosis and cancer, there are currently few [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of liver conditions, from simple hepatic steatosis to its more severe inflammatory form known as metabolic dysfunction-associated steatohepatitis (MASH). Despite its growing clinical significance and association with cirrhosis and cancer, there are currently few pharmacological treatments available for MASLD, highlighting the urgent need for new therapeutic strategies. This narrative review aims to elucidate the molecular mechanisms of lipophagy in MASLD progression, emphasizing how its dysfunction contributes to hepatic steatosis and lipotoxicity. We also explore the intersection of lipophagy failure with oxidative stress and inflammation in the liver, focusing on key signaling pathways, such as mTORC1 and AMPK, and discuss the therapeutic potential of targeting these pathways by systematically reviewing the literature from PubMed, Scopus, and Google Scholar databases. Recent studies suggest that lipophagy, the selective autophagic degradation of lipid droplets, is crucial for maintaining hepatic lipid homeostasis. Indeed, some vital components of the lipophagy machinery seem to be functionally inhibited in MASLD, resulting in the accumulation of intracellular triacylglycerol (TAG), lipotoxicity, and subsequent oxidative stress, all of which contribute to disease progression. In summary, impaired lipophagy is a central pathological mechanism in MASLD, making it an important therapeutic target. A deeper understanding of these mechanisms may offer new strategic insights for combating the progression of MASLD/MASH. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Figure 1

37 pages, 4312 KiB  
Review
Neutrophils and NETs in Pathophysiology and Treatment of Inflammatory Bowel Disease
by Marina Ortega-Zapero, Raquel Gomez-Bris, Ines Pascual-Laguna, Angela Saez and Jose M. Gonzalez-Granado
Int. J. Mol. Sci. 2025, 26(15), 7098; https://doi.org/10.3390/ijms26157098 - 23 Jul 2025
Viewed by 422
Abstract
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive [...] Read more.
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive oxygen species (ROS), pro-inflammatory cytokines, and neutrophil extracellular traps (NETs). NETs are web-like structures composed of DNA, histones, and associated proteins including proteolytic enzymes and antimicrobial peptides. NET formation is increased in IBD and has a context-dependent role; under controlled conditions, NETs support antimicrobial defense and tissue repair, whereas excessive or dysregulated NETosis contributes to epithelial injury, barrier disruption, microbial imbalance, and thrombotic risk. This review examines the roles of neutrophils and NETs in IBD. We summarize recent single-cell and spatial-omics studies that reveal extensive neutrophil heterogeneity in the inflamed gut. We then address the dual role of neutrophils in promoting tissue damage—through cytokine release, immune cell recruitment, ROS production, and NET formation—and in supporting microbial clearance and mucosal healing. We also analyze the molecular mechanisms regulating NETosis, as well as the pathways involved in NET degradation and clearance. Focus is given to the ways in which NETs disrupt the epithelial barrier, remodel the extracellular matrix, contribute to thrombosis, and influence the gut microbiota. Finally, we discuss emerging therapeutic strategies aimed at restoring NET homeostasis—such as PAD4 inhibitors, NADPH oxidase and ROS pathway modulators, and DNase I—while emphasizing the need to preserve antimicrobial host defenses. Understanding neutrophil heterogeneity and NET-related functions may facilitate the development of new therapies and biomarkers for IBD, requiring improved detection tools and integrated multi-omics and clinical data. Full article
Show Figures

