Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (799)

Search Parameters:
Keywords = net ecosystem productivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1252 KiB  
Article
Rubber-Ficus hirta Vahl. Agroforestry System Enhances Productivity and Resource Utilization Efficiency and Reduces Carbon Footprint
by Jian Pan, Xiu Zeng, Zhengfan Tian, Yan Zhang, Yuanran Xian, Hanqi Tu, Jianxiong Huang and Xiuquan Wang
Agriculture 2025, 15(16), 1750; https://doi.org/10.3390/agriculture15161750 - 15 Aug 2025
Abstract
Developing a more productive, resource-efficient, and climate-smart rubber agroforestry model is essential for the sustainable growth of natural rubber cultivation. In this study, we evaluated whether a double-row rubber plantation intercropped with the medicinal crop Ficus hirta Vahl. (DR-F) could achieve this goal, [...] Read more.
Developing a more productive, resource-efficient, and climate-smart rubber agroforestry model is essential for the sustainable growth of natural rubber cultivation. In this study, we evaluated whether a double-row rubber plantation intercropped with the medicinal crop Ficus hirta Vahl. (DR-F) could achieve this goal, using a single-row rubber plantation (SR) as the control. We assessed the feasibility of the DR-F system based on productivity, solar utilization efficiency (SUE), partial factor productivity of applied nitrogen (PFPN), carbon efficiency (CE), net ecosystem carbon balance (NECB), and carbon footprint (CF). No significant difference was observed in rubber tree biomass between the DR-F (10.49 t·ha−1) and SR (8.49 t·ha−1) systems. However, the DR-F system exhibited significantly higher total biomass productivity (23.34 t·ha−1) than the SR systems due to the substantial contribution from intercropped Ficus hirta Vahl., which yielded 12.84 t·ha−1(p < 0.05). The root fresh weight yield of Ficus hirta Vahl. reached 17.55 t·ha−1, generating an additional profit of 20,417 CNY ha−1. The DR-F system also exhibited higher solar radiation interception and greater availability of soil nutrients. Notably, the roots of rubber trees and Ficus hirta Vahl. did not overlap at a 4 m distance from the rubber trees. The DR-F system achieved higher SUE (0.64%), PFPN (51.40 kg·kg−1 N), and CE (6.93 kg·kg−1 C) than the SR system, with the SUE and PFPN differences being statistically significant (p < 0.05). Although the NECB remained unaffected, the DR-F system demonstrated significantly higher productivity and a substantially lower CF (0.33 kg CO2·kg−1, a 56% reduction; p < 0.05). In conclusion, the DR-F system represents a more sustainable and beneficial agroforestry approach, offering improved productivity, greater resource use efficiency, and reduced environmental impact. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

