Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = neuromedin U

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3494 KB  
Article
Gastrin-Releasing Peptide Receptors Stimulate MAPK-Mediated Growth of Lung Cancer Cells by Transactivating HER4 in a Neuregulin-1, MAP Kinase-Dependent Manner Requiring Activation of the ROS-System
by Terry W. Moody, Irene Ramos-Alvarez, Tatiana Iordanskaia, Samuel A. Mantey and Robert T. Jensen
Biology 2025, 14(9), 1225; https://doi.org/10.3390/biology14091225 - 9 Sep 2025
Cited by 1 | Viewed by 1242
Abstract
The bombesin (Bn) receptor family [Gastrin-releasing peptide (GRPR/BB2R) and Neuromedin B receptors (NMBR/BB1R)] are G-protein coupled receptors (GPCR’s) with potent growth effects on normal tissues/numerous cancers, often by transactivating the ErbB receptor-tyrosine kinase (RTK) family. Whereas GRPR stimulation transactivates ErbB RTKs EGFR, HER2, [...] Read more.
The bombesin (Bn) receptor family [Gastrin-releasing peptide (GRPR/BB2R) and Neuromedin B receptors (NMBR/BB1R)] are G-protein coupled receptors (GPCR’s) with potent growth effects on normal tissues/numerous cancers, often by transactivating the ErbB receptor-tyrosine kinase (RTK) family. Whereas GRPR stimulation transactivates ErbB RTKs EGFR, HER2, and HER3 in non-small cell lung-cancer (NSCLC) cells, its effects on HER4 are unknown. This study was designed to address this question. Of 12 NSCLC’s studied, 75% had HER4 mRNA expression and Western-Blotting. NCI-H522 and NCI-H661-cells had high levels of GRPR, HER4, and the HER4-ligand neuregulin (NRG1). Adding GRP to NCI-H522/NCI-H661-cells activated HER4, shown by its increased phosphorylation (P-HER4). The GRPR antagonists PD176252/BW2258U89 inhibited this increase. In NCI-H661-cells, GRP stimulated the formation of HER4-homodimers and HER2-HER4-heterodimers. Adding GRP to these NSCLC-cells increased P-ERK/P-AKT, which was inhibited by siRNA-HER4, PD176252, and ibrutinib, as well as N-acetylcysteine and Tiron, which reduce reactive-oxygen species (ROS). GRP increased secretion of NRG1 from NSCLC-cells, and NRG1 increased P-HER4 and P-ERK, which were impaired by ibrutinib. GRP and NRG1 stimulated proliferation of NSCLC-cells, which was inhibited by PD176252, siRNA-HER4, or ibrutinib and which was mediated by MAPK, not AKT/PI3K, activation. These results show GRPR activation results in HER4 transactivation in a ROS-dependent manner, which stimulates NSCLC-growth through a MAPK-mediated mechanism. Full article
Show Figures

Graphical abstract

12 pages, 3251 KB  
Article
Neuromedin U Receptor NMUR3 Regulates Autophagy, Thereby Enhancing Thermal Tolerance in C. elegans
by Limei He, Jianqi Yang, Shufang Wang, Yicheng Ma and Chenggang Zou
Int. J. Mol. Sci. 2025, 26(17), 8471; https://doi.org/10.3390/ijms26178471 - 31 Aug 2025
Viewed by 771
Abstract
Neuromedin U receptors (NMURs) represent a class of evolutionarily conserved G-protein-coupled receptors that play a pivotal role in a variety of physiological processes. However, the role of NMURs in the heat shock response has yet to be elucidated. Using the nematode Caenorhabditis elegans [...] Read more.
Neuromedin U receptors (NMURs) represent a class of evolutionarily conserved G-protein-coupled receptors that play a pivotal role in a variety of physiological processes. However, the role of NMURs in the heat shock response has yet to be elucidated. Using the nematode Caenorhabditis elegans as a model system, we demonstrate herein that functional loss of NMUR-3 results in reduced survival upon heat shock. The regulation of thermal tolerance by NMUR-3 is dependent on AMPK. Furthermore, our data demonstrate that NMUR-3 activates autophagy via AMPK, thereby contributing to protection against heat shock. The results of this study suggest that NMUR-3 is crucial for thermal tolerance in C. elegans. Full article
(This article belongs to the Special Issue G Protein-Coupled Receptors)
Show Figures

