Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = neural electrode arrays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4878 KB  
Article
Mechanical Behavior Analysis of Neural Electrode Arrays Implantation in Brain Tissue
by Xinyue Tan, Bei Tong, Kunyang Zhang, Changmao Ni, Dengfei Yang, Zhaolong Gao, Yuzhao Huang, Na Yao and Li Huang
Micromachines 2025, 16(9), 1010; https://doi.org/10.3390/mi16091010 - 31 Aug 2025
Viewed by 223
Abstract
Understanding the mechanical behavior of implanted neural electrode arrays is crucial for BCI development, which is the foundation for ensuring surgical safety, implantation precision, and evaluating electrode efficacy and long-term stability. Therefore, a reliable FE models are effective in reducing animal experiments and [...] Read more.
Understanding the mechanical behavior of implanted neural electrode arrays is crucial for BCI development, which is the foundation for ensuring surgical safety, implantation precision, and evaluating electrode efficacy and long-term stability. Therefore, a reliable FE models are effective in reducing animal experiments and are essential for a deeper understanding of the mechanics of the implantation process. This study established a novel finite element model to simulate neural electrode implantation into brain tissue, specifically characterizing the nonlinear mechanical responses of brain tissue. Synchronized electrode implantation experiments were conducted using ex vivo porcine brain tissue. The results demonstrate that the model accurately reproduces the dynamics of the electrode implantation process. Quantitative analysis reveals that the implantation force exhibits a positive correlation with insertion depth, the average implantation force per electrode within a multi-electrode array decreases with increasing electrode number, and elevation in electrode size, shank spacing, and insertion speed each contribute to a systematic increase in insertion force. This study provides a reliable simulation tool and in-depth mechanistic analysis for predicting the implantation forces of high-density neural electrode arrays and offer theoretical guidance for optimizing BCI implantation device design. Full article
(This article belongs to the Special Issue Current Trends in Microneedles: Design, Fabrication and Applications)
Show Figures

Figure 1

16 pages, 1134 KB  
Article
Neural Correlates of Loudness Coding in Two Types of Cochlear Implants—A Model Study
by Ilja M. Venema, Savine S. M. Martens, Randy K. Kalkman, Jeroen J. Briaire and Johan H. M. Frijns
Technologies 2025, 13(8), 331; https://doi.org/10.3390/technologies13080331 - 1 Aug 2025
Viewed by 752
Abstract
Many speech coding strategies have been developed over the years, but comparing them has been convoluted due to the difficulty in disentangling brand-specific and patient-specific factors from strategy-specific factors that contribute to speech understanding. Here, we present a comparison with a ‘virtual’ patient, [...] Read more.
Many speech coding strategies have been developed over the years, but comparing them has been convoluted due to the difficulty in disentangling brand-specific and patient-specific factors from strategy-specific factors that contribute to speech understanding. Here, we present a comparison with a ‘virtual’ patient, by comparing two strategies from two different manufacturers, Advanced Combination Encoder (ACE) versus HiResolution Fidelity 120 (F120), running on two different implant systems in a computational model with the same anatomy and neural properties. We fitted both strategies to an expected T-level and C- or M-level based on the spike rate for each electrode contact’s allocated frequency (center electrode frequency) of the respective array. This paper highlights neural and electrical differences due to brand-specific characteristics such as pulse rate/channel, recruitment of adjacent electrodes, and presence of subthreshold pulses or interphase gaps. These differences lead to considerably different recruitment patterns of nerve fibers, while achieving the same total spike rates, i.e., loudness percepts. Also, loudness growth curves differ significantly between brands. The model is able to demonstrate considerable electrical and neural differences in the way loudness growth is achieved in CIs from different manufacturers. Full article
(This article belongs to the Special Issue The Challenges and Prospects in Cochlear Implantation)
Show Figures

Figure 1

21 pages, 7973 KB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 529
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

