Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,283)

Search Parameters:
Keywords = network game

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 (registering DOI) - 1 Aug 2025
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

25 pages, 6699 KiB  
Article
Protecting Power System Infrastructure Against Disruptive Agents Considering Demand Response
by Jesús M. López-Lezama, Nicolás Muñoz-Galeano, Sergio D. Saldarriaga-Zuluaga and Santiago Bustamante-Mesa
Computers 2025, 14(8), 308; https://doi.org/10.3390/computers14080308 - 30 Jul 2025
Abstract
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach [...] Read more.
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach to protecting power system infrastructure against deliberate attacks, taking into account the effects of demand response. The interaction between the disruptive agent and the system operator is modeled as a leader–follower Stackelberg game. The leader, positioned in the upper-level optimization problem, must decide which elements to render out of service, anticipating the reaction of the follower (the system operator), who occupies the lower-level problem. The Stackelberg game is reformulated as a bilevel optimization model and solved using a metaheuristic approach. To evaluate the applicability of the proposed method, a 24-bus test system was employed. The results demonstrate that integrating demand response significantly enhances system resilience, compelling the disruptive agent to adopt alternative attack strategies that lead to lower overall disruption. The proposed model serves as a valuable decision-support tool for system operators and planners seeking to improve the robustness and security of electrical networks against disruptive agents. Full article
Show Figures

Figure 1

30 pages, 3923 KiB  
Article
Exploring the Key Factors Influencing the Plays’ Continuous Intention of Ancient Architectural Cultural Heritage Serious Games: An SEM–ANN–NCA Approach
by Qian Bao, Siqin Wang, Ken Nah and Wei Guo
Buildings 2025, 15(15), 2648; https://doi.org/10.3390/buildings15152648 - 27 Jul 2025
Viewed by 264
Abstract
Serious games (SGs) have been widely employed in the digital preservation and transmission of architectural heritage. However, the key determinants and underlying mechanisms driving users’ continuance intentions toward ancient-architecture cultural heritage serious games (CH-SGs) have not been thoroughly investigated. Accordingly, a conceptual model [...] Read more.
Serious games (SGs) have been widely employed in the digital preservation and transmission of architectural heritage. However, the key determinants and underlying mechanisms driving users’ continuance intentions toward ancient-architecture cultural heritage serious games (CH-SGs) have not been thoroughly investigated. Accordingly, a conceptual model grounded in the stimulus–organism–response (S–O–R) framework was developed to elucidate the affective and behavioral effects experienced by CH-SG users. Partial least squares structural equation modeling (PLS-SEM) and artificial neural networks (ANNs) were employed to capture both the linear and nonlinear relationships among model constructs. By integrating sufficiency logic (PLS-SEM) and necessity logic (necessary condition analysis, NCA), “must-have” and “should-have” factors were identified. Empirical results indicate that cultural authenticity, knowledge acquisition, perceived enjoyment, and design aesthetics each exert a positive influence—of varying magnitude—on perceived value, cultural identification, and perceived pleasure, thereby shaping users’ continuance intentions. Moreover, cultural authenticity and perceived enjoyment were found to be necessary and sufficient conditions, respectively, for enhancing perceived pleasure and perceived value, which in turn indirectly bolster CH-SG users’ sustained use intentions. By creating an immersive, narratively rich, and engaging cognitive experience, CH-SGs set against ancient architectural backdrops not only stimulate users’ willingness to visit and protect heritage sites but also provide designers and developers with critical insights for optimizing future CH-SG design, development, and dissemination. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