Figure 1

17 pages, 3095 KB  
Article
Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study
by Fabrizia Noro, Annalisa Marotta, Simona Costanzo, Benedetta Izzi, Alessandro Gialluisi, Amalia De Curtis, Antonietta Pepe, Sarah Grossi, Augusto Di Castelnuovo, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Francesco Gianfagna and Licia Iacoviello
Biomedicines 2025, 13(8), 1906; https://doi.org/10.3390/biomedicines13081906 - 5 Aug 2025
Viewed by 751
Abstract
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify [...] Read more.
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify the role of these variants in cardio-metabolic risk. Methods: A total of 4028 subjects were randomly selected from the Moli-sani study cohort. NMU haplotypes were estimated using seven SNPs located in the gene body and in the promoter region; DNA methylation levels in the promoter region, previously associated with lipid-related variables in the same population, were also used. Results: Among the haplotypes inferred, the haplotype carrying the highest number of minor variants (frequency 16.6%), when compared with the most frequent haplotype, was positively associated with insulin levels, HOMA-IR, and diastolic blood pressure, and negatively with HDL-cholesterol. The multivariable analysis that considered methylation levels along with their interactions with SNPs showed that increased methylation levels in two close CpG sites were associated with higher levels of lipid-related variables. Conclusions: This study supports a role for NMU as a regulator of human metabolism. This finding suggests that NMU could be a potential target for preventive interventions against coronary and cerebrovascular diseases, and that NMU genetic and epigenetic variability may serve as a biomarker for cardio-metabolic risk. Full article
(This article belongs to the Special Issue Epigenetics and Metabolic Disorders)
Show Figures

Figure 1

13 pages, 1563 KB  
Article
Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection
by Ezra B. Mead, Miyoung Lee, Chasity E. Trammell and Alan G. Goodman
Insects 2024, 15(6), 446; https://doi.org/10.3390/insects15060446 - 12 Jun 2024
Cited by 3 | Viewed by 2457
Abstract
The arbovirus West Nile virus (WNV) is a danger to global health. Spread primarily by mosquitoes, WNV causes about 2000 cases per year in the United States. The natural mosquito immune response controls viral replication so that the host survives but can still [...] Read more.
The arbovirus West Nile virus (WNV) is a danger to global health. Spread primarily by mosquitoes, WNV causes about 2000 cases per year in the United States. The natural mosquito immune response controls viral replication so that the host survives but can still transmit the virus. Using the genetically malleable Drosophila melanogaster model, we previously dissected innate immune pathways used to control WNV infection. Specifically, we showed that insulin/IGF-1 signaling (IIS) activates a JAK/STAT-mediated immune response that reduces WNV. However, how factors that regulate IIS in insects control infection has not been identified. D. melanogaster Limostatin (Lst) encodes a peptide hormone that suppresses insulin secretion. Its mammalian ortholog, Neuromedin U (NMU), is a peptide that regulates the production and secretion of insulin from pancreatic beta cells. In this study, we used D. melanogaster and human cell culture models to investigate the roles of these insulin regulators in immune signaling. We found that D. melanogaster Lst mutants, which have elevated insulin-like peptide expression, are less susceptible to WNV infection. Increased levels of insulin-like peptides in these flies result in upregulated JAK/STAT activity, leading to protection from infection. Treatment of human cells with the insulin regulator NMU results in increased WNV replication. Further investigation of methods to target Lst in mosquitoes or NMU in mammals can improve vector control methods and may lead to improved therapeutics for human and animal infection. Full article
(This article belongs to the Collection Insect Immunity: Evolution, Genomics and Physiology)
Show Figures