19 pages, 2696 KB  
Article
Cell Type-Specific Effects of Fusarium Mycotoxins on Primary Neurons and Astroglial Cells
by Viktória Szentgyörgyi, Brigitta Tagscherer-Micska, Anikó Rátkai, Katalin Schlett, Norbert Bencsik and Krisztián Tárnok
Toxins 2025, 17(8), 368; https://doi.org/10.3390/toxins17080368 - 25 Jul 2025
Viewed by 578
Abstract
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain [...] Read more.
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain barrier in many species, their effect on neuronal function remains unclear. We investigated the cell viability effects of these toxins on specified neural cell types, including mouse primary neuronal, astroglial, and mixed-cell cultures 24 or 48 h after mycotoxin administration. DON decreased cell viability in a dose-dependent manner, independent of the culture type. Fumonisin B1 was toxic in pure neuronal cultures only at high doses, but toxicity was attenuated in mixed and pure astroglial cultures. ZEA had significant effects on all culture types in 10 nM by increasing cell viability and network activity, as revealed by multi-electrode array measurements. Since ZEA is a mycoestrogen, we analyzed the effects of ZEA on the expression of estrogen receptor isotypes ERα and ERβ and the mitochondrial voltage-dependent anion channel via qRT-PCR. In neuronal and mixed cultures, ZEA administration decreased ERα expression, while in astroglial cultures, it induced the opposite effect. Thus, our results emphasize that Fusarium mycotoxins act in a cell-specific manner. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

18 pages, 3090 KB  
Article
Microelectrode Implantation in Human Insula: Technical Challenges and Recording Insights
by Daphné Citherlet, Sami Heymann, Maya Aderka, Katarzyna Jurewicz, B. Suresh Krishna, Manon Robert, Alain Bouthillier, Olivier Boucher and Dang Khoa Nguyen
Brain Sci. 2025, 15(6), 550; https://doi.org/10.3390/brainsci15060550 - 23 May 2025
Viewed by 726
Abstract
Background/Objectives: Intracranial macroelectrode implantation is a pivotal clinical tool in the evaluation of drug-resistant epilepsy, allowing further insights into the localization of the epileptogenic zone and the delineation of eloquent cortical regions through cortical stimulation. Additionally, it provides an avenue to study [...] Read more.
Background/Objectives: Intracranial macroelectrode implantation is a pivotal clinical tool in the evaluation of drug-resistant epilepsy, allowing further insights into the localization of the epileptogenic zone and the delineation of eloquent cortical regions through cortical stimulation. Additionally, it provides an avenue to study brain functions by analyzing cerebral responses during neuropsychological paradigms. By combining macroelectrodes with microelectrodes, which allow recording the activity of individual neurons or smaller neural clusters, recordings could provide deeper insights into neuronal microcircuits and the brain’s transitions in epilepsy and contribute to a better understanding of neuropsychological functions. In this study, one or two hybrid macro-micro electrodes were implanted in the anterior-inferior insular region in patients with refractory epilepsy. We report our experience and share some preliminary results; we also provide some recommendations regarding the implantation procedure for hybrid electrodes in the insular cortex. Methods: Stereoelectroencephalography was performed in 13 patients, with one or two hybrid macro-microelectrodes positioned in the insular region in each patient. Research neuropsychological paradigms could not be implemented in two patients for clinical reasons. In total, 23 hybrid macro-microelectrodes with eight microcontacts each were implanted, of which 20 were recorded. Spiking activity was detected and assessed using WaveClus3. Results: No spiking neural activity was detected in the microcontacts of the first seven patients. After iterative refinement during this process, successful recordings were obtained from 13 microcontacts in the anterior-inferior insula in the last four patients (13/64, 20.3%). Hybrid electrode implantation was uneventful with no complications. Obstacles included the absence of spiking activity signals, unsuccessful microwire dispersion, and the interference of environmental electrical noise in recordings. Conclusions: Human microelectrode recording presents a complex array of challenges; however, it holds the potential to facilitate a more comprehensive understanding of individual neuronal attributes and their specific stimulus responses. Full article
(This article belongs to the Special Issue Understanding the Role and Functions of the Insula in the Brain)
Show Figures

