Mechanical Behavior Analysis of Neural Electrode Arrays Implantation in Brain Tissue
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Neural Electrode
2.2. Experimental Equipment and Method
2.3. Simulation
3. Results
3.1. Implantation Experiment Results
3.2. Simulation Results of Different Shank Numbers
3.3. Simulation Results of Different Dimensions
3.4. Simulation Results of Different Insertion Speeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BCI | Brain-Computer Interface |
MEMS | Micro-Electro-Mechanical Systems |
PVD | Physical Vapor Deposition |
PECVD | Plasma-Enhanced Chemical Vapor Deposition |
FEA | Finite Element Analysis |
CEL | Coupled Eulerian-Lagrangian |
References
- Rouzitalab, A.; Boulay, C.; Park, J.; Saachs, A. Intracortical brain-computer interfaces in primates: A review and outlook. Biomed. Eng. Lett. 2023, 13, 375–390. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Nie, C.; Jiang, C.T.; Cao, S.H.; Tian, K.X.; Yu, S.; Gu, J.W. Modulating Brain Activity with Invasive Brain-Computer Interface: A Narrative Review. Brain Sci. 2023, 13, 134. [Google Scholar] [CrossRef]
- Kook, G.; Lee, S.; Lee, H.; Cho, I.-J.; Lee, H. Neural Probes for Chronic Applications. Micromachines 2016, 7, 179. [Google Scholar] [CrossRef]
- Kim, S.; Bhandari, R.; Klein, M.; Negi, S.; Rieth, L.; Tathireddy, P.; Toepper, M.; Oppermann, H.; Solzbacher, F. Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdevices 2009, 11, 453–466. [Google Scholar] [CrossRef]
- Wise, K. Silicon microsystems for neuroscience and neural prostheses. IEEE Eng. Med. Biol. Mag. 2005, 24, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, A.; Castagnola, V.; Descamps, E.; Dahan, L.; Blatché, M.C.; Dinis, T.M.; Leclerc, E.; Egles, C.; Bergaud, C. Silk and PEG as means to stiffen a parylene probe for insertion in the brain: Toward a double time-scale tool for local drug delivery. J. Micromech. Microeng. 2015, 25, 125003. [Google Scholar] [CrossRef]
- Bjornsson, C.S.; Oh, S.J.; Al-Kofahi, Y.A.; Lim, Y.J.; Smith, K.L.; Turner, J.N.; De, S.; Roysam, B.; Shain, W.; Kim, S.J. Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Eng. 2006, 3, 196. [Google Scholar] [CrossRef]
- Casanova, F.; Carney, P.; Sarntinoranont, M. In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain. J. Neurosci. Methods 2014, 237, 79–89. [Google Scholar] [CrossRef]
- Fekete, Z.; Németh, A.; Márton, G.; Ulbert, I.; Pongrácz, A. Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion. J. Mater. Sci. Mater. Med. 2015, 26, 5401. [Google Scholar] [CrossRef]
- Geramifard, N.; Dousti, B.; Nguyen, C.; Abbott, J.; Cogan, S.; Varner, V. Insertion mechanics of amorphous SiC ultra-micro scale neural probes. J. Neural Eng. 2022, 19, 026033. [Google Scholar] [CrossRef]
- Sharafkhani, N.; Long, J.M.; Adams, S.D.; Kouzani, A.Z. A binary stiffness compliant neural microprobe. Sens. Actuators A Phys. 2023, 363, 114759. [Google Scholar] [CrossRef]
- Lee, H.; Bellamkonda, R.V.; Sun, W.; Levenston, M.E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2005, 2, 81. [Google Scholar] [CrossRef]
- Al Abed, A.; Amatoury, J.; Khraiche, M. Finite Element Modeling of Magnitude and Location of Brain Micromotion Induced Strain for Intracortical Implants. Front. Neurosci. 2022, 15, 727715. [Google Scholar] [CrossRef]
- Mahajan, S.; Hermann, J.K.; Bedell, H.W.; Sharkins, J.A.; Chen, L.; Chen, K.; Meade, S.M.; Smith, C.S.; Rayyan, J.; Feng, H.; et al. Toward Standardization of Electrophysiology and Computational Tissue Strain in Rodent Intracortical Microelectrode Models. Front. Bioeng. Biotechnol. 2020, 8, 416. [Google Scholar] [CrossRef]
