Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (95,634)

Search Parameters:
Keywords = network use

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1408 KiB  
Article
Design and Development of an Intelligent Chlorophyll Content Detection System for Cotton Leaves
by Wu Wei, Lixin Zhang, Xue Hu and Siyao Yu
Processes 2025, 13(8), 2329; https://doi.org/10.3390/pr13082329 - 22 Jul 2025
Abstract
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a [...] Read more.
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a near-infrared (NIR) hyperspectral image acquisition module, a spectral extraction module, a main control processor module, a model acceleration module, a display module, and a power module, which are used to achieve rapid and non-destructive detection of chlorophyll content. Firstly, spectral images of cotton canopy leaves during the seedling, budding, and flowering-boll stages were collected, and the dataset was optimized using the first-order differential algorithm (1D) and Savitzky–Golay five-term quadratic smoothing (SG) algorithm. The results showed that SG had better processing performance. Secondly, the sparrow search algorithm optimized backpropagation neural network (SSA-BPNN) and one-dimensional convolutional neural network (1DCNN) algorithms were selected to establish a chlorophyll content detection model. The results showed that the determination coefficients R2 p of the chlorophyll SG-1DCNN detection model during the seedling, budding, and flowering-boll stages were 0.92, 0.97, and 0.95, respectively, and the model performance was superior to SG-SSA-BPNN. Therefore, the SG-1DCNN model was embedded into the detection system. Finally, a CCC intelligent detection system was developed using Python 3.12.3, MATLAB 2020b, and ENVI, and the system was subjected to application testing. The results showed that the average detection accuracy of the CCC intelligent detection system in the three stages was 98.522%, 99.132%, and 97.449%, respectively. Meanwhile, the average detection time for the samples is only 20.12 s. The research results can effectively solve the problem of detecting the nutritional status of cotton in the field environment, meet the real-time detection needs of the field environment, and provide solutions and technical support for the intelligent perception of crop production. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
16 pages, 5658 KiB  
Article
Pressure Effect on the Rheological Behavior of Highly Filled Solid Propellant During Extrusion Flow
by Jun Zhang, Wei Zheng, Zhifeng Yuan, Junbo Chen, Jiangfeng Pei and Ping Xue
Polymers 2025, 17(15), 2003; https://doi.org/10.3390/polym17152003 - 22 Jul 2025
Abstract
Currently, the shear-extrusion behavior of solid propellants (SPs), which comprise a significant volume fraction of micro-/nanoscale solid particles (e.g., octogen/HMX), nitroglycerin as a plasticizer/solvent, nitrocellulose as a binder, and other functional additives, is still insufficiently understood. While the rheology of highly filled polymers [...] Read more.
Currently, the shear-extrusion behavior of solid propellants (SPs), which comprise a significant volume fraction of micro-/nanoscale solid particles (e.g., octogen/HMX), nitroglycerin as a plasticizer/solvent, nitrocellulose as a binder, and other functional additives, is still insufficiently understood. While the rheology of highly filled polymers has been extensively documented, the rheological behavior of SPs within the practical processing temperature range of 80–95 °C remains poorly understood. This study investigated, in particular, the pressure dependence of the viscosity of SPs melts during steady-state shear flow. Steady-state shear measurements were conducted using a twin-bore capillary rheometer with capillary dies of varying diameters and lengths to explore the viscosity dependence of SPs. The results reveal that interface defects between octogen particles and the polymer matrix generate a melt pressure range of 3–30 MPa in the long capillary die, underscoring the non-negligible impact of pressure on the measured viscosity (η). At constant temperature and shear rate, the measured viscosity of SPs exhibits strong pressure dependence, showing notable deviations in pressure sensitivity (β), which was found to be greatly relevant to the contents of solvent and solid particles. Such discrepancies are attributed to the compressibility of particle–particle and particle–polymer networks during capillary flow. The findings emphasize the critical role of pressure effect on the rheological properties of SPs, which is essential for optimizing manufacturing processes and ensuring consistent propellant performance. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

21 pages, 1672 KiB  
Article
TSE-APT: An APT Attack-Detection Method Based on Time-Series and Ensemble-Learning Models
by Mingyue Cheng, Ga Xiang, Qunsheng Yang, Zhixing Ma and Haoyang Zhang
Electronics 2025, 14(15), 2924; https://doi.org/10.3390/electronics14152924 - 22 Jul 2025
Abstract
Advanced Persistent Threat (APT) attacks pose a serious challenge to traditional detection methods. These methods often suffer from high false-alarm rates and limited accuracy due to the multi-stage and covert nature of APT attacks. In this paper, we propose TSE-APT, a time-series ensemble [...] Read more.