Figure 1

20 pages, 8423 KB  
Article
Design and Implementation of a Low-Power Biopotential Amplifier in 28 nm CMOS Technology with a Compact Die-Area of 2500 μm2 and an Ultra-High Input Impedance
by Esmaeil Ranjbar Koleibi, William Lemaire, Konin Koua, Maher Benhouria, Reza Bostani, Mahziar Serri Mazandarani, Luis-Philip Gauthier, Marwan Besrour, Jérémy Ménard, Mahdi Majdoub, Benoit Gosselin, Sébastien Roy and Réjean Fontaine
Sensors 2025, 25(7), 2320; https://doi.org/10.3390/s25072320 - 5 Apr 2025
Viewed by 1306
Abstract
Neural signal recording demands compact, low-power, high-performance amplifiers, to enable large-scale, multi-channel electrode arrays. This work presents a bioamplifier optimized for action potential detection, designed using TSMC 28 nm HPC CMOS technology. The amplifier integrates an active low-pass filter, eliminating bulky DC-blocking capacitors [...] Read more.
Neural signal recording demands compact, low-power, high-performance amplifiers, to enable large-scale, multi-channel electrode arrays. This work presents a bioamplifier optimized for action potential detection, designed using TSMC 28 nm HPC CMOS technology. The amplifier integrates an active low-pass filter, eliminating bulky DC-blocking capacitors and significantly reducing the size and power consumption. It achieved a high input impedance of 105.5 GΩ, ensuring minimal signal attenuation. Simulation and measurement results demonstrated a mid-band gain of 58 dB, a −3 dB bandwidth of 7 kHz, and an input-referred noise of 11.1 μVrms, corresponding to a noise efficiency factor (NEF) of 8.4. The design occupies a compact area of 2500 μm2, making it smaller than previous implementations for similar applications. Additionally, it operates with an ultra-low power consumption of 3.4 μW from a 1.2 V supply, yielding a power efficiency factor (PEF) of 85 and an area efficiency factor of 0.21. These features make the proposed amplifier well suited for multi-site in-skull neural recording systems, addressing critical constraints regarding miniaturization and power efficiency. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

15 pages, 12854 KB  
Article
Non-Invasive and Long-Term Electrophysiological Monitoring Sensors for Cerebral Organoids Differentiation
by Yan Jin, Yixun Guo, Qiushi Li, Lei Wu, Yuqing Ge and Jianlong Zhao
Biosensors 2025, 15(3), 173; https://doi.org/10.3390/bios15030173 - 7 Mar 2025
Cited by 1 | Viewed by 1734
Abstract
Cerebral organoids derived from human induced pluripotent stem cells (iPSCs) have emerged as powerful in vitro models for studying human brain development and neurological disorders. Understanding the electrophysiological properties of these organoids is crucial for evaluating their functional maturity and potential applications. However, [...] Read more.
Cerebral organoids derived from human induced pluripotent stem cells (iPSCs) have emerged as powerful in vitro models for studying human brain development and neurological disorders. Understanding the electrophysiological properties of these organoids is crucial for evaluating their functional maturity and potential applications. However, the differentiation and maturation of stem cells into cerebral organoids is a long, slow, and error-prone process. Hence, it is vitally crucial to establish a non-invasive method of monitoring the process over a long period of time. In this study, a planar microelectrode array (MEA) with platinum (Pt) black electroplating is designed to monitor the electrophysiological activities and pharmacological responses of cerebral organoids using an external neural signal acquisition system interfaced with the MEA. The planar MEA with Pt black electroplating has a significantly reduced electrode impedance and exhibits a robust capability for the real-time detection of spontaneous neural activities, including extracellular spikes and local field potentials. Distinct electrophysiological signal strengths in cerebral organoids were observed at early and late developmental stages. Further pharmacological stimulations showed that 30 mM KCl would induce a marked increase in spike rate, indicating an enhancement of neuronal depolarization and an elevation of network excitability. This robust response to KCl stimulation in mature networks serves as a reliable indicator of neural maturity in cerebral organoids and underscores the platform’s potential for drug screening applications. This work highlights the integration of MEA technology with cerebral organoids, offering a powerful platform for real-time electrophysiological monitoring. It provides new insights into the functional maturation of neural networks and establishes a reliable system for drug screening and disease modeling, facilitating future research into human brain physiology and pathology. Full article
(This article belongs to the Special Issue Microelectrode Array for Biomedical Applications)
Show Figures