28 pages, 5112 KiB  
Article
Remote Sensing and Machine Learning Uncover Dominant Drivers of Carbon Sink Dynamics in Subtropical Mountain Ecosystems
by Leyan Xia, Hongjian Tan, Jialong Zhang, Kun Yang, Chengkai Teng, Kai Huang, Jingwen Yang and Tao Cheng
Remote Sens. 2025, 17(16), 2843; https://doi.org/10.3390/rs17162843 - 15 Aug 2025
Abstract
Net ecosystem productivity (NEP) serves as a key indicator for assessing regional carbon sink potential, with its dynamics regulated by nonlinear interactions among multiple factors. However, its driving factors and their coupling processes remain insufficiently characterized. This study investigated terrestrial ecosystems in Yunnan [...] Read more.
Net ecosystem productivity (NEP) serves as a key indicator for assessing regional carbon sink potential, with its dynamics regulated by nonlinear interactions among multiple factors. However, its driving factors and their coupling processes remain insufficiently characterized. This study investigated terrestrial ecosystems in Yunnan Province, China, to elucidate the drivers of NEP using 14 environmental factors (including topography, meteorology, soil texture, and human activities) and 21 remote sensing features. We developed a research framework based on “Feature Selection–Machine Learning–Mechanism Interpretation.” The results demonstrated that the Variable Selection Using Random Forests (VSURF) feature selection method effectively reduced model complexity. The selected features achieved high estimation accuracy across three machine learning models, with the eXtreme Gradient Boosting Regression (XGBR) model performing optimally (R2 = 0.94, RMSE = 76.82 gC/(m2·a), MAE = 55.11 gC/(m2·a)). Interpretation analysis using the SHAP (SHapley Additive exPlanations) method revealed the following: (1) The Enhanced Vegetation Index (EVI), soil pH, solar radiation, air temperature, clay content, precipitation, sand content, and vegetation type were the primary drivers of NEP in Yunnan. Notably, EVI’s importance exceeded that of other factors by approximately 3 to 10 times. (2) Significant interactions existed between soil texture and temperature: Under low-temperature conditions (−5 °C to 12.15 °C), moderate clay content (13–25%) combined with high sand content (40–55%) suppressed NEP. Conversely, within the medium to high temperature range (5 °C to 23.79 °C), high clay content (25–40%) coupled with low sand content (25–43%) enhanced NEP. These findings elucidate the complex driving mechanisms of NEP in subtropical ecosystems, confirming the dominant role of EVI in carbon sequestration and revealing nonlinear regulatory patterns in soil–temperature interactions. This study provides not only a robust “Feature Selection–Machine Learning–Mechanism Interpretation” modeling framework for assessing carbon budgets in mountainous regions but also a scientific basis for formulating regional carbon management policies. Full article
(This article belongs to the Section Ecological Remote Sensing)
14 pages, 653 KiB  
Review
Cadmium-Induced Bone Toxicity: Deciphering the Osteoclast–Osteoblast Crosstalk
by Shuangjiang He and Kanglei Zhang
Biology 2025, 14(8), 1051; https://doi.org/10.3390/biology14081051 - 14 Aug 2025
Abstract
Cadmium (Cd), a pervasive environmental and industrial toxicant, bioaccumulates and exerts severe detrimental effects on skeletal integrity across diverse animal species. Cd-induced bone injury manifests as osteoporosis, osteomalacia, and increased fracture risk, posing significant health and welfare concerns for wildlife and livestock inhabiting [...] Read more.
Cadmium (Cd), a pervasive environmental and industrial toxicant, bioaccumulates and exerts severe detrimental effects on skeletal integrity across diverse animal species. Cd-induced bone injury manifests as osteoporosis, osteomalacia, and increased fracture risk, posing significant health and welfare concerns for wildlife and livestock inhabiting contaminated ecosystems. The pathogenesis hinges critically on the disruption of bone remodeling, a tightly regulated process orchestrated by osteoclasts (OCs) responsible for bone resorption and osteoblasts (OBs) responsible for bone formation. This comprehensive review synthesizes the latest mechanistic insights into how Cd disturbs OC and OB function and their intricate crosstalk, leading to net bone loss. Cd directly impairs OB proliferation, differentiation, and mineralization capacity through multiple pathways, including the inhibition of Wnt/β-catenin signaling, induction of oxidative stress and mitochondrial dysfunction, promotion of apoptosis and senescence, and disruption of extracellular matrix protein synthesis. Simultaneously, Cd potently stimulates excessive OC formation and activity. It achieves this by upregulating the RANKL/OPG axis, enhancing reactive oxygen species (ROS) production which activates key OC transcription factors, modulating key signaling pathways, and promoting pro-osteoclastogenic inflammatory cytokine release from bone marrow and immune cells. Critically, Cd disrupts the vital communication between OBs and OCs, perturbing the coupling signals essential for balanced remodeling. Emerging evidence highlights roles for Cd-induced epigenetic modifications and autophagy/mitophagy flux alterations. This narrative review integrates the findings from in vivo animal models and in vitro cellular studies, providing potential therapeutic interventions and mitigation strategies for Cd-induced bone toxicity. Understanding these complex and interacting mechanisms provides a foundation for identifying potential therapeutic targets to mitigate Cd bone toxicity in animals and informs ecological risk assessment and management strategies in contaminated environments. Full article
Show Figures