Advanced Persistent Threat (APT) attacks pose a serious challenge to traditional detection methods. These methods often suffer from high false-alarm rates and limited accuracy due to the multi-stage and covert nature of APT attacks. In this paper, we propose TSE-APT, a time-series ensemble model that addresses these two limitations. It combines multiple machine-learning models, such as Random Forest (RF), Multi-Layer Perceptron (MLP), and Bidirectional Long Short-Term Memory Network (BiLSTM) models, to dynamically capture correlations between multiple stages of the attack process based on time-series features. It discovers hidden features through the integration of multiple machine-learning models to significantly improve the accuracy and robustness of APT detection. First, we extract a collection of dynamic time-series features such as traffic mean, flow duration, and flag frequency. We fuse them with static contextual features, including the port service matrix and protocol type distribution, to effectively capture the multi-stage behaviors of APT attacks. Then, we utilize an ensemble-learning model with a dynamic weight-allocation mechanism using a self-attention network to adaptively adjust the sub-model contribution. The experiments showed that using time-series feature fusion significantly enhanced the detection performance. The RF, MLP, and BiLSTM models achieved 96.7% accuracy, considerably enhancing recall and the false positive rate. The adaptive mechanism optimizes the model’s performance and reduces false-alarm rates. This study provides an analytical method for APT attack detection, considering both temporal dynamics and context static characteristics, and provides new ideas for security protection in complex networks. Full article
(This article belongs to the Special Issue AI in Cybersecurity, 2nd Edition)
Show Figures

Figure 1

22 pages, 2587 KiB  
Article
A Feasible Domain Segmentation Algorithm for Unmanned Vessels Based on Coordinate-Aware Multi-Scale Features
by Zhengxun Zhou, Weixian Li, Yuhan Wang, Haozheng Liu and Ning Wu
J. Mar. Sci. Eng. 2025, 13(8), 1387; https://doi.org/10.3390/jmse13081387 - 22 Jul 2025
Abstract
The accurate extraction of navigational regions from images of navigational waters plays a key role in ensuring on-water safety and the automation of unmanned vessels. Nonetheless, current technological methods encounter significant challenges in addressing fluctuations in water surface illumination, reflective disturbances, and surface [...] Read more.
The accurate extraction of navigational regions from images of navigational waters plays a key role in ensuring on-water safety and the automation of unmanned vessels. Nonetheless, current technological methods encounter significant challenges in addressing fluctuations in water surface illumination, reflective disturbances, and surface undulations, among other disruptions, in turn making it challenging to achieve rapid and precise boundary segmentation. To cope with these challenges, in this paper, we propose a coordinate-aware multi-scale feature network (GASF-ResNet) method for water segmentation. The method integrates the attention module Global Grouping Coordinate Attention (GGCA) in the four downsampling branches of ResNet-50, thus enhancing the model’s ability to capture target features and improving the feature representation. To expand the model’s receptive field and boost its capability in extracting features of multi-scale targets, the Avoidance Spatial Pyramid Pooling (ASPP) technique is used. Combined with multi-scale feature fusion, this effectively enhances the expression of semantic information at different scales and improves the segmentation accuracy of the model in complex water environments. The experimental results show that the average pixel accuracy (mPA) and average intersection and union ratio (mIoU) of the proposed method on the self-made dataset and on the USVInaland unmanned ship dataset are 99.31% and 98.61%, and 98.55% and 99.27%, respectively, significantly better results than those obtained for the existing mainstream models. These results are helpful in overcoming the background interference caused by water surface reflection and uneven lighting in the aquatic environment and in realizing the accurate segmentation of the water area for the safe navigation of unmanned vessels, which is of great value for the stable operation of unmanned vessels in complex environments. Full article
(This article belongs to the Section Ocean Engineering)
37 pages, 55521 KiB  
Article
EPCNet: Implementing an ‘Artificial Fovea’ for More Efficient Monitoring Using the Sensor Fusion of an Event-Based and a Frame-Based Camera
by Orla Sealy Phelan, Dara Molloy, Roshan George, Edward Jones, Martin Glavin and Brian Deegan
Sensors 2025, 25(15), 4540; https://doi.org/10.3390/s25154540 - 22 Jul 2025
Abstract
Efficient object detection is crucial to real-time monitoring applications such as autonomous driving or security systems. Modern RGB cameras can produce high-resolution images for accurate object detection. However, increased resolution results in increased network latency and power consumption. To minimise this latency, Convolutional [...] Read more.