Figure 1

37 pages, 7797 KB  
Review
Recent Progress in Flexible Microelectrode Arrays for Combined Electrophysiological and Electrochemical Sensing
by Umisha Siwakoti, Steven A. Jones, Deepak Kumbhare, Xinyan Tracy Cui and Elisa Castagnola
Biosensors 2025, 15(2), 100; https://doi.org/10.3390/bios15020100 - 10 Feb 2025
Cited by 3 | Viewed by 3974
Abstract
Understanding brain function requires advanced neural probes to monitor electrical and chemical signaling across multiple timescales and brain regions. Microelectrode arrays (MEAs) are widely used to record neurophysiological activity across various depths and brain regions, providing single-unit resolution for extended periods. Recent advancements [...] Read more.
Understanding brain function requires advanced neural probes to monitor electrical and chemical signaling across multiple timescales and brain regions. Microelectrode arrays (MEAs) are widely used to record neurophysiological activity across various depths and brain regions, providing single-unit resolution for extended periods. Recent advancements in flexible MEAs, built on micrometer-thick polymer substrates, have improved integration with brain tissue by mimicking the brain’s soft nature, reducing mechanical trauma and inflammation. These flexible, subcellular-scale MEAs can record stable neural signals for months, making them ideal for long-term studies. In addition to electrical recording, MEAs have been functionalized for electrochemical neurotransmitter detection. Electroactive neurotransmitters, such as dopamine, serotonin, and adenosine, can be directly measured via electrochemical methods, particularly on carbon-based surfaces. For non-electroactive neurotransmitters like acetylcholine, glutamate, and γ-aminobutyric acid, alternative strategies, such as enzyme immobilization and aptamer-based recognition, are employed to generate electrochemical signals. This review highlights recent developments in flexible MEA fabrication and functionalization to achieve both electrochemical and electrophysiological recordings, minimizing sensor fowling and brain damage when implanted long-term. It covers multi-time scale neurotransmitter detection, development of conducting polymer and nanomaterial composite coatings to enhance sensitivity, incorporation of enzyme and aptamer-based recognition methods, and the integration of carbon electrodes on flexible MEAs. Finally, it summarizes strategies to acquire electrochemical and electrophysiological measurements from the same device. Full article
Show Figures

Figure 1

17 pages, 2661 KB  
Article
Spatially Localized Visual Perception Estimation by Means of Prosthetic Vision Simulation
by Diego Luján Villarreal and Wolfgang Krautschneider
J. Imaging 2024, 10(11), 294; https://doi.org/10.3390/jimaging10110294 - 18 Nov 2024
Viewed by 1696
Abstract
Retinal prosthetic devices aim to repair some vision in visually impaired patients by electrically stimulating neural cells in the visual system. Although there have been several notable advancements in the creation of electrically stimulated small dot-like perceptions, a deeper comprehension of the physical [...] Read more.
Retinal prosthetic devices aim to repair some vision in visually impaired patients by electrically stimulating neural cells in the visual system. Although there have been several notable advancements in the creation of electrically stimulated small dot-like perceptions, a deeper comprehension of the physical properties of phosphenes is still necessary. This study analyzes the influence of two independent electrode array topologies to achieve single-localized stimulation while the retina is electrically stimulated: a two-dimensional (2D) hexagon-shaped array reported in clinical studies and a patented three-dimensional (3D) linear electrode carrier. For both, cell stimulation is verified in COMSOL Multiphysics by developing a lifelike 3D computational model that includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. The evoked percepts previously described in clinical studies using the 2D array are strongly associated with our simulation-based findings, allowing for the development of analytical models of the evoked percepts. Moreover, our findings identify differences between visual sensations induced by the arrays. The 2D array showed drawbacks during stimulation; similarly, the state-of-the-art 2D visual prostheses provide only dot-like visual sensations in close proximity to the electrode. The 3D design could offer a technique for improving cell selectivity because it requires low-intensity threshold activation which results in volumes of stimulation similar to the volume surrounded by a solitary RGC. Our research establishes a proof-of-concept technique for determining the utility of the 3D electrode array for selectively activating individual RGCs at the highest density via small-sized electrodes while maintaining electrochemical safety. Full article
Show Figures