Figure 1

16 pages, 16505 KiB  
Article
Delayed Starch Degradation Triggers Chromoplast Structural Aberration to Inhibit Carotenoid Cleavage: A Novel Mechanism for Flower Color Deepening in Osmanthus fragrans
by Xiangling Zeng, Yunfei Tan, Xin Wen, Qiang He, Hui Wu, Jingjing Zou, Jie Yang, Xuan Cai and Hongguo Chen
Horticulturae 2025, 11(7), 864; https://doi.org/10.3390/horticulturae11070864 - 21 Jul 2025
Viewed by 276
Abstract
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud [...] Read more.
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud mutation cultivar ‘Huolian Jindan’ (HLJD) as materials, combining genome resequencing, ultrastructural observation, targeted metabolomics, and transcriptomic analysis to elucidate the molecular and cellular mechanisms underlying flower color variation. Phylogenetic analysis confirms that HLJD is a natural bud mutation of JQG. Ultrastructural observations reveal that during petal development, chromoplasts are transformed from proplastids. In HLJD petals, starch granules degrade more slowly and exhibit abnormal morphology, resulting in chromoplasts displaying crystalline, tubular, and fibrous composite structures, in contrast to the typical spherical plastoglobuli found in JQG. Targeted metabolomics identified 34 carotenoids, showing significant increases in the levels of ε-carotene, γ-carotene, α-carotene, and β-carotene in HLJD petals compared to JQG, with these levels continuing to accumulate throughout the flowering process, while the levels of the cleavage products α-ionone and β-ionone decrease. Transcriptomic analysis indicates that carotenoid metabolic pathway genes do not correlate directly with the phenotype; however, 49 candidate genes significantly associated with pigment accumulation were identified. Among these, the expression of genes such as glycoside hydrolases (LYG036752, etc.), sucrose synthase (LYG010191), and glucose-1-phosphate adenylyltransferase (LYG003610) are downregulated in HLJD. This study proposes for the first time the pathway of “starch degradation delay → chromoplast structural abnormalities → carotenoid cleavage inhibition” for deepening flower color, providing a new theoretical model for the metabolic regulation of carotenoids in non-photosynthetic tissues of plants. This research not only identifies key target genes (such as glycoside hydrolases) for the color breeding of O. fragrans but also establishes a theoretical foundation for the color enhancement of other ornamental plants. Full article
Show Figures

Figure 1

14 pages, 1102 KiB  
Article
MMP-9 Activation via ROS/NF-κB Signaling in Colorectal Cancer Progression: Molecular Insights and Prognostic–Therapeutic Perspectives
by Andrej Veljkovic, Goran Stanojevic, Branko Brankovic, Stefanos Roumeliotis, Konstantinos Leivaditis, Branka Djordjevic, Xiaobo Li, Aleksandra Klisic, Jovan Hadzi-Djokic and Gordana Kocic
Curr. Issues Mol. Biol. 2025, 47(7), 557; https://doi.org/10.3390/cimb47070557 - 17 Jul 2025
Viewed by 339
Abstract
Colorectal cancer (CRC) is characterized by complex interactions between inflammation, oxidative stress, and extracellular matrix remodeling. Recent studies have highlighted the significance of the reactive oxygen species (ROS)–nuclear factor kappa B (NF-κB)–matrix metalloproteinase-9 (MMP-9) axis in promoting tumor invasion and metastasis in CRC, [...] Read more.
Colorectal cancer (CRC) is characterized by complex interactions between inflammation, oxidative stress, and extracellular matrix remodeling. Recent studies have highlighted the significance of the reactive oxygen species (ROS)–nuclear factor kappa B (NF-κB)–matrix metalloproteinase-9 (MMP-9) axis in promoting tumor invasion and metastasis in CRC, linking oxidative stress with inflammatory signaling and extracellular matrix degradation. In this study, we analyzed the concentration of advanced oxidation protein products (AOPPs), expression of NF-κB, and the activity of MMP-9 in tumor tissue, adjacent tissue, and healthy control colon tissue. Tissue specimens were collected from 50 patients with primary CRC following surgical resection. The analyses were performed using appropriate and validated biochemical methods, including ELISA, spectrophotometry, and indirect immunofluorescence. Significantly higher levels of all three markers were observed in tumor tissue compared to controls. Additionally, adjacent tissue exhibited elevated NF-κB expression and MMP-9 activity when compared to healthy colon tissue. AOPP levels correlated strongly with MMP-9 activity, highlighting the role of oxidative stress in the activation of MMP-9. MMP-9 demonstrated the highest predictive value for CRC, emphasizing its potential as a diagnostic and theranostic marker. Our findings support the hypothesis that the ROS–NF-κB–MMP-9 axis plays an important role in CRC progression, particularly during stages T2 and T3. Targeting this pathway may offer new therapeutic strategies for limiting tumor invasion and recurrence. Moreover, ensuring adequate surgical resection margins is crucial to optimizing treatment outcomes. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