Efficient object detection is crucial to real-time monitoring applications such as autonomous driving or security systems. Modern RGB cameras can produce high-resolution images for accurate object detection. However, increased resolution results in increased network latency and power consumption. To minimise this latency, Convolutional Neural Networks (CNNs) often have a resolution limitation, requiring images to be down-sampled before inference, causing significant information loss. Event-based cameras are neuromorphic vision sensors with high temporal resolution, low power consumption, and high dynamic range, making them preferable to regular RGB cameras in many situations. This project proposes the fusion of an event-based camera with an RGB camera to mitigate the trade-off between temporal resolution and accuracy, while minimising power consumption. The cameras are calibrated to create a multi-modal stereo vision system where pixel coordinates can be projected between the event and RGB camera image planes. This calibration is used to project bounding boxes detected by clustering of events into the RGB image plane, thereby cropping each RGB frame instead of down-sampling to meet the requirements of the CNN. Using the Common Objects in Context (COCO) dataset evaluator, the average precision (AP) for the bicycle class in RGB scenes improved from 21.08 to 57.38. Additionally, AP increased across all classes from 37.93 to 46.89. To reduce system latency, a novel object detection approach is proposed where the event camera acts as a region proposal network, and a classification algorithm is run on the proposed regions. This achieved a 78% improvement over baseline. Full article
(This article belongs to the Section Sensing and Imaging)
39 pages, 5109 KiB  
Article
FGFNet: Fourier Gated Feature-Fusion Network with Fractal Dimension Estimation for Robust Palm-Vein Spoof Detection
by Seung Gu Kim, Jung Soo Kim and Kang Ryoung Park
Fractal Fract. 2025, 9(8), 478; https://doi.org/10.3390/fractalfract9080478 - 22 Jul 2025
Abstract
The palm-vein recognition system has garnered attention as a biometric technology due to its resilience to external environmental factors, protection of personal privacy, and low risk of external exposure. However, with recent advancements in deep learning-based generative models for image synthesis, the quality [...] Read more.
The palm-vein recognition system has garnered attention as a biometric technology due to its resilience to external environmental factors, protection of personal privacy, and low risk of external exposure. However, with recent advancements in deep learning-based generative models for image synthesis, the quality and sophistication of fake images have improved, leading to an increased security threat from counterfeit images. In particular, palm-vein images acquired through near-infrared illumination exhibit low resolution and blurred characteristics, making it even more challenging to detect fake images. Furthermore, spoof detection specifically targeting palm-vein images has not been studied in detail. To address these challenges, this study proposes the Fourier-gated feature-fusion network (FGFNet) as a novel spoof detector for palm-vein recognition systems. The proposed network integrates masked fast Fourier transform, a map-based gated feature fusion block, and a fast Fourier convolution (FFC) attention block with global contrastive loss to effectively detect distortion patterns caused by generative models. These components enable the efficient extraction of critical information required to determine the authenticity of palm-vein images. In addition, fractal dimension estimation (FDE) was employed for two purposes in this study. In the spoof attack procedure, FDE was used to evaluate how closely the generated fake images approximate the structural complexity of real palm-vein images, confirming that the generative model produced highly realistic spoof samples. In the spoof detection procedure, the FDE results further demonstrated that the proposed FGFNet effectively distinguishes between real and fake images, validating its capability to capture subtle structural differences induced by generative manipulation. To evaluate the spoof detection performance of FGFNet, experiments were conducted using real palm-vein images from two publicly available palm-vein datasets—VERA Spoofing PalmVein (VERA dataset) and PLUSVein-contactless (PLUS dataset)—as well as fake palm-vein images generated based on these datasets using a cycle-consistent generative adversarial network. The results showed that, based on the average classification error rate, FGFNet achieved 0.3% and 0.3% on the VERA and PLUS datasets, respectively, demonstrating superior performance compared to existing state-of-the-art spoof detection methods. Full article
27 pages, 3695 KiB  
Article
Enhanced Recognition of Sustainable Wood Building Materials Based on Deep Learning and Augmentation
by Wei Gan, Shengbiao Li, Jinyu Li, Shuqi Peng, Ruoxi Li, Lan Qiu, Baofeng Li and Yi He
Sustainability 2025, 17(15), 6683; https://doi.org/10.3390/su17156683 - 22 Jul 2025
Abstract
The accurate identification of wood patterns is critical for optimizing the use of sustainable wood building materials, promoting resource efficiency, and reducing waste in construction. This study presents a deep learning-based approach for enhanced wood material recognition, combining EfficientNet architecture with advanced data [...] Read more.