Figure 1

14 pages, 3701 KB  
Article
Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties
by Alvaro Arrieta Almario, Oriana Palma Calabokis and Eisa Arrieta Barrera
Foods 2024, 13(22), 3586; https://doi.org/10.3390/foods13223586 - 10 Nov 2024
Cited by 5 | Viewed by 1909
Abstract
Due to the lucrative coffee market, this product is often subject to adulteration, as inferior or non-coffee materials or varieties are mixed in, negatively affecting its quality. Traditional sensory evaluations by expert tasters and chemical analysis methods, although effective, are time-consuming, costly, and [...] Read more.
Due to the lucrative coffee market, this product is often subject to adulteration, as inferior or non-coffee materials or varieties are mixed in, negatively affecting its quality. Traditional sensory evaluations by expert tasters and chemical analysis methods, although effective, are time-consuming, costly, and require skilled personnel. The aim of this work was to evaluate the capacity of a smart electronic tongue (e-tongue) based on a polypyrrole sensor array as a tool for the rapid analysis of coffees elaborated from beans of different varieties. The smart e-tongue device was developed with a polypyrrole-based voltammetric sensor array and portable multi-potentiostat operated via smartphone. The sensor array comprised seven electrodes, each doped with distinct counterions to enhance cross-selectivity. The smart e-tongue was tested on five Arabica coffee varieties (Typica, Bourbon, Maragogype, Tabi, and Caturra). The resulting voltammetric signals were analyzed using principal component analysis assisted by neural networks (PCNN) and cluster analysis (CA), enabling clear discrimination among the coffee samples. The results demonstrate that the polypyrrole sensors can generate distinct electrochemical patterns, serving as “fingerprints” for each coffee variety. This study highlights the potential of polypyrrole-based smart e-tongues as a rapid, cost-effective, and portable alternative for coffee quality assessment and adulteration detection, with broader applications in the food and beverage industry. Full article
Show Figures

Figure 1

37 pages, 11615 KB  
Article
Optimizing the Die-Sink EDM Machinability of AISI 316L Using Ti-6Al-4V-SiCp Electrodes: A Computational Approach
by Adithya Hegde, Raviraj Shetty, Rajesh Nayak, Sawan Shetty and Uday Kumar Shetty SV
J. Manuf. Mater. Process. 2024, 8(5), 202; https://doi.org/10.3390/jmmp8050202 - 18 Sep 2024
Cited by 2 | Viewed by 2374
Abstract
Die-sink electric discharge machining (EDM) is essential for shaping complex geometries in hard-to-machine materials. This study aimed to optimize key input parameters, such as the discharge current, gap voltage, pulse-on time, and pulse-off time, to enhance the EDM performance by maximizing the material [...] Read more.
Die-sink electric discharge machining (EDM) is essential for shaping complex geometries in hard-to-machine materials. This study aimed to optimize key input parameters, such as the discharge current, gap voltage, pulse-on time, and pulse-off time, to enhance the EDM performance by maximizing the material removal rate while minimizing the surface roughness, residual stress, microhardness, and recast layer thickness. AISI 316L stainless steel was chosen due to its industrial relevance and machining challenges, while a Ti-6Al-4V-SiCp composite electrode was selected for its thermal resistance and low wear. Using Taguchi’s L27 orthogonal array, this study minimized the trial numbers, with analysis of the variance-quantifying parameter contributions. The results showed a maximum material removal rate of 0.405 g/min and minimal values for the surface roughness (1.95 µm), residual stress (1063.74 MPa), microhardness (244.8 Hv), and recast layer thickness (0.47 µm). A second-order model, developed through a response surface methodology, and a feed-forward artificial neural network enhanced the prediction accuracy. Multi-response optimization using desirability function analysis yielded an optimal set of conditions: discharge current of 5.78 amperes, gap voltage of 90 volts, pulse-on time of 100 microseconds, and pulse-off time of 15 microseconds. This setup achieved a material removal rate of 0.13 g/min, with reduced surface roughness (2.46 µm), residual stress (1518.46 MPa), microhardness (259.01 Hv), and recast layer thickness (0.87 µm). Scanning electron microscopy further analyzed the surface morphology and recast layer characteristics, providing insights into the material behavior under EDM. These findings enhance the understanding and optimization of the EDM processes for challenging materials, offering valuable guidance for future research and industrial use. Full article
Show Figures