34 pages, 2326 KiB  
Review
Non-Coding RNAs and Immune Evasion in Human Gamma-Herpesviruses
by Tablow S. Media, Laura Cano-Aroca and Takanobu Tagawa
Viruses 2025, 17(7), 1006; https://doi.org/10.3390/v17071006 - 17 Jul 2025
Viewed by 341
Abstract
Herpesviruses are DNA viruses that evade the immune response and persist as lifelong infections. Human gamma-herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) are oncogenic; they can lead to cancer. Oncogenic viruses are responsible for 10–15% of human cancer development, which can [...] Read more.
Herpesviruses are DNA viruses that evade the immune response and persist as lifelong infections. Human gamma-herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) are oncogenic; they can lead to cancer. Oncogenic viruses are responsible for 10–15% of human cancer development, which can have poor prognoses. Non-coding RNAs (ncRNAs) are RNAs that regulate gene expression without encoding proteins, and are being studied for their roles in viral immune evasion, infection, and oncogenesis. ncRNAs are classified by their size, and include long non-coding RNAs, microRNAs, and circular RNAs. EBV and KSHV manipulate host ncRNAs, and encode their own ncRNAs, regulating host processes and immune responses. Viral ncRNAs regulate host functions by post-transcriptionally modifying host RNAs, and by serving as mimics of other host RNAs, promoting immune evasion. ncRNAs in gamma-herpesvirus infection are also important for tumorigenesis, as dampening immune responses via ncRNAs can upregulate pro-tumorigenic pathways. Emerging topics such as RNA modifications, target-directed miRNA degradation, competing endogenous RNA networks, and lncRNA/circRNA–miRNA interactions provide new insights into ncRNA functions. This review compares ncRNAs and the mechanisms of viral immune evasion in EBV and KSHV, while also expanding on recent developments in the roles of ncRNAs in immune evasion, viral infection, and oncogenesis. Full article
Show Figures

Figure 1

22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 325
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

18 pages, 2182 KiB  
Article
Visual Neuroplasticity: Modulating Cortical Excitability with Flickering Light Stimulation
by Francisco J. Ávila
J. Imaging 2025, 11(7), 237; https://doi.org/10.3390/jimaging11070237 - 14 Jul 2025
Viewed by 634
Abstract
The balance between cortical excitation and inhibition (E/I balance) in the cerebral cortex is critical for cognitive processing and neuroplasticity. Modulation of this balance has been linked to a wide range of neuropsychiatric and neurodegenerative disorders. The human visual system has well-differentiated magnocellular [...] Read more.
The balance between cortical excitation and inhibition (E/I balance) in the cerebral cortex is critical for cognitive processing and neuroplasticity. Modulation of this balance has been linked to a wide range of neuropsychiatric and neurodegenerative disorders. The human visual system has well-differentiated magnocellular (M) and parvocellular (P) pathways, which provide a useful model to study cortical excitability using non-invasive visual flicker stimulation. We present an Arduino-driven non-image forming system to deliver controlled flickering light stimuli at different frequencies and wavelengths. By triggering the critical flicker fusion (CFF) frequency, we attempt to modulate the M-pathway activity and attenuate P-pathway responses, in parallel with induced optical scattering. EEG recordings were used to monitor cortical excitability and oscillatory dynamics during visual stimulation. Visual stimulation in the CFF, combined with induced optical scattering, selectively enhanced magnocellular activity and suppressed parvocellular input. EEG analysis showed a modulation of cortical oscillations, especially in the high frequency beta and gamma range. Our results support the hypothesis that visual flicker in the CFF, in addition to spatial degradation, initiates detectable neuroplasticity and regulates cortical excitation and inhibition. These findings suggest new avenues for therapeutic manipulation through visual pathways in diseases such as Alzheimer’s disease, epilepsy, severe depression, and schizophrenia. Full article
Show Figures