Figure 1

17 pages, 1379 KB  
Review
Regulatory ILC2—Role of IL-10 Producing ILC2 in Asthma
by Nahal Emami Fard, Maria Xiao and Roma Sehmi
Cells 2023, 12(21), 2556; https://doi.org/10.3390/cells12212556 - 31 Oct 2023
Cited by 17 | Viewed by 6500
Abstract
Over the past two decades, a growing body of evidence observations have shown group two innate lymphoid cells (ILC2) to be critical drivers of Type 2 (T2) inflammatory responses associated with allergic inflammatory conditions such as asthma. ILC2 releases copious amounts of pro-inflammatory [...] Read more.
Over the past two decades, a growing body of evidence observations have shown group two innate lymphoid cells (ILC2) to be critical drivers of Type 2 (T2) inflammatory responses associated with allergic inflammatory conditions such as asthma. ILC2 releases copious amounts of pro-inflammatory T2 cytokines—interleukin (IL)-4, IL-5, IL-9, and IL-13. This review provides a comprehensive overview of the newly discovered regulatory subtype of ILC2 described in murine and human mucosal tissue and blood. These KLRG1+ILC2 have the capacity to produce the anti-inflammatory cytokine IL-10. Papers compiled in this review were based on queries of PubMed and Google Scholar for articles published from 2000 to 2023 using keywords “IL-10” and “ILC2”. Studies with topical relevance to IL-10 production by ILC2 were included. ILC2 responds to microenvironmental cues, including retinoic acid (RA), IL-2, IL-4, IL-10, and IL-33, as well as neuropeptide mediators such as neuromedin-U (NMU), prompting a shift towards IL-10 and away from T2 cytokine production. In contrast, TGF-β attenuates IL-10 production by ILC2. Immune regulation provided by IL-10+ILC2s holds potential significance for the management of T2 inflammatory conditions. The observation of context-specific cues that alter the phenotype of ILC warrants examining characteristics of ILC subsets to determine the extent of plasticity or whether the current classification of ILCs requires refinement. Full article
(This article belongs to the Special Issue Novel Insights into Molecular Mechanisms and Therapy of Asthma)
Show Figures

Figure 1

8 pages, 879 KB  
Communication
Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats
by Gabriella Born-Evers, Ashley L. Orr, Elizabeth Q. Hulsey, Maria E. Squire, Julia M. Hum, Lilian Plotkin, Catherine Sampson, Jonathan Hommel and Jonathan W. Lowery
Life 2023, 13(4), 918; https://doi.org/10.3390/life13040918 - 31 Mar 2023
Cited by 2 | Viewed by 2256
Abstract
Global loss of the neuropeptide Neuromedin-U (NMU) is associated with increased bone formation and high bone mass in male and female mice by twelve weeks of age, suggesting that NMU suppresses osteoblast differentiation and/or activity in vivo. NMU is highly expressed in numerous [...] Read more.
Global loss of the neuropeptide Neuromedin-U (NMU) is associated with increased bone formation and high bone mass in male and female mice by twelve weeks of age, suggesting that NMU suppresses osteoblast differentiation and/or activity in vivo. NMU is highly expressed in numerous anatomical locations including the skeleton and the hypothalamus. This raises the possibility that NMU exerts indirect effects on bone remodeling from an extra-skeletal location such as the brain. Thus, in the present study we used microinjection to deliver viruses carrying short-hairpin RNA designed to knockdown Nmu expression in the hypothalamus of 8-week-old male rats and evaluated the effects on bone mass in the peripheral skeleton. Quantitative RT-PCR confirmed approximately 92% knockdown of Nmu in the hypothalamus. However, after six weeks, micro computed tomography on tibiae from Nmu-knockdown rats demonstrated no significant change in trabecular or cortical bone mass as compared to controls. These findings are corroborated by histomorphometric analyses which indicate no differences in osteoblast or osteoclast parameters between controls and Nmu-knockdown samples. Collectively, these data suggest that hypothalamus-derived NMU does not regulate bone remodeling in the postnatal skeleton. Future studies are necessary to delineate the direct versus indirect effects of NMU on bone remodeling. Full article
(This article belongs to the Special Issue Metabolic Bone Diseases: From Classroom to Clinic)
Show Figures