Figure 1

22 pages, 4348 KiB  
Article
Design Thinking, Acting, and Making Net Zero Transformational Change Across NHS Scotland
by Paul A. Rodgers, Mel Woods, Sonja Oliveira, Efstathios Tapinos, David Bucknall, Fraser Bruce, Andrew Wodehouse, Gregor White and Marc P. Y. Desmulliez
Societies 2025, 15(8), 222; https://doi.org/10.3390/soc15080222 - 13 Aug 2025
Viewed by 119
Abstract
Climate change is the biggest global health threat of the 21st century. However, this challenge presents an opportunity to do things differently. This paper sets out how, using a design-led and collaborative approach, one can re-imagine the delivery of healthcare itself in a [...] Read more.
Climate change is the biggest global health threat of the 21st century. However, this challenge presents an opportunity to do things differently. This paper sets out how, using a design-led and collaborative approach, one can re-imagine the delivery of healthcare itself in a way that will deliver environmental sustainability. The paper presents a series of eight projects at the intersections of design, health and wellbeing, and complex net zero challenges, with an emphasis on inclusive, equitable, and sustainable design-led interventions. This encompasses diverse interventions across and beyond conventional design boundaries such as architecture, product design, and textile design providing insights that demonstrate the impact of design thinking, making, and acting on real-world net zero issues. Addressing such a broad and complex topic requires engagement across a wide range of stakeholders. The work undertaken has been conducted as part of a UK Government-funded Green Transition Ecosystem (GTE) Hub that has allowed multiple academic disciplines, research organisations, regional and local industry, and other public sector stakeholders, to connect with policy makers. Across seven themes, the paper describes how Design HOPES (Healthy Organisations in a Place-based Ecosystem, Scotland), as a design-led GTE Hub, brings in multiple and marginalised perspectives and how its design-led projects as one part of a wider movement for transformational change can re-use, nurture and develop these interventions sustainably. The overarching ambition being, through our collaborative design-led thinking, making, and acting, to build a more equitable and sustainable health and social care system across Scotland. Full article
Show Figures

Figure 1

15 pages, 2236 KiB  
Article
Spatial Patterns and Controlling Mechanisms of CO2 Fluxes Across China’s Diverse Wetlands Based on Eddy Covariance Measurements
by Fengfeng Du, Zengshan Chen, Xixi Li, Jixiang Liu, Xuhui Kan, Yanjie Wang, Xiaojing Liu and Dongrui Yao
Land 2025, 14(8), 1629; https://doi.org/10.3390/land14081629 - 13 Aug 2025
Viewed by 191
Abstract
Wetlands play a critical role in modulating the global carbon cycle and significantly contribute to climate change mitigation. China’s wetlands are characterized by high diversity, a large total area, wide distribution, and strong regional variability. However, the carbon exchange dynamics across different wetland [...] Read more.
Wetlands play a critical role in modulating the global carbon cycle and significantly contribute to climate change mitigation. China’s wetlands are characterized by high diversity, a large total area, wide distribution, and strong regional variability. However, the carbon exchange dynamics across different wetland types and their controlling mechanisms remain poorly understood. Here, we quantified and compared CO2 fluxes (gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem productivity (NEP)) among China’s wetland types using eddy covariance measurements, analyzing spatial patterns and controlling mechanisms. Coastal wetlands exhibited higher annual GPP, ER, and NEP compared with inland wetlands. Among all wetland types, mangrove ecosystems had the highest carbon uptake capacity. The carbon conversion efficiency (CCE) of inland wetlands (0.89 ± 0.24) was higher than that of coastal wetlands (0.66 ± 0.12), suggesting that inland wetlands are less efficient at carbon fixation than coastal wetlands. However, due to their larger total area than that of coastal wetlands, inland wetlands in China likely constitute a greater overall CO2 sink. Spatially, GPP and NEP showed significant differences between the tropical/subtropical zones and the temperate/plateau zones (p < 0.05), indicating the influence of climatic conditions. Climate factors influenced carbon fluxes primarily through their regulation of vegetation and soil features. The cascading relationships among climate, vegetation, and soil, as revealed by structural equation modeling (SEM), explained 61–71% of the spatial variation in GPP and ER, and 68% in NEP. Our findings provide valuable theoretical insights into the role of China’s wetland ecosystem in the global carbon cycle. Full article
Show Figures