29 pages, 429 KiB  
Article
Matching Game Preferences Through Dialogical Large Language Models: A Perspective
by Renaud Fabre, Daniel Egret and Patrice Bellot
Appl. Sci. 2025, 15(15), 8307; https://doi.org/10.3390/app15158307 - 25 Jul 2025
Viewed by 187
Abstract
This perspective paper explores the future potential of “conversational intelligence” by examining how Large Language Models (LLMs) could be combined with GRAPHYP’s network system to better understand human conversations and preferences. Using recent research and case studies, we propose a conceptual framework that [...] Read more.
This perspective paper explores the future potential of “conversational intelligence” by examining how Large Language Models (LLMs) could be combined with GRAPHYP’s network system to better understand human conversations and preferences. Using recent research and case studies, we propose a conceptual framework that could make AI reasoning transparent and traceable, allowing humans to see and understand how AI reaches its conclusions. We present the conceptual perspective of “Matching Game Preferences through Dialogical Large Language Models (D-LLMs),” a proposed system that would allow multiple users to share their different preferences through structured conversations. This approach envisions personalizing LLMs by embedding individual user preferences directly into how the model makes decisions. The proposed D-LLM framework would require three main components: (1) reasoning processes that could analyze different search experiences and guide performance, (2) classification systems that would identify user preference patterns, and (3) dialogue approaches that could help humans resolve conflicting information. This perspective framework aims to create an interpretable AI system where users could examine, understand, and combine the different human preferences that influence AI responses, detected through GRAPHYP’s search experience networks. The goal of this perspective is to envision AI systems that would not only provide answers but also show users how those answers were reached, making artificial intelligence more transparent and trustworthy for human decision-making. Full article
Show Figures

Figure 1

18 pages, 500 KiB  
Article
Hybrid Model-Based Traffic Network Control Using Population Games
by Sindy Paola Amaya, Pablo Andrés Ñañez, David Alejandro Martínez Vásquez, Juan Manuel Calderón Chávez and Armando Mateus Rojas
Appl. Syst. Innov. 2025, 8(4), 102; https://doi.org/10.3390/asi8040102 - 25 Jul 2025
Viewed by 162
Abstract
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of [...] Read more.
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of innovative traffic control strategies based on advanced theoretical frameworks. In this sense, we explore different game theory-based control strategies in an eight-intersection traffic network modeled by means of hybrid systems and graph theory, using a software simulator that combines the multi-modal traffic simulation software VISSIM and MATLAB to integrate traffic network parameters and population game criteria. Across five distinct network scenarios with varying saturation conditions, we explore a fixed-time scheme of signaling by means of fictitious play dynamics and adaptive schemes, using dynamics such as Smith, replicator, Logit and Brown–Von Neumann–Nash (BNN). Results show better performance for Smith and replicator dynamics in terms of traffic parameters both for fixed and variable signaling times, with an interesting outcome of fictitious play over BNN and Logit. Full article
Show Figures

Figure 1

23 pages, 13834 KiB  
Article
Using Shapley Values to Explain the Decisions of Convolutional Neural Networks in Glaucoma Diagnosis
by Jose Sigut, Francisco Fumero and Tinguaro Díaz-Alemán
Algorithms 2025, 18(8), 464; https://doi.org/10.3390/a18080464 - 25 Jul 2025
Viewed by 196
Abstract
This work aims to leverage Shapley values to explain the decisions of convolutional neural networks trained to predict glaucoma. Although Shapley values offer a mathematically sound approach rooted in game theory, they require evaluating all possible combinations of features, which can be computationally [...] Read more.
This work aims to leverage Shapley values to explain the decisions of convolutional neural networks trained to predict glaucoma. Although Shapley values offer a mathematically sound approach rooted in game theory, they require evaluating all possible combinations of features, which can be computationally intensive. To address this challenge, we introduce a novel strategy that discretizes the input by dividing the image into standard regions or sectors of interest, significantly reducing the number of features while maintaining clinical relevance. Moreover, applying Shapley values in a machine learning context necessitates the ability to selectively exclude features to evaluate their combinations. To achieve this, we propose a method involving the occlusion of specific sectors and re-training only the non-convolutional portion of the models. Despite achieving strong predictive performance, our findings reveal limited alignment with medical expectations, particularly the unexpected dominance of the background sector in the model’s decision-making process. This highlights potential concerns regarding the interpretability of convolutional neural network-based glaucoma diagnostics. Full article
Show Figures