Figure 1

11 pages, 1400 KB  
Article
Increased NMUR1 Expression in Mast Cells in the Synovial Membrane of Obese Osteoarthritis Patients
by Ayumi Tsukada, Ken Takata, Shotaro Takano, Yoshihisa Ohashi, Manabu Mukai, Jun Aikawa, Dai Iwase, Gen Inoue, Masashi Takaso and Kentaro Uchida
Int. J. Mol. Sci. 2022, 23(19), 11237; https://doi.org/10.3390/ijms231911237 - 23 Sep 2022
Cited by 9 | Viewed by 2493
Abstract
Obesity is a risk factor for knee osteoarthritis (KOA). Neuromedin U (NMU) and NMU receptors (NMUR1 and NMUR2) are associated with obesity-related disorders and found in mast cells (MCs), which are elevated in osteoarthritis. However, NMU/NMUR expression was not examined in the synovial [...] Read more.
Obesity is a risk factor for knee osteoarthritis (KOA). Neuromedin U (NMU) and NMU receptors (NMUR1 and NMUR2) are associated with obesity-related disorders and found in mast cells (MCs), which are elevated in osteoarthritis. However, NMU/NMUR expression was not examined in the synovial membrane (SM) or synovial MCs of obese osteoarthritis patients. We compared expression of NMU, NMUR1, NMUR2, and the mast cell (MC) marker, CPA3, in the SM of KOA patients categorized as normal weight (NW; BMI < 25 kg/m2, n = 79), overweight (OW; BMI ≥ 25 and <30 kg/m2, n = 87), and obese (OB; ≥30 kg/m2, n = 40). To study NMU/NMUR expression in MCs, we compared the MC-rich fraction (MC-RF), CD88(+) MC-RF, and CD88(−) MC-RF, extracted using magnetic isolation, with the MC-poor fraction (MC-PF). While NMU and NMUR2 expression were comparable, NMUR1 was significantly elevated in OW and OB compared to NW. Moreover, CPA3 levels were significantly greater in OB than NW. NMUR1 and CPA3 expression were significantly higher in both the CD88(+) and CD88(−) MC-RF than MC-PF. Therefore, NMUR1 expression was elevated in the SM of OB KOA patients, and its expression was found in MCs. Further investigation to analyze the NMU/NMUR1 pathway in MC may provide a link between obesity and KOA pathology. Full article
(This article belongs to the Special Issue Mast Cells in Human Health and Diseases)
Show Figures