Figure 1

31 pages, 21653 KiB  
Article
Spatiotemporal Variation Characteristics and Driving Mechanisms of Net Primary Productivity of Vegetation on Northern Slope of Tianshan Mountains Based on CASA Model, China
by Yongjun Du, Xiaolong Li, Xinlin He, Quanli Zong, Guang Yang and Fuchu Zhang
Plants 2025, 14(16), 2499; https://doi.org/10.3390/plants14162499 - 12 Aug 2025
Viewed by 234
Abstract
Net primary productivity (NPP) reflects the carbon sequestration capacity of terrestrial ecosystems and it is used as an important indicator for measuring ecosystem quality. However, due to the effects of “warming and humidification” and “oasisization”, the spatiotemporal evolution and driving mechanisms of the [...] Read more.
Net primary productivity (NPP) reflects the carbon sequestration capacity of terrestrial ecosystems and it is used as an important indicator for measuring ecosystem quality. However, due to the effects of “warming and humidification” and “oasisization”, the spatiotemporal evolution and driving mechanisms of the NPP of vegetation in the northern slope of the Tianshan Mountains (NSTM), a typical arid area in China, are still unclear. Thus, in this study, we used remote sensing data and meteorological data to construct a Carnegie–Ames–Stanford–Approach (CASA) model for estimating the NPP of vegetation in the study area. Trend analysis, partial correlation analysis, and optimal parameter-based geographic detector (OPGD) methods were combined to explore the spatiotemporal evolution and driving mechanisms to changes in the NPP. The results showed that from 2001 to 2020, the annual average NPP on the NSTM exhibited an overall significant upward trend, increasing from 107.33 gC⋅m−2⋅yr−1 to 156.77 gC⋅m−2⋅yr−1, with an increase of 2.47 gC⋅m−2 per year and 46.06% year-on-year. Over the past 20 years, climate change and human activities generally positively affected the changes in NPP in the study area. Human activities in the study area are mainly manifested in the large-scale conversion of other land use types into farmland, with a total increase of 16,154 km2 in farmland area, resulting in a net increase of 6.01 TgC in NPP. Precipitation has the strongest correlation with NPP in the study area, with a partial correlation coefficient of 0.30, temperature and solar radiation have partial correlation coefficients with NPPs of 0.17 and 0.09, respectively. Therefore, increases in precipitation, temperature, and solar radiation have a promoting effect on the growth of NPP on the NSTM. During the study period, the land use type and soil moisture were the main factors that affected the spatial differentiation of vegetation NPP, and the effects of human interference on natural environmental conditions had significant impacts on vegetation NPP in the area. Therefore, in this study, we accurately determined the spatiotemporal variations in the NPP on the NSTM and comprehensively explored the driving mechanisms to provide a theoretical basis for sustainable development in arid areas and achieving carbon neutrality goals. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 7063 KiB  
Article
An Improved InTEC Model for Estimating the Carbon Budgets in Eucalyptus Plantations
by Zhipeng Li, Mingxing Zhou, Kunfa Luo, Yunzhong Wu and Dengqiu Li
Remote Sens. 2025, 17(15), 2741; https://doi.org/10.3390/rs17152741 - 7 Aug 2025
Viewed by 186
Abstract
Eucalyptus has become a major plantation crop in southern China, with a carbon sequestration capacity significantly higher than that of other species. However, its long-term carbon sequestration capacity and regional-scale potential remain highly uncertain due to commonly applied short-rotation management practices. The InTEC [...] Read more.
Eucalyptus has become a major plantation crop in southern China, with a carbon sequestration capacity significantly higher than that of other species. However, its long-term carbon sequestration capacity and regional-scale potential remain highly uncertain due to commonly applied short-rotation management practices. The InTEC (Integrated Terrestrial Ecosystem Carbon) model is a process-based biogeochemical model that simulates carbon dynamics in terrestrial ecosystems by integrating physiological processes, environmental drivers, and management practices. In this study, the InTEC model was enhanced with an optimized eucalyptus module (InTECeuc) and a data assimilation module (InTECDA), and driven by multiple remote sensing products (Net Primary Productivity (NPP) and carbon density) to simulate the carbon budgets of eucalyptus plantations from 2003 to 2023. The results indicated notable improvements in the performance of the InTECeuc model when driven by different datasets: carbon density simulation showed improvements in R2 (0.07–0.56), reductions in MAE (5.99–28.51 Mg C ha−1), reductions in RMSE (8.1–31.85 Mg C ha−1), and improvements in rRMSE (12.37–51.82%), excluding NPPLin. The carbon density-driven InTECeuc model outperformed the NPP-driven model, with improvements in R2 (0.28), MAE (−8.15 Mg C ha−1), RMSE (−9.43 Mg C ha−1), and rRMSE (−15.34%). When the InTECDA model was employed, R2 values for carbon density improved by 0–0.03 (excluding ACDYan), with MAE reductions between 0.17 and 7.22 Mg C ha−1, RMSE reductions between 0.33 and 12.94 Mg C ha−1 and rRMSE improvements ranging from 0.51 to 20.22%. The carbon density-driven InTECDA model enabled the production of high-resolution and accurate carbon budget estimates for eucalyptus plantations from 2003 to 2023, with average NPP, Net Ecosystem Productivity (NEP), and Net Biome Productivity (NBP) values of 17.80, 10.09, and 9.32 Mg C ha−1 yr−1, respectively, offering scientific insights and technical support for the management of eucalyptus plantations in alignment with carbon neutrality targets. Full article
Show Figures