The accurate identification of wood patterns is critical for optimizing the use of sustainable wood building materials, promoting resource efficiency, and reducing waste in construction. This study presents a deep learning-based approach for enhanced wood material recognition, combining EfficientNet architecture with advanced data augmentation techniques to achieve robust classification. The augmentation strategy incorporates geometric transformations (flips, shifts, and rotations) and photometric adjustments (brightness and contrast) to improve dataset diversity while preserving discriminative wood grain features. Validation was performed using a controlled augmentation pipeline to ensure realistic performance assessment. Experimental results demonstrate the model’s effectiveness, achieving 88.9% accuracy (eight out of nine correct predictions), with further improvements from targeted image preprocessing. The approach provides valuable support for preliminary sustainable building material classification, and can be deployed through user-friendly interfaces without requiring specialized AI expertise. The system retains critical wood pattern characteristics while enhancing adaptability to real-world variability, supporting reliable material classification in sustainable construction. This study highlights the potential of integrating optimized neural networks with tailored preprocessing to advance AI-driven sustainability in building material recognition, contributing to circular economy practices and resource-efficient construction. Full article
(This article belongs to the Special Issue Analysis on Real-Estate Marketing and Sustainable Civil Engineering)
19 pages, 8886 KiB  
Article
Future Residential Water Use and Management Under Climate Change Using Bayesian Neural Networks
by Young-Ho Seo, Jang Hyun Sung, Joon-Seok Park, Byung-Sik Kim and Junehyeong Park
Water 2025, 17(15), 2179; https://doi.org/10.3390/w17152179 - 22 Jul 2025
Abstract
This study projects future Residential Water Use (RWU) under climate change scenarios using a Bayesian Neural Network (BNN) model that quantifies the relationship between observed temperatures and RWU. Eighteen Global Climate Models (GCMs) under the Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) scenario were used [...] Read more.
This study projects future Residential Water Use (RWU) under climate change scenarios using a Bayesian Neural Network (BNN) model that quantifies the relationship between observed temperatures and RWU. Eighteen Global Climate Models (GCMs) under the Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) scenario were used to assess the uncertainties across these models. The findings indicate that RWU in Republic of Korea (ROK) is closely linked to temperature changes, with significant increases projected in the distant future (F3), especially during summer. Under the SSP5–8.5 scenario, RWU is expected to increase by up to 10.3% by the late 21st century (2081–2100) compared to the historical baseline. The model achieved a root mean square error (RMSE) of 11,400 m³/month, demonstrating reliable predictive performance. Unlike conventional deep learning models, the BNN provides probabilistic forecasts with uncertainty bounds, enhancing its suitability for climate-sensitive resource planning. This study also projects inflows to the Paldang Dam, revealing an overall increase in future water availability. However, winter water security may decline due to decreased inflow and minimal changes in RWU. This study suggests enhancing summer precipitation storage while considering downstream flood risks. Demand management strategies are recommended for addressing future winter water security challenges. This research highlights the importance of projecting RWU under climate change scenarios and emphasizes the need for strategic water resource management in ROK. Full article
(This article belongs to the Section Water and Climate Change)
22 pages, 1178 KiB  
Review
Comparative Effectiveness of Exercise, Protein Supplementation, and Combined Interventions for Sarcopenia Management in Women: A Network Meta-Analysis
by Ruixiang Yan, Wenrui Huang, Yuanhao Zhong and Xuelian Du
Nutrients 2025, 17(15), 2392; https://doi.org/10.3390/nu17152392 - 22 Jul 2025
Abstract
Background/Objectives: The comparative efficacy and optimal combination strategies of exercise intervention, nutritional supplementation, and their integration for older women with sarcopenia remain inadequately supported by high-quality evidence. Methods: We systematically searched PubMed, Embase, Web of Science, and the Cochrane Central Register [...] Read more.