- Nguyen, J.; Park, D.; Skousen, J.; Hess, A.; Tyler, D.; Rowan, S.; Weder, C.; Capadona, J. Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J. Neural Eng. 2014, 11, 056014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ma, Y.; Li, Z. Numerical simulation of neural probe geometry parameters under brain micromotion. Int. J. Appl. Electromagn. Mech. 2016, 52, 471–477. [Google Scholar] [CrossRef]
- Zhu, R.; Huang, G.L.; Yoon, H.; Smith, C.; Varadan, V. Biomechanical Strain Analysis at the Interface of Brain and Nanowire Electrodes on a Neural Probe. J. Nanotechnol. Eng. Med. 2011, 2, 031001–031006. [Google Scholar] [CrossRef]
- Singh, S.; Lo, M.-c.; Damodaran, V.; Kaplan, H.; Kohn, J.; Zahn, J.; Shreiber, D. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design. Sensors 2016, 16, 330. [Google Scholar] [CrossRef]
- Li, G.; Jang, D.; Shin, Y.; Qiang, Y.; Qi, Y.; Wang, S.; Fang, H. Cracking modes and force dynamics in the insertion of neural probes into hydrogel brain phantom. J. Neural Eng. 2024, 21, 046009. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, K.; Coats, B. Coupled Eulerian–Lagrangian model prediction of neural tissue strain during microelectrode insertion. J. Neural Eng. 2024, 21, 046055. [Google Scholar] [CrossRef]
- Neto, J.P.; Costa, A.; Vaz Pinto, J.; Marques-Smith, A.; Costa, J.C.; Martins, R.; Fortunato, E.; Kampff, A.R.; Barquinha, P. Transparent and Flexible Electrocorticography Electrode Arrays Based on Silver Nanowire Networks for Neural Recordings. Acs Appl. Nano Mater. 2021, 4, 5737–5747. [Google Scholar] [CrossRef]
- Pereira, M.E.; Deuermeier, J.; Figueiredo, C.; Santos, Â.; Carvalho, G.; Tavares, V.G.; Martins, R.; Fortunato, E.; Barquinha, P.; Kiazadeh, A. Flexible Active Crossbar Arrays Using Amorphous Oxide Semiconductor Technology toward Artificial Neural Networks Hardware. Adv. Electron. Mater. 2022, 8, 2200642. [Google Scholar] [CrossRef]
- Budday, S.; Ovaert, T.C.; Holzapfel, G.A.; Steinmann, P.; Kuhl, E. Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue. Arch. Comput. Methods Eng. 2020, 27, 1187–1230. [Google Scholar] [CrossRef]
- Rashid, B.; Destrade M Fau-Gilchrist, M.D.; Gilchrist, M.D. Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 2013, 28, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yoganandan, N.; Pintar, F.; Guan, Y.; Shender, B.; Paskoff, G.; Laud, P. Effects of tissue preservation temperature on high strain-rate material properties of brain. J. Biomech. 2010, 44, 391–396. [Google Scholar] [CrossRef]
- Rashid, B.; Destrade, M.; Gilchrist, M. Temperature Effects on Brain Tissue in Compression. J. Mech. Behav. Biomed. Mater. 2013, 14, 113–118. [Google Scholar] [CrossRef]
- Zhao, H.; Yin, Z.; Li, K.; Liao, Z.; Xiang, H.; Zhu, F. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates. Med. Sci. Monit. Basic. Res. 2016, 22, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ji, C.; Li, D.; Luo, R.; Wang, G.; Jiang, J. A Comprehensive Study on the Mechanical Properties of Different Regions of 8-week-old Pediatric Porcine Brain under Tension, Shear, and Compression at Various Strain Rates. J. Biomech. 2019, 98, 109380. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.J.; Lai, J.Y.; Chou, S.F.; Hsueh, Y.J.; Ma, D.H. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater. 2018, 65, 123–136. [Google Scholar] [CrossRef]
- Singh, D.; Boakye-Yiadom, S.; Cronin, D.S. Comparison of porcine brain mechanical properties to potential tissue simulant materials in quasi-static and sinusoidal compression. J. Biomech. 2019, 92, 84–91. [Google Scholar] [CrossRef]