Figure 1

27 pages, 705 KiB  
Article
A Novel Wavelet Transform and Deep Learning-Based Algorithm for Low-Latency Internet Traffic Classification
by Ramazan Enisoglu and Veselin Rakocevic
Algorithms 2025, 18(8), 457; https://doi.org/10.3390/a18080457 - 23 Jul 2025
Viewed by 293
Abstract
Accurate and real-time classification of low-latency Internet traffic is critical for applications such as video conferencing, online gaming, financial trading, and autonomous systems, where millisecond-level delays can degrade user experience. Existing methods for low-latency traffic classification, reliant on raw temporal features or static [...] Read more.
Accurate and real-time classification of low-latency Internet traffic is critical for applications such as video conferencing, online gaming, financial trading, and autonomous systems, where millisecond-level delays can degrade user experience. Existing methods for low-latency traffic classification, reliant on raw temporal features or static statistical analyses, fail to capture dynamic frequency patterns inherent to real-time applications. These limitations hinder accurate resource allocation in heterogeneous networks. This paper proposes a novel framework integrating wavelet transform (WT) and artificial neural networks (ANNs) to address this gap. Unlike prior works, we systematically apply WT to commonly used temporal features—such as throughput, slope, ratio, and moving averages—transforming them into frequency-domain representations. This approach reveals hidden multi-scale patterns in low-latency traffic, akin to structured noise in signal processing, which traditional time-domain analyses often overlook. These wavelet-enhanced features train a multilayer perceptron (MLP) ANN, enabling dual-domain (time–frequency) analysis. We evaluate our approach on a dataset comprising FTP, video streaming, and low-latency traffic, including mixed scenarios with up to four concurrent traffic types. Experiments demonstrate 99.56% accuracy in distinguishing low-latency traffic (e.g., video conferencing) from FTP and streaming, outperforming k-NN, CNNs, and LSTMs. Notably, our method eliminates reliance on deep packet inspection (DPI), offering ISPs a privacy-preserving and scalable solution for prioritizing time-sensitive traffic. In mixed-traffic scenarios, the model achieves 74.2–92.8% accuracy, offering ISPs a scalable solution for prioritizing time-sensitive traffic without deep packet inspection. By bridging signal processing and deep learning, this work advances efficient bandwidth allocation and enables Internet Service Providers to prioritize time-sensitive flows without deep packet inspection, improving quality of service in heterogeneous network environments. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

10 pages, 481 KiB  
Article
Problematic Internet Use: Measurement and Structural Invariance Across Sex and Academic Year Cohorts
by Mateo Pérez-Wiesner, Kora-Mareen Bühler and Jose Antonio López-Moreno
Eur. J. Investig. Health Psychol. Educ. 2025, 15(8), 145; https://doi.org/10.3390/ejihpe15080145 - 22 Jul 2025
Viewed by 281
Abstract
The extensive use of digital media among adolescents has raised concerns about its impact on emotional development and mental health. Understanding the psychological factors behind problematic digital media use is essential for effective prevention. This study examined whether the relationships between emotion regulation [...] Read more.
The extensive use of digital media among adolescents has raised concerns about its impact on emotional development and mental health. Understanding the psychological factors behind problematic digital media use is essential for effective prevention. This study examined whether the relationships between emotion regulation (negative and positive), compulsive use, cognitive preoccupation, and negative outcomes linked to digital media are consistent across sex and academic year. We used a cross-sectional design with 2357 adolescents (12–16 years old) from Compulsory Secondary Education. Participants completed validated self-report questionnaires assessing problematic digital media use, and associated consequences in four domains: internet, video games, social networking, and messaging. Four structural equation models (SEMs), each focused on a media type, tested whether these relationships remained stable across sex and academic year. All models showed good fit, and differences between groups were minimal, supporting valid comparisons. Results confirm that emotion regulation difficulties and problematic digital media use are consistently associated with negative outcomes in all adolescents, regardless of sex or academic level. Preventive strategies targeting emotional regulation and digital media behaviors may be broadly applied to reduce emotional and functional problems related to excessive media use. Full article
Show Figures