Background/Objectives: The comparative efficacy and optimal combination strategies of exercise intervention, nutritional supplementation, and their integration for older women with sarcopenia remain inadequately supported by high-quality evidence. Methods: We systematically searched PubMed, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL) until February 2025. A frequentist random-effects network meta-analysis was conducted to compare the relative effects of different interventions. The quality of evidence was assessed using the GRADE framework, and interventions were ranked based on relative efficacy and evidence certainty. Results: A total of 21 randomized controlled trials involving 1215 participants were included. The network meta-analysis showed that combined exercise and nutritional interventions were the most effective in improving handgrip strength (MD = 1.95, 95% CI: 0.1 to 3.18; SUCRA = 74%), usual gait speed (MD = 0.11, 95% CI: 0.04 to 0.17; SUCRA = 94.49%), maximum gait speed (MD = 0.22, 95% CI: 0.06 to 0.38; SUCRA = 82.17%), and appendicular skeletal muscle mass (MD = 0.21, 95% CI: 0.05 to 0.38; SUCRA = 92.83%). Exercise alone significantly improved knee extension strength (SMD = 0.75, 95% CI: 0.41 to 1.08; SUCRA = 84.58%). However, nutritional supplementation alone did not significantly improve any outcome. No intervention demonstrated a significant effect on skeletal muscle mass index. Conclusion: Exercise interventions effectively enhance muscle mass, strength, and physical function in older women with sarcopenia. Combined exercise and nutritional supplementation may offer superior benefits compared with exercise alone. Full article
20 pages, 3000 KiB  
Article
NRNH-AR: A Small Robotic Agent Using Tri-Fold Learning for Navigation and Obstacle Avoidance
by Carlos Vasquez-Jalpa, Mariko Nakano, Martin Velasco-Villa and Osvaldo Lopez-Garcia
Appl. Sci. 2025, 15(15), 8149; https://doi.org/10.3390/app15158149 - 22 Jul 2025
Abstract
We propose a tri-fold learning algorithm, called Neuroevolution of Hybrid Neural Networks in a Robotic Agent (acronym in Spanish, NRNH-AR), based on deep reinforcement learning (DRL), with self-supervised learning (SSL) and unsupervised learning (USL) steps, specifically designed to be implemented in a small [...] Read more.
We propose a tri-fold learning algorithm, called Neuroevolution of Hybrid Neural Networks in a Robotic Agent (acronym in Spanish, NRNH-AR), based on deep reinforcement learning (DRL), with self-supervised learning (SSL) and unsupervised learning (USL) steps, specifically designed to be implemented in a small autonomous navigation robot capable of operating in constrained physical environments. The NRNH-AR algorithm is designed for a small physical robotic agent with limited resources. The proposed algorithm was evaluated in four critical aspects: computational cost, learning stability, required memory size, and operation speed. The results obtained show that the performance of NRNH-AR is within the ranges of the Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed Deep Deterministic Policy Gradient (TD3). The proposed algorithm comprises three types of learning algorithms: SSL, USL, and DRL. Thanks to the series of learning algorithms, the proposed algorithm optimizes the use of resources and demonstrates adaptability in dynamic environments, a crucial aspect of navigation robotics. By integrating computer vision techniques based on a Convolutional Neuronal Network (CNN), the algorithm enhances its abilities to understand visual observations of the environment rapidly and detect a specific object, avoiding obstacles. Full article
Show Figures

Figure 1

27 pages, 5214 KiB  
Article
Research on Industrial Process Fault Diagnosis Method Based on DMCA-BiGRUN
by Feng Yu, Changzhou Zhang and Jihan Li
Mathematics 2025, 13(15), 2331; https://doi.org/10.3390/math13152331 - 22 Jul 2025
Abstract
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, [...] Read more.