Figure 1

27 pages, 860 KiB  
Review
Chronic Lymphocytic Leukemia: Novel Therapeutic Targets Under Investigation
by Madhavi Nayyar, Ricardo C. B. de Menezes, Sikander Ailawadhi and Ricardo D. Parrondo
Cancers 2025, 17(14), 2298; https://doi.org/10.3390/cancers17142298 - 10 Jul 2025
Viewed by 914
Abstract
CLL is the most prevalent adult leukemia in Western countries, characterized by the accumulation of monoclonal B lymphocytes. Over the past decade, the therapeutic landscape for CLL has undergone significant transformations, primarily due to the introduction of targeted small molecular therapies like BTK [...] Read more.
CLL is the most prevalent adult leukemia in Western countries, characterized by the accumulation of monoclonal B lymphocytes. Over the past decade, the therapeutic landscape for CLL has undergone significant transformations, primarily due to the introduction of targeted small molecular therapies like BTK inhibitors and BCL-2 inhibitors, that have improved patient outcomes drastically. Despite significant advances, long-term disease management remains challenging for patients with double-refractory CLL, where responses with subsequent therapies are short-lived. Resistance to these therapies can arise through several mechanisms like kinase-altering BTK mutations, alterations in the BCL-2 pathway, and adaptations within the tumor microenvironment, necessitating the exploration of new therapeutic options. This review provides an in-depth overview of the promising novel treatment approaches under investigation in CLL, focusing on advanced cellular therapies (CAR T-cell therapy), T-cell engagers, new monoclonal antibodies, and various next-generation small molecule inhibitors including BTK degraders, PI3K inhibitors, MALT1 inhibitors, c-MYC inhibitors, CDK9 inhibitors, and agents targeting angiogenesis and DNA damage repair. In this review, we will discuss the novel therapeutic targets and agents as well as ongoing trials, emphasizing the potential of these treatments to overcome resistance and meet the unmet needs of patients, particularly those with double-refractory CLL. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

18 pages, 8672 KiB  
Article
Under Blue Light Treatment, OsCSN2 Regulates the Phenotype of Rice Seedlings Through the GA Signaling Pathway
by Xinhai Yu, Tongtong Jiao, Changfeng Liu, Hexin Zhang, Yanxi Liu, Chunyu Zhang, Ming Wu and Liquan Guo
Plants 2025, 14(13), 2015; https://doi.org/10.3390/plants14132015 - 1 Jul 2025
Viewed by 339
Abstract
Blue light is a significant environmental cue influencing plant photomorphogenesis and regulating plant growth and development. The COP9 signaling complex (CSN), a multi-subunit protein complex, plays a pivotal role in regulating photomorphogenesis, with CSN2 being identified as a key subunit essential for the [...] Read more.
Blue light is a significant environmental cue influencing plant photomorphogenesis and regulating plant growth and development. The COP9 signaling complex (CSN), a multi-subunit protein complex, plays a pivotal role in regulating photomorphogenesis, with CSN2 being identified as a key subunit essential for the assembly and function of the CSN. This study investigated the role of OsCSN2 in rice under blue-light conditions. Utilizing OsCSN2 knockout (KO) mutant plants and transgenic overexpression (OE) lines for wild-type (WT) and mutated versions of OsCSN2, we observed significant suppression of the overall seedling phenotype under blue light, indicating that OsCSN2 acts as a negative regulator of blue light-mediated morphogenesis. Further analysis revealed that exogenous application of gibberellin (GA3) and the GA synthesis inhibitor paclobutrazol (PAC) modulated seedling elongation in response to blue light, particularly affecting plant height, coleoptile, and first incomplete leaf length without altering root growth. This suggests that OsCSN2 mediates the inhibitory effects of blue light on aboveground development through the gibberellin signaling pathway. On day 9, the analyses of endogenous GA3 levels combined with Western blotting (WB) and quantitative real-time PCR (qRT-PCR) revealed that OsCSN2 senses blue light signals through cryptochrome 2 (CRY2), influences the expression of COP1 and BBX14, and highlights its role in the photoreceptive signaling pathway. This regulation ultimately influences the degradation of SLR1 within the GA signaling pathway, affecting rice seedling growth and development. Our findings also highlight the differential roles of OsCSN1 and OsCSN2 within the CSN in modulating rice seedling photomorphogenesis, thereby providing new insights into the intricate regulatory mechanisms governing plant responses to blue light. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