Figure 1

14 pages, 2271 KB  
Communication
Effect of Escitalopram on the Number of DCX-Positive Cells and NMUR2 Receptor Expression in the Rat Hippocampus under the Condition of NPSR Receptor Blockade
by Aneta Piwowarczyk-Nowak, Artur Pałasz, Aleksandra Suszka-Świtek, Iwona Błaszczyk, Katarzyna Bogus, Barbara Łasut-Szyszka, Marek Krzystanek and John J. Worthington
Pharmaceuticals 2022, 15(5), 631; https://doi.org/10.3390/ph15050631 - 20 May 2022
Cited by 1 | Viewed by 3114
Abstract
Background: Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular interactions between the activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in [...] Read more.
Background: Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular interactions between the activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of adult neurogenesis and the expression of noncanonical stress-related neuropeptides such as neuromedin U (NMU). The present work therefore focused on immunoexpression of neuromedin U receptor 2 (NMUR2) and doublecortin (DCX) in the rat hippocampus after acute treatment with escitalopram and in combination with selective neuropeptide S receptor (NPSR) blockade. Methods: Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 10 mg/kg daily), escitalopram + SHA-68, a selective NPSR antagonist (at single dose 40 mg/kg), SHA-68 alone, and corresponding vehicle control. All animals were sacrificed under halothane anaesthesia. The whole hippocampi were quickly excised, fixed, and finally sliced for general qualitative immunohistochemical assessment of the NPSR and NMUR2 expression. The number of immature neurons was enumerated using immunofluorescent detection of doublecortin (DCX) expression within the subgranular zone (SGZ). Results: Acute escitalopram administration affects the number of DCX and NMUR2-expressing cells in the adult rat hippocampus. A decreased number of DCX-expressing neuroblasts after treatment with escitalopram was augmented by SHA-68 coadministration. Conclusions: Early pharmacological effects of escitalopram may be at least partly connected with local NPSR-related alterations of neuroblast maturation in the rat hippocampus. Escitalopram may affect neuropeptide and DCX-expression starting even from the first dose. Adult neurogenesis may be regulated via paracrine neuropeptide S and NMU-related signaling. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

10 pages, 844 KB  
Article
NMUR1 in the NMU-Mediated Regulation of Bone Remodeling
by Yu-Tin Hsiao, Kelli J. Manikowski, Samantha Snyder, Nicole Griffin, Ashley L. Orr, Elizabeth Q. Hulsey, Gabriella Born-Evers, Tara Zukosky, Maria E. Squire, Julia M. Hum, Corinne E. Metzger, Matthew R. Allen and Jonathan W. Lowery
Life 2021, 11(10), 1028; https://doi.org/10.3390/life11101028 - 29 Sep 2021
Cited by 3 | Viewed by 3442
Abstract
Neuromedin-U (NMU) is an evolutionarily conserved peptide that regulates varying physiologic effects including blood pressure, stress and allergic responses, metabolic and feeding behavior, pain perception, and neuroendocrine functions. Recently, several lines of investigation implicate NMU in regulating bone remodeling. For instance, global loss [...] Read more.
Neuromedin-U (NMU) is an evolutionarily conserved peptide that regulates varying physiologic effects including blood pressure, stress and allergic responses, metabolic and feeding behavior, pain perception, and neuroendocrine functions. Recently, several lines of investigation implicate NMU in regulating bone remodeling. For instance, global loss of NMU expression in male and female mice leads to high bone mass due to elevated bone formation rate with no alteration in bone resorption rate or observable defect in skeletal patterning. Additionally, NMU treatment regulates the activity of osteoblasts in vitro. The downstream pathway utilized by NMU to carry out these effects is unknown as NMU signals via two G-protein-coupled receptors (GPCRs), NMU receptor 1 (NMUR1), and NMU receptor 2 (NMUR2), and both are expressed in the postnatal skeleton. Here, we sought to address this open question and build a better understanding of the downstream pathway utilized by NMU. Our approach involved the knockdown of Nmur1 in MC3T3-E1 cells in vitro and a global knockout of Nmur1 in vivo. We detail specific cell signaling events (e.g., mTOR phosphorylation) that are deficient in the absence of NMUR1 expression yet trabecular bone volume in femora and tibiae of 12-week-old male Nmur1 knockout mice are unchanged, compared to controls. These results suggest that NMUR1 is required for NMU-dependent signaling in MC3T3-E1 cells, but it is not required for the NMU-mediated effects on bone remodeling in vivo. Future studies examining the role of NMUR2 are required to determine the downstream pathway utilized by NMU to regulate bone remodeling in vivo. Full article
(This article belongs to the Special Issue Metabolic Bone Diseases: From Classroom to Clinic)
Show Figures