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, which makes it difficult to capture multi-scale features simultaneously. Additionally, the use of numerous fixed-size convolutional filters often results in redundant parameters. During the feature extraction process, the CNN often struggles to take inter-channel dependencies and spatial location information into consideration. There are also limitations in extracting various time-scale features. To address these issues, a fault diagnosis method on the basis of a dual-path mixed convolutional attention-BiGRU network (DMCA-BiGRUN) is proposed for industrial processes. Firstly, a dual-path mixed CNN (DMCNN) is designed to capture features at multiple scales while effectively reducing the parameter count. Secondly, a coordinate attention mechanism (CAM) is designed to help the network to concentrate on main features more effectively during feature extraction by combining the channel relationship and position information. Finally, a bidirectional gated recurrent unit (BiGRU) is introduced to process sequences in both directions, which can effectively learn the long-range temporal dependencies of sequence data. To verify the fault diagnosis performance of the proposed method, simulation experiments are implemented on the Tennessee Eastman (TE) and Continuous Stirred Tank Reactor (CSTR) datasets. Some deep learning methods are compared in the experiments, and the results confirm the feasibility and superiority of DMCA-BiGRUN. Full article
12 pages, 1751 KiB  
Article
Causal Inference of Adverse Drug Events in Pulmonary Arterial Hypertension: A Pharmacovigilance Study
by Hongmei Li, Xiaojun He, Cui Chen, Qiao Ni, Linghao Ni, Jiawei Zhou and Bin Peng
Pharmaceuticals 2025, 18(8), 1084; https://doi.org/10.3390/ph18081084 - 22 Jul 2025
Abstract
Objective: Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease. Adverse events (AEs) related to its drug treatment seriously damaged the patient’s health. This study aims to clarify the causal relationship between PAH drugs and these AEs by combining pharmacovigilance signal detection [...] Read more.
Objective: Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease. Adverse events (AEs) related to its drug treatment seriously damaged the patient’s health. This study aims to clarify the causal relationship between PAH drugs and these AEs by combining pharmacovigilance signal detection with the Bayesian causal network model. Methods: Patient data were obtained from the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), covering reports from 2013 to 2023. In accordance with standard pharmacovigilance methodologies, disproportionality analysis was performed to detect signals. Target drugs were selected based on the following criteria: number of reports (a) ≥ 3, proportional reporting ratio (PRR) ≥ 2, and chi-square (χ2) ≥ 4. Bayesian causal network models were then constructed to estimate causal relationships. The do-calculus and adjustment formula were applied to calculate the causal effects between drugs and AEs. Results: Signal detection revealed that Ambrisentan, Bosentan, and Iloprost were associated with serious AEs, including death, dyspnea, pneumonia, and edema. For Ambrisentan, the top-ranked adverse drug events (ADEs) based on average causal effect (ACE) were peripheral swelling (ACE = 0.032) and anemia (ACE = 0.021). For Iloprost, the most prominent ADE was hyperthyroidism (ACE = 0.048). Conclusions: This study quantifies causal drug–event relationships in PAH using Bayesian causal networks. The findings offer valuable evidence regarding the clinical safety of PAH medications, thereby improving patient health outcomes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

26 pages, 14634 KiB  
Article
Remaining Useful Life Prediction Across Conditions Based on a Health Indicator-Weighted Subdomain Alignment Network
by Zhiqing Xu, Christopher W. K. Chow, Md. Mizanur Rahman, Raufdeen Rameezdeen and Yee Wei Law
Sensors 2025, 25(15), 4536; https://doi.org/10.3390/s25154536 - 22 Jul 2025
Abstract
In recent years, domain adaptation (DA) has been extensively applied to predicting the remaining useful life (RUL) of bearings across conditions. Although traditional DA-based methods have achieved accurate predictions, most methods fail to extract multi-scale degradation information, focus only on global-scale DA, and [...] Read more.
In recent years, domain adaptation (DA) has been extensively applied to predicting the remaining useful life (RUL) of bearings across conditions. Although traditional DA-based methods have achieved accurate predictions, most methods fail to extract multi-scale degradation information, focus only on global-scale DA, and ignore the importance of temporal weights. These limitations hinder further improvements in prediction accuracy. This paper proposes a novel model, called the health indicator-weighted subdomain alignment network (HIWSAN), which first learns feature representations at multiple scales, then constructs health indicators as temporal weights, and finally performs subdomain-level alignment. Two case studies based on the XJTU-SY and PRONOSTIA datasets were conducted, covering ablation, comparison, and generalization experiments to evaluate the proposed HIWSAN. Experimental results show that HIWSAN achieves an average MAE of 0.0989 and an average RMSE of 0.1189 across two datasets, representing reductions of 21.07% and 25.13%, respectively, compared to existing state-of-the-art methods. Full article
(This article belongs to the Special Issue Advances in Wireless Sensor and Mobile Networks)
22 pages, 4406 KiB  
Article
Colorectal Cancer Detection Tool Developed with Neural Networks
by Alex Ede Danku, Eva Henrietta Dulf, Alexandru George Berciu, Noemi Lorenzovici and Teodora Mocan
Appl. Sci. 2025, 15(15), 8144; https://doi.org/10.3390/app15158144 - 22 Jul 2025
Abstract
In the last two decades, there has been a considerable surge in the development of artificial intelligence. Imaging is most frequently employed for the diagnostic evaluation of patients, as it is regarded as one of the most precise methods for identifying the presence [...] Read more.