28 pages, 12296 KiB  
Article
Phase Stability and Structural Reorganization of Silica in Cherts Under Thermal and Mechanochemical Stress
by María de Uribe-Zorita, Pedro Álvarez-Lloret, Beatriz Ramajo, Javier F. Reynes and Celia Marcos
Materials 2025, 18(13), 3077; https://doi.org/10.3390/ma18133077 - 28 Jun 2025
Viewed by 514
Abstract
This work investigated the structural response and phase transformation dynamics of silica-bearing cherts subjected to high-temperature processing (up to 1400 °C) and prolonged mechanochemical activation. Through a combination of X-ray diffraction (XRD) with Rietveld refinement, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and [...] Read more.
This work investigated the structural response and phase transformation dynamics of silica-bearing cherts subjected to high-temperature processing (up to 1400 °C) and prolonged mechanochemical activation. Through a combination of X-ray diffraction (XRD) with Rietveld refinement, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and transmission electron microscopy (HRTEM), we trace the crystallographic pathways of quartz, moganite, tridymite, and cristobalite under controlled thermal and mechanical stress regimes. The experimental results demonstrated that phase behavior is highly dependent on intrinsic properties such as initial phase composition, impurity presence, and crystallinity. Heating at 1400 °C induced irreversible conversion of quartz, moganite, and tridymite into cristobalite. Samples enriched in cristobalite and tridymite exhibited notable increases in crystallinity, whereas quartz-dominant samples showed either stability or a decline in structural order. Rietveld analyses underscored the critical influence of microstrain and crystallite size on thermal resilience and phase persistence. Thermal profiles revealed by DSC and TGA expose overlapping processes including polymorphic transitions, minor phase dehydration, and redox-driven changes, likely associated with trace components. Mechanochemical processing resulted in partial amorphization and the emergence of phases such as opal and feldspar minerals (microcline, albite, anorthite), interpreted as the product of lattice collapse and subsequent reprecipitation. Heat treatment of chert leads to a progressive rearrangement and recrystallization of its silica phases: quartz collapses around 1000 °C before recovering, tridymite emerges as an intermediate phase, and cristobalite shows the greatest crystallite size growth and least deformation at 1400 °C. These phase changes serve as markers of high-temperature exposure, guiding the identification of heat-altered lithic artefacts, reconstructing geological and diagenetic histories, and allowing engineers to adjust the thermal expansion of ceramic materials. Mechanochemical results provide new insights into the physicochemical evolution of metastable silica systems and offer valuable implications for the design and thermal conditioning of silica-based functional materials used in high-temperature ceramics, glasses, and refractory applications. From a geoarchaeological standpoint, the mechanochemically treated material could simulate natural weathering of prehistoric chert tools, providing insights into diagenetic pathways and lithic degradation processes. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 1187 KiB  
Review
Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review
by Evmorfia Athanasopoulou, Deborah M. Power, Emmanouil Flemetakis and Theofania Tsironi
J. Mar. Sci. Eng. 2025, 13(7), 1245; https://doi.org/10.3390/jmse13071245 - 28 Jun 2025
Viewed by 587
Abstract
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when [...] Read more.
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when synthetic polymers are fragmented and micronized to a size ≤ 5 mm. MPs are a global environmental problem, particularly within aquatic ecosystems, due to their persistence, accumulation, and uncertain long-term effects. This review examines the degradation pathways of polymers that result in MP formulation, their rate and distribution across ecosystems, and their potential entry into food systems. Key challenges include a lack of standardized detection methods, specifically for nanoparticles; limited evidence of long-term toxicity; and the inefficiency of current waste management frameworks. Emphasis is placed on the cradle-to-grave lifecycle of plastic materials, highlighting how poor design, excessive packaging, and inadequate post-consumer treatment contribute to MP release. The transition from Directive 94/62/EC to the new Regulation (EU) 2025/40 marks a significant policy shift towards stronger preventive measures. In line with the waste hierarchy and reduction in unnecessary packaging and plastic use, effective recycling must be supported by appropriate collection systems, improved separation processes, and citizen education to prevent waste and improve recycling rates to minimize the accumulation of MPs in the environment and reduce health impacts. This review identifies critical gaps in current knowledge and suggests crucial approaches in order to mitigate MP pollution and protect marine biodiversity and public health. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