Figure 1

14 pages, 11526 KB  
Review
Neuromedin U, a Key Molecule in Metabolic Disorders
by Hitoshi Teranishi and Reiko Hanada
Int. J. Mol. Sci. 2021, 22(8), 4238; https://doi.org/10.3390/ijms22084238 - 19 Apr 2021
Cited by 26 | Viewed by 5593
Abstract
Obesity is now a public health concern. The leading cause of obesity is an energy imbalance between ingested and expended calories. The mechanisms of feeding behavior and energy metabolism are regulated by a complex of various kinds of molecules, including anorexigenic and orexigenic [...] Read more.
Obesity is now a public health concern. The leading cause of obesity is an energy imbalance between ingested and expended calories. The mechanisms of feeding behavior and energy metabolism are regulated by a complex of various kinds of molecules, including anorexigenic and orexigenic neuropeptides. One of these neuropeptides, neuromedin U (NMU), was isolated in the 1980s, and its specific receptors, NMUR1 and NMUR2, were defined in 2000. A series of subsequent studies has revealed many of the physiological roles of the NMU system, including in feeding behavior, energy expenditure, stress responses, circadian rhythmicity, and inflammation. Particularly over the past decades, many reports have indicated that the NMU system plays an essential and direct role in regulating body weight, feeding behavior, energy metabolism, and insulin secretion, which are tightly linked to obesity pathophysiology. Furthermore, another ligand of NMU receptors, NMS (neuromedin S), was identified in 2005. NMS has physiological functions similar to those of NMU. This review summarizes recent observations of the NMU system in relation to the pathophysiology of obesity in both the central nervous systems and the peripheral tissues. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

3 pages, 174 KB  
Erratum
Erratum: Neuromedin U: A Small Peptide in the Big World of Cancer. Cancers 2019, 11, 1312
by Patrycja Przygodzka, Kamila Soboska, Ewelina Sochacka and Joanna Boncela
Cancers 2020, 12(1), 251; https://doi.org/10.3390/cancers12010251 - 20 Jan 2020
Cited by 1 | Viewed by 2610
Abstract
The authors wish to make the following corrections to this paper [...] Full article
(This article belongs to the Special Issue New Biomarkers in Cancers)
17 pages, 4337 KB  
Article
The YAP1–NMU Axis Is Associated with Pancreatic Cancer Progression and Poor Outcome: Identification of a Novel Diagnostic Biomarker and Therapeutic Target
by Wonbeak Yoo, Jaemin Lee, Eunsung Jun, Kyung Hee Noh, Sangmin Lee, Dana Jung, Kwang Hwa Jung, Ji-Su Kim, Yun-Yong Park, Song Cheol Kim and Seokho Kim
Cancers 2019, 11(10), 1477; https://doi.org/10.3390/cancers11101477 - 30 Sep 2019
Cited by 27 | Viewed by 4896
Abstract
Yes-associated protein (YAP)-1 is highly upregulated in pancreatic cancer and associated with tumor progression. However, little is known about the role of YAP1 and related genes in pancreatic cancer. Here, we identified target genes regulated by YAP1 and explored their role in pancreatic [...] Read more.
Yes-associated protein (YAP)-1 is highly upregulated in pancreatic cancer and associated with tumor progression. However, little is known about the role of YAP1 and related genes in pancreatic cancer. Here, we identified target genes regulated by YAP1 and explored their role in pancreatic cancer progression and the related clinical implications. Analysis of different pancreatic cancer databases showed that Neuromedin U (NMU) expression was positively correlated with YAP1 expression in the tumor group. The Cancer Genome Atlas data indicated that high YAP1 and NMU expression levels were associated with poor mean and overall survival. YAP1 overexpression induced NMU expression and transcription and promoted cell motility in vitro and tumor metastasis in vivo via upregulation of epithelial–mesenchymal transition (EMT), whereas specific inhibition of NMU in cells stably expressing YAP1 had the opposite effect in vitro and in vivo. To define this functional association, we identified a transcriptional enhanced associate domain (TEAD) binding site in the NMU promoter and demonstrated that YAP1–TEAD binding upstream of the NMU gene regulated its transcription. These results indicate that the identified positive correlation between YAP1 and NMU is a potential novel drug target and biomarker in metastatic pancreatic cancer. Full article
Show Figures