In the last two decades, there has been a considerable surge in the development of artificial intelligence. Imaging is most frequently employed for the diagnostic evaluation of patients, as it is regarded as one of the most precise methods for identifying the presence of a disease. However, a study indicates that approximately 800,000 individuals in the USA die or incur permanent disability because of misdiagnosis. The present study is based on the use of computer-aided diagnosis of colorectal cancer. The objective of this study is to develop a practical, low-cost, AI-based decision-support tool that integrates clinical test data (blood/stool) and, if needed, colonoscopy images to help reduce misdiagnosis and improve early detection of colorectal cancer for clinicians. Convolutional neural networks (CNNs) and artificial neural networks (ANNs) are utilized in conjunction with a graphical user interface (GUI), which caters to individuals lacking programming expertise. The performance of the artificial neural network (ANN) is measured using the mean squared error (MSE) metric, and the obtained performance is 7.38. For CNN, two distinct cases are under consideration: one with two outputs and one with three outputs. The precision of the models is 97.2% for RGB and 96.7% for grayscale, respectively, in the first instance, and 83% for RGB and 82% for grayscale in the second instance. However, using a pretrained network yielded superior performance with 99.5% for 2-output models and 93% for 3-output models. The GUI is composed of two panels, with the best ANN model and the best CNN model being utilized in each. The primary function of the tool is to assist medical personnel in reducing the time required to make decisions and the probability of misdiagnosis. Full article
Show Figures

Figure 1

21 pages, 4145 KiB  
Article
Advances in Illumination of Lengthy Road Tunnels by Means of Innovative Vaulting and Sustainable Control of Flicker Perturbations
by Joseph Cabeza-Lainez and Antonio Peña-García
Sustainability 2025, 17(15), 6680; https://doi.org/10.3390/su17156680 - 22 Jul 2025
Abstract
Traditional approaches in tunnel lighting have been directed toward the installation of appropriate luminaires in the intermediate and transitional sections with the simple objective of diminishing the effect of delayed visual accommodation during daylight hours. Such efforts run in parallel with the target [...] Read more.
Traditional approaches in tunnel lighting have been directed toward the installation of appropriate luminaires in the intermediate and transitional sections with the simple objective of diminishing the effect of delayed visual accommodation during daylight hours. Such efforts run in parallel with the target of keeping the huge electrical use at the lowest level. Nevertheless, inadequate attention has been conceded to the interior areas, whose noticeable longitude in several instances, and subsequently the duration of occupancy of the users, can produce discomfort in the majority of the tunnel or underground passageway. It is in this region where the flicker effect presents a more remarkable impact. Although such effect is in fact uncomfortable, the strategies to eliminate it efficiently have not been developed in depth and the result is still deserving, especially in terms of sustainability. The reasons for this neglect, as well as some particularities and solutions, are exposed and discussed in the present article. Specifically, it is proved that the use of sunlight can be an adequate initiative and a positive energy input into design and retrofit tunnels capable of hampering or totally avoiding such unwanted effect. The innovative tunnel geometry explained in this manuscript is not cylindrical, and it is not based in revolution forms. Thus, it prevents the appearance of such unnerving visual effects, which compromise sustainability and endanger security. We are in the position to explain how the vector field generated by the normal to the points of the novel surface displayed remains non-parallel, ensuring appropriate diffusivity and, consequently, an even distribution of radiated energy. In the same manner, the notion of the tunnel is extended from a linear system to a veritable network of galleries, which can traverse in space bi- or even three-dimensionally. Accordingly, we will offer diverse instances of junctions and splices that further enhance the permeability into the terrain, augmenting the resilience capabilities of this disruptive technology. With all the former, a net reduction of costs reaching 25% can be easily expected with revenues. Full article
Show Figures

Figure 1

Back to TopTop