Figure 1

17 pages, 14103 KB  
Article
A Modular 512-Channel Neural Signal Acquisition ASIC for High-Density 4096 Channel Electrophysiology
by Aikaterini Papadopoulou, John Hermiz, Carl Grace and Peter Denes
Sensors 2024, 24(12), 3986; https://doi.org/10.3390/s24123986 - 19 Jun 2024
Cited by 1 | Viewed by 1912
Abstract
The complexity of information processing in the brain requires the development of technologies that can provide spatial and temporal resolution by means of dense electrode arrays paired with high-channel-count signal acquisition electronics. In this work, we present an ultra-low noise modular 512-channel neural [...] Read more.
The complexity of information processing in the brain requires the development of technologies that can provide spatial and temporal resolution by means of dense electrode arrays paired with high-channel-count signal acquisition electronics. In this work, we present an ultra-low noise modular 512-channel neural recording circuit that is scalable to up to 4096 simultaneously recording channels. The neural readout application-specific integrated circuit (ASIC) uses a dense 8.2 mm × 6.8 mm 2D layout to enable high-channel count, creating an ultra-light 350 mg flexible module. The module can be deployed on headstages for small animals like rodents and songbirds, and it can be integrated with a variety of electrode arrays. The chip was fabricated in a TSMC 0.18 µm 1.8 V CMOS technology and dissipates a total of 125 mW. Each DC-coupled channel features a gain and bandwidth programmable analog front-end along with 14 b analog-to-digital conversion at speeds up to 30 kS/s. Additionally, each front-end includes programmable electrode plating and electrode impedance measurement capability. We present both standalone and in vivo measurements results, demonstrating the readout of spikes and field potentials that are modulated by a sensory input. Full article
(This article belongs to the Special Issue Integrated Circuit and System Design for Health Monitoring)
Show Figures

Figure 1

13 pages, 11282 KB  
Article
Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording
by Tatsuya Murakami, Naoki Yada and Shotaro Yoshida
Micromachines 2024, 15(5), 650; https://doi.org/10.3390/mi15050650 - 14 May 2024
Cited by 2 | Viewed by 2426
Abstract
In this paper, we report a low-cost printing process of carbon nanotube (CNT)-based, all-organic microelectrode arrays (MEAs) suitable for in vitro neural stimulation and recording. Conventional MEAs have been mainly composed of expensive metals and manufactured through high-cost and complex lithographic processes, which [...] Read more.
In this paper, we report a low-cost printing process of carbon nanotube (CNT)-based, all-organic microelectrode arrays (MEAs) suitable for in vitro neural stimulation and recording. Conventional MEAs have been mainly composed of expensive metals and manufactured through high-cost and complex lithographic processes, which have limited their accessibility for neuroscience experiments and their application in various studies. Here, we demonstrate a printing-based fabrication method for microelectrodes using organic CNT/paraffin ink, coupled with the deposition of an insulating layer featuring single-cell-sized sensing apertures. The simple microfabrication processes utilizing the economic and readily available ink offer potential for cost reduction and improved accessibility of MEAs. Biocompatibility of the fabricated microelectrode was suggested through a live/dead assay of cultured neural cells, and its large electric double layer capacitance was revealed by cyclic voltammetry that was crucial for preventing cytotoxic electrolysis during electric neural stimulation. Furthermore, the electrode exhibited sufficiently low electric impedance of 2.49 Ω·cm2 for high signal-to-noise ratio neural recording, and successfully captured model electric waves in physiological saline solution. These results suggest the easily producible and low-cost printed all-organic microelectrodes are available for neural stimulation and recording, and we believe that they can expand the application of MEA in various neuroscience research. Full article
Show Figures