Figure 1

15 pages, 836 KB  
Review
Neuromedin U: A Small Peptide in the Big World of Cancer
by Patrycja Przygodzka, Kamila Soboska, Ewelina Sochacka and Joanna Boncela
Cancers 2019, 11(9), 1312; https://doi.org/10.3390/cancers11091312 - 5 Sep 2019
Cited by 27 | Viewed by 5908
Abstract
Neuromedin U (NMU), a neuropeptide isolated from porcine spinal cord and named because of its activity as a rat uterus smooth muscle contraction inducer, is emerging as a new player in the tumorigenesis and/or metastasis of many types of cancers. Expressed in a [...] Read more.
Neuromedin U (NMU), a neuropeptide isolated from porcine spinal cord and named because of its activity as a rat uterus smooth muscle contraction inducer, is emerging as a new player in the tumorigenesis and/or metastasis of many types of cancers. Expressed in a variety of tissues, NMU has been shown to possess many important activities in the central nervous system as well as on the periphery. Along with the main structural and functional features of NMU and its currently known receptors, we summarized a growing number of recently published data from different tissues and cells that associate NMU activity with cancer development and progression. We ask if, based on current reports, NMU can be included as a marker of these processes and/or considered as a therapeutic target. Full article
(This article belongs to the Special Issue New Biomarkers in Cancers)
Show Figures

Figure 1

12 pages, 3261 KB  
Article
Binge-Type Eating in Rats is Facilitated by Neuromedin U Receptor 2 in the Nucleus Accumbens and Ventral Tegmental Area
by Ashley E. Smith, James M. Kasper, Ara 13, Noelle C. Anastasio and Jonathan D. Hommel
Nutrients 2019, 11(2), 327; https://doi.org/10.3390/nu11020327 - 2 Feb 2019
Cited by 14 | Viewed by 4759
Abstract
Binge-eating disorder (BED) is the most common eating disorder, characterized by rapid, recurrent overconsumption of highly palatable food in a short time frame. BED shares an overlapping behavioral phenotype with obesity, which is also linked to the overconsumption of highly palatable foods. The [...] Read more.
Binge-eating disorder (BED) is the most common eating disorder, characterized by rapid, recurrent overconsumption of highly palatable food in a short time frame. BED shares an overlapping behavioral phenotype with obesity, which is also linked to the overconsumption of highly palatable foods. The reinforcing properties of highly palatable foods are mediated by the nucleus accumbens (NAc) and the ventral tegmental area (VTA), which have been implicated in the overconsumption behavior observed in BED and obesity. A potential regulator of binge-type eating behavior is the G protein-coupled receptor neuromedin U receptor 2 (NMUR2). Previous research demonstrated that NMUR2 knockdown potentiates binge-type consumption of high-fat food. We correlated binge-type consumption across a spectrum of fat and carbohydrate mixtures with synaptosomal NMUR2 protein expression in the NAc and VTA of rats. Synaptosomal NMUR2 protein in the NAc demonstrated a strong positive correlation with binge intake of a “lower”-fat (higher carbohydrate) mixture, whereas synaptosomal NMUR2 protein in the VTA demonstrated a strong negative correlation with binge intake of an “extreme” high-fat (0% carbohydrate) mixture. Taken together, these data suggest that NMUR2 may differentially regulate binge-type eating within the NAc and the VTA. Full article
(This article belongs to the Special Issue Eating Disorders and Obesity: The Challenge for Our Times)
Show Figures

Figure 1

Back to TopTop