Figure 1

19 pages, 1167 KiB  
Article
A Reservoir Group Flood Control Operation Decision-Making Risk Analysis Model Considering Indicator and Weight Uncertainties
by Tangsong Luo, Xiaofeng Sun, Hailong Zhou, Yueping Xu and Yu Zhang
Water 2025, 17(14), 2145; https://doi.org/10.3390/w17142145 - 18 Jul 2025
Viewed by 238
Abstract
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir [...] Read more.
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir maximum water level and downstream control section flow) through the Long Short-Term Memory (LSTM) network, constructing a feasible weight space including four scenarios (unique fixed value, uniform distribution, etc.), resolving conflicts among the weight results from four methods (Analytic Hierarchy Process (AHP), Entropy Weight, Criteria Importance Through Intercriteria Correlation (CRITIC), Principal Component Analysis (PCA)) using game theory, defining decision-making risk as the probability that the actual safety level fails to reach the evaluation threshold, and quantifying risks based on the First-Order Second-Moment (FOSM) method. Case verification in the cascade reservoirs of the Qiantang River Basin of China shows that the model provides a risk assessment framework integrating multi-source uncertainties for flood control scheduling decisions through probabilistic description of indicator uncertainties (e.g., Zmax1 with μ = 65.3 and σ = 8.5) and definition of weight feasible regions (99% weight distribution covered by the 3σ criterion), filling the methodological gap in risk quantification during the decision-making process in existing research. Full article
(This article belongs to the Special Issue Flood Risk Identification and Management, 2nd Edition)
Show Figures

Figure 1

25 pages, 697 KiB  
Article
Psychopathological Correlates of Dysfunctional Smartphone and Social Media Use: The Role of Personality Disorders in Technological Addiction and Digital Life Balance
by Mirko Duradoni, Giulia Colombini, Camilla Barucci, Veronica Zagaglia and Andrea Guazzini
Eur. J. Investig. Health Psychol. Educ. 2025, 15(7), 136; https://doi.org/10.3390/ejihpe15070136 - 17 Jul 2025
Viewed by 410
Abstract
Current technological development has made the Internet and new technologies increasingly present in people’s lives, expanding their opportunities but also potentially posing risks for dysfunctional use. This study aims to identify psychopathological factors associated with dysfunctional ICT use, extending the evidence beyond the [...] Read more.
Current technological development has made the Internet and new technologies increasingly present in people’s lives, expanding their opportunities but also potentially posing risks for dysfunctional use. This study aims to identify psychopathological factors associated with dysfunctional ICT use, extending the evidence beyond the well-established relationships with mood disorders to include personality disorders (i.e., cluster C in particular). A total of 711 participants (75.70% female; Mage = 28.33 years, SD = 12.30) took part in the data collection. Firstly, the results showed positive correlations between higher levels of addictive patterns for the Internet, social networks, smartphones and applications, and video games and higher levels of borderline symptoms as assessed by the Borderline Symptom List 23—Short Version. Moreover, scores reflecting high addictive patterns also positively correlated with general narcissistic traits as indicated by the total score of the Narcissistic Personality Inventory 13—Short Version and those specifically described by its Entitlement/Exploitativeness dimension, as well as with higher levels of almost all the personality traits assessed by the Personality Inventory for DSM 5—Brief Form (i.e., negative affectivity, detachment, disinhibition, and psychoticism). These findings broaden the still scarce body of evidence on the relationship between personality disorders and dysfunctional ICT use, which, however, needs to be further explored. Full article
Show Figures