Figure 1

20 pages, 6459 KB  
Article
Porcine Model of Cerebral Ischemic Stroke Utilizing Intracortical Recordings for the Continuous Monitoring of the Ischemic Area
by Thomas Gomes Nørgaard dos Santos Nielsen, Numa Dancause, Taha Al Muhammadee Janjua, Felipe Rettore Andreis, Benedict Kjærgaard and Winnie Jensen
Sensors 2024, 24(10), 2967; https://doi.org/10.3390/s24102967 - 7 May 2024
Cited by 1 | Viewed by 1840
Abstract
Purpose: Our aim was to use intracortical recording to enable the tracking of ischemic infarct development over the first few critical hours of ischemia with a high time resolution in pigs. We employed electrophysiological measurements to obtain quick feedback on neural function, which [...] Read more.
Purpose: Our aim was to use intracortical recording to enable the tracking of ischemic infarct development over the first few critical hours of ischemia with a high time resolution in pigs. We employed electrophysiological measurements to obtain quick feedback on neural function, which might be useful for screening, e.g., for the optimal dosage and timing of agents prior to further pre-clinical evaluation. Methods: Micro-electrode arrays containing 16 (animal 1) or 32 electrodes (animal 2–7) were implanted in the primary somatosensory cortex of seven female pigs, and continuous electrical stimulation was applied at 0.2 Hz to a cuff electrode implanted on the ulnar nerve. Ischemic stroke was induced after 30 min of baseline recording by injection of endothelin-1 onto the cortex adjacent to the micro-electrode array. Evoked responses were extracted over a moving window of 180 s and averaged across channels as a measure of cortical excitability. Results: Across the animals, the cortical excitability was significantly reduced in all seven 30 min segments following endothelin-1 injection, as compared to the 30 min preceding this intervention. This difference was not explained by changes in the anesthesia, ventilation, end-tidal CO2, mean blood pressure, heart rate, blood oxygenation, or core temperature, which all remained stable throughout the experiment. Conclusions: The animal model may assist in maturing neuroprotective approaches by testing them in an accessible model of resemblance to human neural and cardiovascular physiology and body size. This would constitute an intermediate step for translating positive results from rodent studies into human application, by more efficiently enabling effective optimization prior to chronic pre-clinical studies in large animals. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2024)
Show Figures

Graphical abstract

3 pages, 751 KB  
Abstract
A Low-Cost Testbed for Neural Microelectrodes
by Cat-Vu H. Bui, Neethu Maliakal, Hasan Ulusan, Andreas Hierlemann and Fernando Cardes
Proceedings 2024, 97(1), 62; https://doi.org/10.3390/proceedings2024097062 - 21 Mar 2024
Cited by 1 | Viewed by 946
Abstract
The performances of microelectrode arrays for neural interfaces strongly depend on electrode design. Due to a lack of simulation tools, electrode engineers often have to refine new designs empirically. This process requires setups of electrical and electrophysiological hardware that are not specific to [...] Read more.
The performances of microelectrode arrays for neural interfaces strongly depend on electrode design. Due to a lack of simulation tools, electrode engineers often have to refine new designs empirically. This process requires setups of electrical and electrophysiological hardware that are not specific to electrode testing and unnecessarily costly. We propose a low-cost testbed for specifically targeting metrics relevant to electrode performance and functions, which relies on an off-the-shelf measurement tool and only on components necessary for such testing. We experimentally demonstrate the platform by characterizing microelectrodes by means of impedance spectroscopy and recording the extracellular action potentials from in vitro primary rat neurons. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

Back to TopTop