Figure 1

18 pages, 11555 KiB  
Article
Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region
by Ying Huang, Xinsheng Chen, Ying Zhuo and Lianlian Zhu
Water 2025, 17(15), 2337; https://doi.org/10.3390/w17152337 - 6 Aug 2025
Viewed by 301
Abstract
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil [...] Read more.
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil retention, flood regulation, water purification, net primary productivity, and habitat quality) were investigated through remote-sensing images and the InVEST model in the Dongting Lake Region during 2000–2020. Results revealed that crop and aquatic production increased significantly from 2000 to 2020, particularly in the northwestern and central regions, while soil retention and net primary productivity also improved. However, flood regulation, water purification, and habitat quality decreased, with the fastest decline in habitat quality occurring at the periphery of the Dongting Lake. Land-use types accounted for 63.3%, 53.8%, and 40.3% of spatial heterogeneity in habitat quality, flood regulation, and water purification, respectively. Land-use changes, particularly the expansion of construction land and the conversion of water bodies to cropland, led to a sharp decline in soil retention, flood regulation, water purification, net primary productivity, and habitat quality. In addition, crop production and aquatic production were higher in cultivated land and residential land, while the accompanying degradation of flood regulation, water purification, and habitat quality formed a “production-pollution-degradation” spatial coupling pattern. Furthermore, hydrological fluctuations further complicated these dynamics; wet years amplified agricultural outputs but intensified ecological degradation through spatial spillover effects. These findings underscore the need for integrated land-use and hydrological management strategies that balance human livelihoods with ecosystem resilience. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 375
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

19 pages, 1721 KiB  
Article
Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests
by Laura I. Ramos, Cecilia M. Prada and Pablo R. Stevenson
Forests 2025, 16(8), 1256; https://doi.org/10.3390/f16081256 - 1 Aug 2025
Viewed by 732
Abstract
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y [...] Read more.
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y old) and secondary forests (ca. 30 years old). Two censuses of individuals (DBH ≥ 2.5 cm) were conducted over 7–13 years. We recorded 516 species across 202 genera and 89 families. Floristic composition differed significantly between forest types (PERMANOVA, p = 0.001), and black oak (Trigonobalanus excelsa Lozano, Hern. Cam. & Henao) forests formed distinct assemblages. Demographic rates were higher in secondary forests, with mortality (4.17% yr), recruitment (4.51% yr), and relative growth rate (0.02% yr) exceeding those of primary forests. The mean aboveground biomass accumulation and the rate of annual change were higher in primary forests (447.5 Mg ha−1 and 466.8 Mg ha−1 yr−1, respectively) than in secondary forests (217.2 Mg ha−1 and 217.2 Mg ha−1 yr−1, respectively). Notably, black oak forests showed the greatest biomass accumulation and rate of change in biomass. Annual net biomass production was higher in secondary forests (8.72 Mg ha−1 yr−1) than in primary forests (5.66 Mg ha−1 yr−1). These findings highlight the ecological distinctiveness and recovery potential of secondary Sub-Andean forests and underscore the value of multitemporal monitoring to understand forest resilience and assess vulnerability to environmental change. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

21 pages, 3013 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 428
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

17 pages, 4929 KiB  
Article
Assessment of Grassland Carrying Capacity and Grass–Livestock Balance in the Three River Headwaters Region Under Different Scenarios
by Wenjing Li, Qiong Luo, Zhe Chen, Yanlin Liu, Zhouyuan Li and Wenying Wang
Biology 2025, 14(8), 978; https://doi.org/10.3390/biology14080978 - 1 Aug 2025
Viewed by 256
Abstract
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, [...] Read more.
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, MODIS Net Primary Productivity (NPP) data, and artificial supplementary feeding data to analyze grassland CC and explore changes in the grass–livestock balance across various scenarios. The results showed that the theoretical CC of edible forage under complete grazing conditions was much lower than that of crude protein under nutritional carrying conditions. Furthermore, without increasing the grazing intensity of natural grasslands, artificial supplementary feeding reduced overstocking areas by 21%. These results suggest that supplementary feeding effectively addresses the imbalance between forage supply and demand, serving as a key measure for achieving sustainable grassland livestock husbandry. Despite the effective mitigation of grassland degradation in the TRHR due to strict grass–livestock balance policies and ecological restoration projects, the actual livestock CC exceeded the theoretical capacity, leading to overgrazing in some areas. To achieve desired objectives, more effective grassland management strategies must be implemented in the future to minimize spatiotemporal conflicts between grasses and livestock and ensure the health and stability of grassland ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 412
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

32 pages, 6657 KiB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 414
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

23 pages, 3216 KiB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 329
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

Back to TopTop