Figure 1

22 pages, 2261 KiB  
Article
Learning Deceptive Strategies in Adversarial Settings: A Two-Player Game with Asymmetric Information
by Sai Krishna Reddy Mareddy and Dipankar Maity
Appl. Sci. 2025, 15(14), 7805; https://doi.org/10.3390/app15147805 - 11 Jul 2025
Viewed by 350
Abstract
This study explores strategic deception and counter-deception in multi-agent reinforcement learning environments for a police officer–robber game. The research is motivated by real-world scenarios where agents must operate with partial observability and adversarial intent. We develop a suite of progressively complex grid-based environments [...] Read more.
This study explores strategic deception and counter-deception in multi-agent reinforcement learning environments for a police officer–robber game. The research is motivated by real-world scenarios where agents must operate with partial observability and adversarial intent. We develop a suite of progressively complex grid-based environments featuring dynamic goals, fake targets, and navigational obstacles. Agents are trained using deep Q-networks (DQNs) with game-theoretic reward shaping to encourage deceptive behavior in the robber and intent inference in the police officer. The robber learns to reach the true goal while misleading the police officer, and the police officer adapts to infer the robber’s intent and allocate resources effectively. The environments include fixed and dynamic layouts with varying numbers of goals and obstacles, allowing us to evaluate scalability and generalization. Experimental results demonstrate that the agents converge to equilibrium-like behaviors across all settings. The inclusion of obstacles increases complexity but also strengthens learned policies when guided by reward shaping. We conclude that integrating game theory with deep reinforcement learning enables the emergence of robust, deceptive strategies and effective counter-strategies, even in dynamic, high-dimensional environments. This work advances the design of intelligent agents capable of strategic reasoning under uncertainty and adversarial conditions. Full article
(This article belongs to the Special Issue Research Progress on the Application of Multi-agent Systems)
Show Figures

Figure 1

29 pages, 2947 KiB  
Article
Predicting Olympic Medal Performance for 2028: Machine Learning Models and the Impact of Host and Coaching Effects
by Zhenkai Zhang, Tengfei Ma, Yunpeng Yao, Ningjia Xu, Yujie Gao and Wanwan Xia
Appl. Sci. 2025, 15(14), 7793; https://doi.org/10.3390/app15147793 - 11 Jul 2025
Viewed by 524
Abstract
This study develops two machine learning models to predict the medal performance of countries at the 2028 Olympic Games while systematically analyzing and quantifying the impacts of the host effect and exceptional coaching on medal gains. The dataset encompasses records of total medals [...] Read more.
This study develops two machine learning models to predict the medal performance of countries at the 2028 Olympic Games while systematically analyzing and quantifying the impacts of the host effect and exceptional coaching on medal gains. The dataset encompasses records of total medals by country, event categories, and athletes’ participation from the Olympic Games held between 1896 and 2024. We use K-means clustering to analyze medal trends, categorizing 234 nations into four groups (α1, α2, α3, α4). Among these, α1, α2, α3 represent medal-winning countries, while α4 consists of non-medal-winning nations. For the α1, α2, and α3 groups, 2–3 representative countries from each are selected for trend analysis, with the United States serving as a case study. This study extracts ten factors that may influence medal wins from the dataset, including participant data, the number of events, and medal growth rates. Factor analysis is used to reduce them into three principal components: Factor analysis condenses ten influencing factors into three principal components: the event scale factor (F1), the medal trend factor (F2), and the gender and athletic ability factor (F3). An ARIMA model predicts the factor coefficients for 2028 as 0.9539, 0.7999, and 0.2937, respectively. Four models (random forest, BP Neural Network, XGBoost, and SVM) are employed to predict medal outcomes, using historical data split into training and testing sets to compare their predictive performance. The research results show that XGBoost is the optimal medal predicted model, with the United States projected to win 57 gold medals and a total of 135 medals in 2028. For non-medal-winning countries (α4), a three-layer fully connected neural network (FCNN) is constructed, achieving an accuracy of 85.5% during testing. Additionally, a formula to calculate the host effect and a Bayesian linear regression model to assess the impact of exceptional coaching on athletes’ medal performance are proposed. The overall trend of countries in the α1 group is stable, but they are significantly affected by the host effect; the trend in the α2 group shows an upward trend; the trend in the α3 group depend on the athletes’ conditions and whether the events they excel in are included in that year’s Olympics. In the α4 group, the probabilities of the United Arab Republic (UAR) and Mali (MLI) winning medals in the 2028 Olympic Games are 77.47% and 58.47%, respectively, and there are another four countries with probabilities exceeding 30%. For the eight most recent Olympic Games, the gain rate of the host effect is 74%. Great coaches can bring an average increase of 0.2 to 0.5 medals for each athlete. The proposed models, through an innovative integration of clustering, dimensionality reduction, and predictive algorithms, provide reliable forecasts and data-driven insights for optimizing national sports strategies. These contributions not only address the gap in predicting first-time medal wins for non-medal-winning nations but also offer guidance for policymakers and sports organizations, though they are constrained by assumptions of stable historical trends, minimal external disruptions, and the exclusion of unknown athletes. Full article
Show Figures

Figure 1

30 pages, 435 KiB  
Review
Vaccination as a Game: Behavioural Dynamics, Network Effects, and Policy Levers—A Comprehensive Review
by Pedro H. T. Schimit, Abimael R. Sergio and Marco A. R. Fontoura
Mathematics 2025, 13(14), 2242; https://doi.org/10.3390/math13142242 - 10 Jul 2025
Viewed by 418
Abstract
Classical epidemic models treat vaccine uptake as an exogenous parameter, yet real-world coverage emerges from strategic choices made by individuals facing uncertain risks. During the last two decades, vaccination games, which combine epidemic dynamics with game theory, behavioural economics, and network science, have [...] Read more.
Classical epidemic models treat vaccine uptake as an exogenous parameter, yet real-world coverage emerges from strategic choices made by individuals facing uncertain risks. During the last two decades, vaccination games, which combine epidemic dynamics with game theory, behavioural economics, and network science, have become a very important tool for analysing this problem. Here, we synthesise more than 80 theoretical, computational, and empirical studies to clarify how population structure, psychological perception, pathogen complexity, and policy incentives interact to determine vaccination equilibria and epidemic outcomes. Papers are organised along five methodological axes: (i) population topology (well-mixed, static and evolving networks, multilayer systems); (ii) decision heuristics (risk assessment, imitation, prospect theory, memory); (iii) additional processes (information diffusion, non-pharmacological interventions, treatment, quarantine); (iv) policy levers (subsidies, penalties, mandates, communication); and (v) pathogen complexity (multi-strain, zoonotic reservoirs). Common findings across these studies are that voluntary vaccination is almost always sub-optimal; feedback between incidence and behaviour can generate oscillatory outbreaks; local network correlations amplify free-riding but enable cost-effective targeted mandates; psychological distortions such as probability weighting and omission bias materially shift equilibria; and mixed interventions (e.g., quarantine + vaccination) create dual dilemmas that may offset one another. Moreover, empirical work surveys, laboratory games, and field data confirm peer influence and prosocial motives, yet comprehensive model validation remains rare. Bridging the gap between stylised theory and operational policy will require data-driven calibration, scalable multilayer solvers, and explicit modelling of economic and psychological heterogeneity. This review offers a structured roadmap for future research on adaptive vaccination strategies in an increasingly connected and information-rich world. Full article
(This article belongs to the Special Issue Mathematical Epidemiology and Evolutionary Games)
27 pages, 2130 KiB  
Article
Disaster Risk Reduction in a Manhattan-Type Road Network: A Framework for Serious Game Activities for Evacuation
by Corrado Rindone and Antonio Russo
Sustainability 2025, 17(14), 6326; https://doi.org/10.3390/su17146326 - 10 Jul 2025
Viewed by 252
Abstract
The increasing number of natural and man-made disasters registered at the global level is causing a significant amount of damage. This represents one of the main sustainability challenges at the global level. The collapse of the Twin Towers, Hurricane Katrina, and the nuclear [...] Read more.
The increasing number of natural and man-made disasters registered at the global level is causing a significant amount of damage. This represents one of the main sustainability challenges at the global level. The collapse of the Twin Towers, Hurricane Katrina, and the nuclear accident at the Fukushima power plant are some of the most representative disaster events that occurred at the beginning of the third millennium. These relevant disasters need an enhanced level of preparedness to reduce the gaps between the plan and its implementation. Among these actions, training and exercises play a relevant role because they increase the capability of planners, managers, and the people involved. By focusing on the exposure risk component, the general objective of the research is to obtain quantitative evaluations of the exercise’s contribution to risk reduction through evacuation. The paper aims to analyze serious games using a set of methods and models that simulate an urban risk reduction plan. In particular, the paper proposes a transparent framework that merges transport risk analysis (TRA) and transport system models (TSMs), developing serious game activities with the support of emerging information and communication technologies (e-ICT). Transparency is possible through the explicitation of reproducible analytical formulations and linked parameters. The core framework of serious games is constituted by a set of models that reproduce the effects of players’ choices, including planned actions of decisionmakers and travel users’ choices. The framework constitutes the prototype of a digital platform in a “non-stressful” context aimed at providing more insights about the effects of planned actions. The proposed framework is characterized by transparency, a feature that allows other analysts and planners to reproduce each risk scenario, by applying TRA and relative effects simulations in territorial contexts by means of TSMs and parameters updated by e-ICT. A basic experimentation is performed by using a game, presenting the main results of a prototype test based on a reproducible exercise. The prototype experiment demonstrates the efficacy of increasing preparedness levels and reducing exposure by designing and implementing a serious game. The paper’s methodology and results are useful for policymakers, emergency managers, and the community for increasing the preparedness level. Full article
(This article belongs to the Special Issue Sustainable Transportation Engineering and Mobility Safety Management)
Show Figures

Figure 1

32 pages, 3815 KiB  
Article
Temporal Synchrony in Bodily Interaction Enhances the Aha! Experience: Evidence for an Implicit Metacognitive Predictive Processing Mechanism
by Jiajia Su and Haosheng Ye
J. Intell. 2025, 13(7), 83; https://doi.org/10.3390/jintelligence13070083 - 7 Jul 2025
Viewed by 505
Abstract
Grounded in the theory of metacognitive prediction error minimization, this study is the first to propose and empirically validate the mechanism of implicit metacognitive predictive processing by which bodily interaction influences the Aha! experience. Three experimental groups were designed to manipulate the level [...] Read more.
Grounded in the theory of metacognitive prediction error minimization, this study is the first to propose and empirically validate the mechanism of implicit metacognitive predictive processing by which bodily interaction influences the Aha! experience. Three experimental groups were designed to manipulate the level of temporal synchrony in bodily interaction: Immediate Mirror Group, Delayed Mirror Group, and No-Interaction Control Group. A three-stage experimental paradigm—Prediction, Execution, and Feedback—was constructed to decompose the traditional holistic insight task into three sequential components: solution time prediction (prediction phase), riddle solving (execution phase), and self-evaluation of Aha! experience (feedback phase). Behavioral results indicated that bodily interaction significantly influenced the intensity of the Aha! experience, likely mediated by metacognitive predictive processing. Significant or marginally significant differences emerged across key measures among the three groups. Furthermore, fNIRS results revealed that low-frequency amplitude during the “solution time prediction” task was associated with the Somato-Cognitive Action Network (SCAN), suggesting its involvement in the early predictive stage. Functional connectivity analysis also identified Channel 16 within the reward network as potentially critical to the Aha! experience, warranting further investigation. Additionally, the high similarity in functional connectivity patterns between the Mirror Game and the three insight tasks implies that shared neural mechanisms of metacognitive predictive processing are engaged during both bodily interaction and insight. Brain network analyses further indicated that the Reward Network (RN), Dorsal Attention Network (DAN), and Ventral Attention Network (VAN) are key neural substrates supporting this mechanism, while the SCAN network was not consistently involved during the insight formation stage. In sum, this study makes three key contributions: (1) it proposes a novel theoretical mechanism—implicit metacognitive predictive processing; (2) it establishes a quantifiable, three-stage paradigm for insight research; and (3) it outlines a dynamic neural pathway from bodily interaction to insight experience. Most importantly, the findings offer an integrative model that bridges embodied cognition, enactive cognition, and metacognitive predictive processing, providing a unified account of the Aha! experience. Full article
(This article belongs to the Section Studies on Cognitive Processes)
Show Figures

Figure 1

Back to TopTop