- Wittek, A.; Dutta-Roy T Fau-Taylor, Z.; Taylor Z Fau-Horton, A.; Horton A Fau-Washio, T.; Washio T Fau-Chinzei, K.; Chinzei K Fau-Miller, K.; Miller, K. Subject-specific non-linear biomechanical model of needle insertion into brain. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 135–146. [Google Scholar] [CrossRef]
- Dryg Id Fau-Ward, M.P.; Ward Mp Fau-Qing, K.Y.; Qing Ky Fau-Mei, H.; Mei H Fau-Schaffer, J.E.; Schaffer Je Fau-Irazoqui, P.P.; Irazoqui, P.P. Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.; Smith, M.; Samonds, J.; Kohn, A.; Bonds, A.B.; Movshon, J.; Lee, T. Comparison of Recordings from Microelectrode Arrays and Single Electrodes in the Visual Cortex. J. Neurosci. 2007, 27, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Musk, E. An Integrated Brain-Machine Interface Platform with Thousands of Channels. J. Med. Internet Res. 2019, 21, e16194. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, X.; He, F.; Wei, X.; Lin, S.; Xie, C. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. J. Neural Eng. 2019, 16, 035001. [Google Scholar] [CrossRef]
Electrodes | Brain Tissue | ||
---|---|---|---|
Mesh Size | Interacting regions | 0.02 mm | 0.02 mm |
Other regions | 0.1 mm | 0.05 mm | |
Boundary Condition | Move 1 mm/s down total 1 mm along the shank | Fixing the motion of sides in the normal direction, Fixing the bottom | |
Material Properties | rigid body | Ogden Hyper Elastic | |
Domain Type | Lagrange | Euler |
Number | Electrodes | Model Type | Eulerian Dimensions (mm) | Number of Elements |
---|---|---|---|---|
Case 1 | Single | whole model | 1 × 0.7 × 1.5 | 200,332 |
Case 2 | 8 shanks | axisymmetric model | 4.6 × 3 × 1.5 | 1,091,396 |
Case 3 | 32 shanks | axisymmetric model | 7.6 × 3 × 1.5 | 1,735,600 |
Ogden Hyperelastic Model | Density | ||
---|---|---|---|
Properties | μ (MPa) | α | ρ (kg∙mm3) |
Values | 0.001038 | 2.766 | 1.06 × 10−3 |
Number | Electrodes | Shank Thicknesses (μm) | Shank Spacing (mm) | Insertion Speed (mm/s) |
---|---|---|---|---|
Case 1 | Single | 70 | 0.23 | 1 |
Case 2 | 8 shanks | 70 | 0.23 | 1 |
Case 3 | 32 shanks | 70 | 0.23 | 1 |
Case 4 | Single | 50 | 0.23 | 1 |
Case 5 | Single | 90 | 0.23 | 1 |
Case 6 | 8 shanks | 70 | 0.46 | 1 |
Case 7 | 8 shanks | 70 | 0.69 | 1 |
Case 8 | Single | 70 | 0.23 | 0.1 |
Case 9 | 8 shanks | 70 | 0.23 | 0.1 |
Case 10 | 32 shanks | 70 | 0.23 | 0.1 |
Case 11 | Single | 70 | 0.23 | 10 |
Case 12 | 8 shanks | 70 | 0.23 | 10 |
Case 13 | 32 shanks | 70 | 0.23 | 10 |
Number | Electrodes | Total Implantation Force (μN, ±SD) | Average Implantation Force (μN) | Comparison with Single Shank |
---|---|---|---|---|
Case 1 | 1 | 538.6 ± 94.55 | 538.6 | 100% |
Case 2 | 8 shanks | 1879.4 ± 505.97 | 234.9 | 43.6% |
Case 3 | 32 shanks | 4792.7 ± 1444.86 | 149.8 | 27.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Tong, B.; Zhang, K.; Ni, C.; Yang, D.; Gao, Z.; Huang, Y.; Yao, N.; Huang, L. Mechanical Behavior Analysis of Neural Electrode Arrays Implantation in Brain Tissue. Micromachines 2025, 16, 1010. https://doi.org/10.3390/mi16091010
Tan X, Tong B, Zhang K, Ni C, Yang D, Gao Z, Huang Y, Yao N, Huang L. Mechanical Behavior Analysis of Neural Electrode Arrays Implantation in Brain Tissue. Micromachines. 2025; 16(9):1010. https://doi.org/10.3390/mi16091010
Chicago/Turabian StyleTan, Xinyue, Bei Tong, Kunyang Zhang, Changmao Ni, Dengfei Yang, Zhaolong Gao, Yuzhao Huang, Na Yao, and Li Huang. 2025. "Mechanical Behavior Analysis of Neural Electrode Arrays Implantation in Brain Tissue" Micromachines 16, no. 9: 1010. https://doi.org/10.3390/mi16091010
APA StyleTan, X., Tong, B., Zhang, K., Ni, C., Yang, D., Gao, Z., Huang, Y., Yao, N., & Huang, L. (2025). Mechanical Behavior Analysis of Neural Electrode Arrays Implantation in Brain Tissue. Micromachines, 16(9), 1010. https://doi.org/10.3390/mi16091010