16 pages, 1545 KiB  
Article
Lidocaine Affects Collagen Breakdown Without Compromising Cell Viability in Cultured Human Tenocytes: An In Vitro Study
by Filippo Randelli, Manuel G. Mazzoleni, Alessandra Menon, Alberto Fioruzzi, Dolaji Henin, Michele Sommariva and Nicoletta Gagliano
Cells 2025, 14(13), 988; https://doi.org/10.3390/cells14130988 - 27 Jun 2025
Viewed by 368
Abstract
Local anesthetics (LAs) are frequently administered via peritendinous ultrasound-guided injections for diagnostic and therapeutic purposes. Since in vitro studies have demonstrated LAs’ tenotoxic effects, raising concerns about their safety in infiltrative treatments, and since lidocaine (LD) emerged as one of the most cytotoxic [...] Read more.
Local anesthetics (LAs) are frequently administered via peritendinous ultrasound-guided injections for diagnostic and therapeutic purposes. Since in vitro studies have demonstrated LAs’ tenotoxic effects, raising concerns about their safety in infiltrative treatments, and since lidocaine (LD) emerged as one of the most cytotoxic LAs, we analyzed apoptosis, oxidative stress, and collagen turnover pathways in human tenocytes treated with LD, as well as the possible protection from LD-induced injury elicited by antioxidant ascorbic acid (AA). Tenocytes from gluteal tendons were treated with 0.2 and 1 mg/mL LD, or left untreated (CT), and treated with 50 μg/mL or 250 μg/mL AA. Nuclear morphology, cytochrome c expression, and caspase 3 activation were analyzed to study the effect of LD on apoptosis. Heme Oxygenase 1 (HO-1) mRNA and genes and proteins involved in collagen turnover were investigated using molecular approaches. Our results show that 0.2 and 1 mg/mL LD did not induce apoptosis and did not modify collagen synthesis and maturation. Conversely, increased collagen degradation was observed, and AA was not protective against oxidative stress induction in the presence of LD. Our findings suggest that LD does not affect the cell viability of tenocytes and that peritendinous LD injections are safe in this regard. LD-associated collagen degradation and the AA buffer effect are still debatable. Overall, our study contributes to clarifying the effect of LD on tenocytes’ viability and ECM homeostasis and provides new additional information useful for the safe clinical application of this drug and for further analysis. Full article
(This article belongs to the Special Issue Role of Extracellular Matrix in Cancer and Disease)
Show Figures

Figure 1

13 pages, 1056 KiB  
Article
Associations Between Gut Microbiota Composition and Impulse Control Disorders in Parkinson’s Disease
by Sheng-Hsuan Lin, Ru-Jen Lin, Chia-Ling Chu, Yan-Lin Chen and Shih-Chen Fu
Int. J. Mol. Sci. 2025, 26(13), 6146; https://doi.org/10.3390/ijms26136146 - 26 Jun 2025
Viewed by 352
Abstract
Impulse control disorders (ICDs) are a debilitating non-motor symptom of Parkinson’s disease (PD), often associated with dopaminergic therapy. However, their occurrence in some patients but not others suggests additional biological mechanisms, including the gut microbiome. In this study, we analyzed 191 PD patients [...] Read more.
Impulse control disorders (ICDs) are a debilitating non-motor symptom of Parkinson’s disease (PD), often associated with dopaminergic therapy. However, their occurrence in some patients but not others suggests additional biological mechanisms, including the gut microbiome. In this study, we analyzed 191 PD patients (14 with ICDs, 177 without) using 16S rRNA gene sequencing to explore the association between gut microbiota and ICDs. No significant differences were observed in alpha or beta diversity between groups, but several bacterial taxa showed differential abundances. Notably, Methanobrevibacter and Intestinimonas butyriciproducens were enriched in ICD patients. Functional pathway analysis revealed differences in metabolic pathways, including enrichment of xenobiotic degradation and nicotinate metabolism in the ICD group. These findings suggest that specific gut microbial taxa and their associated metabolic functions may contribute to ICDs in PD, highlighting a potential non-dopaminergic mechanism and opening new avenues for microbiome-targeted intervention. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop