Cadmium-Induced Bone Toxicity: Deciphering the Osteoclast–Osteoblast Crosstalk
Simple Summary
Abstract
1. Introduction
2. Cadmium Exposure and Bone Accumulation in Animals
3. Mechanisms of Cadmium Toxicity in Osteoclasts
3.1. Stimulation of Osteoclastogenesis and Resorption
3.2. Role of Oxidative Stress and Inflammation
3.3. Disruption of Cytoskeleton and Resorptive Function
3.4. Induction of Autophagy and Apoptosis
4. Mechanisms of Cadmium Toxicity in Osteoblasts
4.1. Inhibition of Proliferation, Differentiation, and Mineralization
4.2. Induction of Oxidative Stress and Mitochondrial Damage
4.3. Promotion of Apoptosis and Senescence
4.4. Epigenetic Modifications
5. Disruption of Osteoblast–Osteoclast Crosstalk and Bone Remodeling Coupling
5.1. Altered RANKL/OPG Axis by Osteoblasts
5.2. Senescence-Associated Secretory Phenotype (SASP)
5.3. Impaired Coupling Factors
6. Role of Osteocytes and Other Cell Types
7. Animal Models and Species Differences
8. Potential Therapeutic Interventions and Mitigation Strategies (Research Focus)
9. Conclusions
10. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Fotopoulos, V.; Zhou, K.; Fernie, A.R. The role of gasotransmitter hydrogen sulfide in plant cadmium stress responses. Trends Plant Sci. 2025, 30, 35–53. [Google Scholar] [CrossRef]
- Amzal, B.; Julin, B.; Vahter, M.; Wolk, A.; Johanson, G.; Akesson, A. Population toxicokinetic modeling of cadmium for health risk assessment. Environ. Health Perspect. 2009, 117, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Su, Q.; Yue, C.; Zou, H.; Zhu, J.; Zhao, H.; Song, R.; Liu, Z. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int. J. Mol. Sci. 2022, 23, 13491. [Google Scholar] [CrossRef]
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef]
- Durdan, M.M.; Azaria, R.D.; Weivoda, M.M. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin. Cell Dev. Biol. 2022, 123, 4–13. [Google Scholar] [CrossRef]
- The Lancet Diabetes Endocrinology. Osteoporosis: A roadmap to close the treatment gap. Lancet Diabetes Endocrinol. 2018, 6, 833. [Google Scholar] [CrossRef]
- Engstrom, A.; Michaelsson, K.; Vahter, M.; Julin, B.; Wolk, A.; Akesson, A. Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone 2012, 50, 1372–1378. [Google Scholar] [CrossRef]
- Ahmed, E.H.; Grawish, M.E.; Anees, M.M.; Elhindawy, M.M.; Abdulrahman, M.; Helal, M.E. Impact of bone marrow mesenchymal stem cells on the submandibular gland structure of adult male albino rats exposed to cadmium chloride toxicity. Arch. Oral Biol. 2023, 145, 105585. [Google Scholar] [CrossRef]
- Wang, R.; Sang, P.; Guo, Y.; Jin, P.; Cheng, Y.; Yu, H.; Xie, Y.; Yao, W.; Qian, H. Cadmium in food: Source, distribution and removal. Food Chem. 2023, 405, 134666. [Google Scholar] [CrossRef]
- Sasaki, T.; Horiguchi, H.; Matsukawa, T.; Kobayashi, M.; Omori, Y.; Oguma, E.; Komatsuda, A. A suspected case of “itai-itai disease” in a cadmium-polluted area in Akita prefecture, Japan. Environ. Health Prev. Med. 2024, 29, 40. [Google Scholar] [CrossRef]
- Luo, H.; Gu, R.; Ouyang, H.; Wang, L.; Shi, S.; Ji, Y.; Bao, B.; Liao, G.; Xu, B. Cadmium exposure induces osteoporosis through cellular senescence, associated with activation of NF-kappaB pathway and mitochondrial dysfunction. Environ. Pollut. 2021, 290, 118043. [Google Scholar] [CrossRef]
- Chaney, R.L.; Reeves, P.G.; Ryan, J.A.; Simmons, R.W.; Welch, R.M.; Angle, J.S. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 2004, 17, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Jarup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Wentink, G.H.; Wensing, T.; Kessels, B.G. Toxicity of cadmium in cattle. Tijdschr. Diergeneeskd. 1992, 117, 548–550. [Google Scholar]
- Das, S.; Kar, I.; Patra, A.K. Cadmium induced bioaccumulation, histopathology, gene regulation in fish and its amelioration—A review. J. Trace Elem. Med. Biol. 2023, 79, 127202. [Google Scholar] [CrossRef] [PubMed]
- Belbel, F.; Boukheroufa, M.; Micle, V.; Sur, I.M.; Sakraoui, F.; Smical, I. Heavy Metal Accumulation (Cd, As, Zn, Cu, Cr) in Hair and Bones of Small Mammal Prey of the Sentinel Species Common Genet (Genetta genetta) in an Anthropogenic Environment of Edough Mountain Forest, Northeastern Algeria. Animals 2025, 15, 114. [Google Scholar] [CrossRef]
- Thevenod, F.; Lee, W.K. Cadmium transport by mammalian ATP-binding cassette transporters. Biometals 2024, 37, 697–719. [Google Scholar] [CrossRef]
- Biswas, P.P.; Rathod, J.; Chiang, C.Y.; Liang, B.; Wang, C.C.; Lee, Y.C.; Chuang, Y.C.; Loni, P.C.; Chen, W.H.; Wang, S.L. First principal observation documenting the three-dimensional uptake of cadmium and spatial distribution of cadmium hydroxyapatite mineral in bone char. Chemosphere 2023, 337, 139357. [Google Scholar] [CrossRef]
- Xie, D.; Sheng, Z. Low-Level Cadmium Exposure and Bone Health. J. Bone Miner. Res. 2017, 32, 419. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Schwarz, E.M.; Boyce, B.F. Osteoclast precursors, RANKL/RANK, and immunology. Immunol. Rev. 2005, 208, 19–29. [Google Scholar] [CrossRef]
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Luthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef]
- Tang, C.; Lv, X.; Zou, L.; Rong, Y.; Zhang, L.; Xu, M.; Li, S.; Chen, G. Cadmium exposure and osteoporosis: Epidemiological evidence and mechanisms. Toxicol. Sci. 2025, 205, 1–10. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Zhu, G.; Chen, X. Low levels of cadmium exposure affect bone by inhibiting Lgr4 expression in osteoblasts and osteoclasts. J. Trace Elem. Med. Biol. 2022, 73, 127025. [Google Scholar] [CrossRef]
- He, S.; Zhuo, L.; Cao, Y.; Liu, G.; Zhao, H.; Song, R.; Liu, Z. Effect of cadmium on osteoclast differentiation during bone injury in female mice. Environ. Toxicol. 2020, 35, 487–494. [Google Scholar] [CrossRef]
- Ma, Y.; Ran, D.; Shi, X.; Zhao, H.; Liu, Z. Cadmium toxicity: A role in bone cell function and teeth development. Sci. Total Environ. 2021, 769, 144646. [Google Scholar] [CrossRef]
- Kim, M.S.; Yang, Y.M.; Son, A.; Tian, Y.S.; Lee, S.I.; Kang, S.W.; Muallem, S.; Shin, D.M. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J. Biol. Chem. 2010, 285, 6913–6921. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, G.; Jin, T.; Gu, S.; Xiao, H.; Qiu, J. Cadmium induces differentiation of RAW264.7 cells into osteoclasts in the presence of RANKL. Food Chem. Toxicol. 2011, 49, 2392–2397. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Le, C.C.; Wang, D.; Ran, D.; Wang, Y.; Zhao, H.; Gu, J.; Zou, H.; Yuan, Y.; Bian, J.; et al. Ca(2+)/CaM/CaMK signaling is involved in cadmium-induced osteoclast differentiation. Toxicology 2020, 441, 152520. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheng, R.; Liu, J.; Fang, J.; Wang, X.; Cui, Y.; Zhang, P.; Du, B. Linarin Protects against Cadmium-Induced Osteoporosis Via Reducing Oxidative Stress and Inflammation and Altering RANK/RANKL/OPG Pathway. Biol. Trace Elem. Res. 2022, 200, 3688–3700. [Google Scholar] [CrossRef]
- Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.; et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 2002, 3, 889–901. [Google Scholar] [CrossRef]
- Yan, L.J.; Allen, D.C. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021, 11, 1575. [Google Scholar] [CrossRef]
- Qu, F.; Zheng, W. Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health. Toxics 2024, 12, 388. [Google Scholar] [CrossRef]
- An, Y.; Zhang, H.; Wang, C.; Jiao, F.; Xu, H.; Wang, X.; Luan, W.; Ma, F.; Ni, L.; Tang, X.; et al. Activation of ROS/MAPKs/NF-kappaB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 2019, 33, 12515–12527. [Google Scholar] [CrossRef]
- Liu, H.; Fu, M.; Ren, Z.; Liu, Z.; Cao, X.; Chen, J.; Pang, Y.; Liu, J. Cadmium exposure induces inflammation, oxidative stress and DNA damage in HUVEC and promotes THP-1 adhesion: A possible mechanism on the formation of atherosclerotic plaque. Toxicology 2025, 511, 154046. [Google Scholar] [CrossRef]
- Cai, L.; Lv, Y.; Yan, Q.; Guo, W. Cytokines: The links between bone and the immune system. Injury 2024, 55, 111203. [Google Scholar] [CrossRef] [PubMed]
- Takito, J.; Inoue, S.; Nakamura, M. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone. Int. J. Mol. Sci. 2018, 19, 984. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhang, K.; Cao, Y.; Liu, G.; Zou, H.; Song, R.; Liu, Z. Effect of cadmium on Rho GTPases signal transduction during osteoclast differentiation. Environ. Toxicol. 2022, 37, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Strzelecka-Kiliszek, A.; Mebarek, S.; Roszkowska, M.; Buchet, R.; Magne, D.; Pikula, S. Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Templeton, D.M. Involvement of CaMK-IIdelta and gelsolin in Cd(2+)-dependent cytoskeletal effects in mesangial cells. J. Cell Physiol. 2013, 228, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, J.; Dong, Z.; Wang, Y.; Wang, G.; Chen, C.; Wang, H.; Yang, Y.; Sun, Y.; Yang, M.; et al. Prolonged Cadmium Exposure and Osteoclastogenesis: A Mechanistic Mouse and in Vitro Study. Environ. Health Perspect. 2024, 132, 67009. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, D.; Mo, L.; Liang, S.; Liao, X.; Guo, S.; Yang, X.; Wei, Q. Low-dose cadmium exposure promotes osteoclastogenesis by enhancing autophagy via inhibiting the mTOR/p70S6K1 signaling pathway. Toxicol. Lett. 2022, 367, 9–18. [Google Scholar] [CrossRef]
- Komori, T. Regulation of osteoblast differentiation by transcription factors. J. Cell Biochem. 2006, 99, 1233–1239. [Google Scholar] [CrossRef]
- Smith, S.S.; Reyes, J.R.; Arbon, K.S.; Harvey, W.A.; Hunt, L.M.; Heggland, S.J. Cadmium-induced decrease in RUNX2 mRNA expression and recovery by the antioxidant N-acetylcysteine (NAC) in the human osteoblast-like cell line, Saos-2. Toxicol. In Vitro 2009, 23, 60–66. [Google Scholar] [CrossRef]
- Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med. 2013, 19, 179–192. [Google Scholar] [CrossRef]
- Wu, L.; Wei, Q.; Lv, Y.; Xue, J.; Zhang, B.; Sun, Q.; Xiao, T.; Huang, R.; Wang, P.; Dai, X.; et al. Wnt/beta-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells. Int. J. Mol. Sci. 2019, 20, 1519. [Google Scholar] [CrossRef]
- Blumenthal, N.C.; Cosma, V.; Skyler, D.; LeGeros, J.; Walters, M. The effect of cadmium on the formation and properties of hydroxyapatite in vitro and its relation to cadmium toxicity in the skeletal system. Calcif. Tissue Int. 1995, 56, 316–322. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, W.; Wang, Y.; Dai, N.; Gu, J.; Yuan, Y.; Liu, X.; Bian, J.; Liu, Z.P. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways. J. Vet. Sci. 2015, 16, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhuo, L.; Ran, D.; Ma, Y.; Luo, T.; Zhao, H.; Song, R.; Zou, H.; Zhu, J.; Gu, J.; et al. Cadmium induces apoptosis via generating reactive oxygen species to activate mitochondrial p53 pathway in primary rat osteoblasts. Toxicology 2020, 446, 152611. [Google Scholar] [CrossRef]
- Branca, J.J.V.; Fiorillo, C.; Carrino, D.; Paternostro, F.; Taddei, N.; Gulisano, M.; Pacini, A.; Becatti, M. Cadmium-Induced Oxidative Stress: Focus on the Central Nervous System. Antioxidants 2020, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Brama, M.; Politi, L.; Santini, P.; Migliaccio, S.; Scandurra, R. Cadmium-induced apoptosis and necrosis in human osteoblasts: Role of caspases and mitogen-activated protein kinases pathways. J. Endocrinol. Investig. 2012, 35, 198–208. [Google Scholar] [CrossRef]
- Suh, J.; Lee, Y.S. The multifaceted roles of mitochondria in osteoblasts: From energy production to mitochondrial-derived vesicle secretion. J. Bone Miner. Res. 2024, 39, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, C.; Ran, D.; Wang, Y.; Zhao, H.; Gu, J.; Liu, X.; Bian, J.; Yuan, Y.; Liu, Z. CaMKIImediates cadmium induced apoptosis in rat primary osteoblasts through MAPK activation and endoplasmic reticulum stress. Toxicology 2018, 406–407, 70–80. [Google Scholar] [CrossRef]
- Zhu, R.; Wan, H.; Yang, H.; Song, M.; Chai, Y.; Yu, B. The Role of Senescence-Associated Secretory Phenotype in Bone Loss. Front. Cell Dev. Biol. 2022, 10, 841612. [Google Scholar] [CrossRef]
- Arfat, Y.; Xiao, W.Z.; Ahmad, M.; Zhao, F.; Li, D.J.; Sun, Y.L.; Hu, L.; Zhihao, C.; Zhang, G.; Iftikhar, S.; et al. Role of microRNAs in osteoblasts differentiation and bone disorders. Curr. Med. Chem. 2015, 22, 748–758. [Google Scholar] [CrossRef]
- Wu, L.; Song, J.; Xue, J.; Xiao, T.; Wei, Q.; Zhang, Z.; Zhang, Y.; Li, Z.; Hu, Y.; Zhang, G.; et al. MircoRNA-143-3p regulating ARL6 is involved in the cadmium-induced inhibition of osteogenic differentiation in human bone marrow mesenchymal stem cells. Toxicol. Lett. 2020, 331, 159–166. [Google Scholar] [CrossRef]
- Lv, Y.J.; Wei, Q.Z.; Zhang, Y.C.; Huang, R.; Li, B.S.; Tan, J.B.; Wang, J.; Ling, H.T.; Wu, S.X.; Yang, X.F. Low-dose cadmium exposure acts on rat mesenchymal stem cells via RANKL/OPG and downregulate osteogenic differentiation genes. Environ. Pollut. 2019, 249, 620–628. [Google Scholar] [CrossRef]
- Brzoska, M.M.; Rogalska, J. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats. Toxicol. Appl. Pharmacol. 2013, 272, 208–220. [Google Scholar] [CrossRef]
- Sims, N.A.; Martin, T.J. Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. Bonekey Rep. 2014, 3, 481. [Google Scholar] [CrossRef]
- Wan, Y.; Mo, L.J.; Wu, L.; Li, D.L.; Song, J.; Hu, Y.K.; Huang, H.B.; Wei, Q.Z.; Wang, D.P.; Qiu, J.M.; et al. Bone morphogenetic protein 4 is involved in cadmium-associated bone damage. Toxicol. Sci. 2023, 191, 201–211. [Google Scholar] [CrossRef]
- Chen, G.; Deng, C.; Li, Y.P. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012, 8, 272–288. [Google Scholar] [CrossRef]
- Wu, M.; Wu, S.; Chen, W.; Li, Y.P. The roles and regulatory mechanisms of TGF-beta and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res. 2024, 34, 101–123. [Google Scholar] [CrossRef]
- Tresguerres, F.G.F.; Torres, J.; Lopez-Quiles, J.; Hernandez, G.; Vega, J.A.; Tresguerres, I.F. The osteocyte: A multifunctional cell within the bone. Ann. Anat. 2020, 227, 151422. [Google Scholar] [CrossRef] [PubMed]
- Bonewald, L.F. Osteocytes as dynamic multifunctional cells. Ann. N. Y. Acad. Sci. 2007, 1116, 281–290. [Google Scholar] [CrossRef]
- Yu, G.; Wang, Z.; Gong, A.; Fu, X.; Chen, N.; Zhou, D.; Li, Y.; Liu, Z.; Tong, X. Oligomeric Proanthocyanidins Ameliorate Cadmium-Induced Senescence of Osteocytes Through Combating Oxidative Stress and Inflammation. Antioxidants 2024, 13, 1515. [Google Scholar] [CrossRef]
- Zhao, W.; Qian, J.; Li, J.; Su, T.; Deng, X.; Fu, Y.; Liang, X.; Cui, H. From death to birth: How osteocyte death promotes osteoclast formation. Front. Immunol. 2025, 16, 1551542. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, H.; Marahleh, A.; Ohori, F.; Noguchi, T.; Shen, W.R.; Qi, J.; Nara, Y.; Pramusita, A.; Kinjo, R.; Mizoguchi, I. Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption. Int. J. Mol. Sci. 2020, 21, 5169. [Google Scholar] [CrossRef] [PubMed]
- Azuma, Y.; Kaji, K.; Katogi, R.; Takeshita, S.; Kudo, A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J. Biol. Chem. 2000, 275, 4858–4864. [Google Scholar] [CrossRef]
- Brzoska, M.M.; Moniuszko-Jakoniuk, J. Bone metabolism of male rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol. 2005, 207, 195–211. [Google Scholar] [CrossRef]
- Tang, L.; Chen, X.; Bao, Y.; Xu, W.; Lv, Y.; Wang, Z.; Wen, X. CT Imaging Biomarkers of Bone Damage Induced by Environmental Level of Cadmium Exposure in Male Rats. Biol. Trace Elem. Res. 2016, 170, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Kague, E.; Kwon, R.Y.; Winkler, C. Editorial: Fish as model organism for skeletal diseases. Front. Endocrinol. 2023, 14, 1331690. [Google Scholar] [CrossRef] [PubMed]
- Olgun, O. The effect of dietary cadmium supplementation on performance, egg quality, tibia biomechanical properties and eggshell and bone mineralisation in laying quails. Animal 2015, 9, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Zhang, R.; Gong, R.; Liu, X.; Bao, J.; Li, J. Ameliorative effects of dietary selenium against cadmium toxicity on production performance and egg quality in laying hens. Ecotoxicol. Environ. Saf. 2022, 248, 114317. [Google Scholar] [CrossRef]
- Giustina, A.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Lazaretti-Castro, M.; Lips, P.; Marcocci, C.; Bilezikian, J.P. Vitamin D in the older population: A consensus statement. Endocrine 2023, 79, 31–44. [Google Scholar] [CrossRef]
- Ma, Y.; Su, Q.; Zhao, L.; Zhu, J.; Zhao, H.; Song, R.; Zou, H.; Liu, Z. Melatonin prevents cadmium-induced osteoporosis by affecting the osteoblast and osteoclast differentiation and pyroptosis in duck. Poult. Sci. 2024, 103, 103934. [Google Scholar] [CrossRef]
- Kennel, K.A.; Drake, M.T. Adverse effects of bisphosphonates: Implications for osteoporosis management. Mayo Clin. Proc. 2009, 84, 632–637; quiz 638. [Google Scholar] [CrossRef]
- Miller, M.J.; Kroenke, M.A.; Barger, T.; Manning, M.S.; Sohn, W.; Graham, K.; Mytych, D.T.; Gupta, S. Inhibition of RANKL is critical for accurate assessment of anti-drug antibody incidence to denosumab in clinical studies. J. Immunol. Methods 2025, 540, 113864. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zheng, W.; Zhang, J.; Wang, J.; Jin, T.; Tao, P.; Wang, Y.; Liu, C.; Huang, J.; et al. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design. Immunity 2023, 56, 1485–1501.e1487. [Google Scholar] [CrossRef]
- Leone, G.M.; Mangano, K.; Petralia, M.C.; Nicoletti, F.; Fagone, P. Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy. J. Clin. Med. 2023, 12, 1630. [Google Scholar] [CrossRef]
- Tanaka, S.; Matsumoto, T. Sclerostin: From bench to bedside. J. Bone Miner. Metab. 2021, 39, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhai, J.; Heng, K.; Sha, L.; Song, X.; Zhai, H.; Dai, C.; Li, J.; Teng, F.; Huang, J.; et al. Senolytic cocktail dasatinib and quercetin attenuates chronic high altitude hypoxia associated bone loss in mice. Sci. Rep. 2024, 14, 30417. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 Dietary Reference Intakes for Calcium and Vitamin D: What dietetics practitioners need to know. J. Am. Diet. Assoc. 2011, 111, 524–527. [Google Scholar] [CrossRef]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Dai, C.; Ciccotosto, G.D.; Cappai, R.; Tang, S.; Li, D.; Xie, S.; Xiao, X.; Velkov, T. Curcumin Attenuates Colistin-Induced Neurotoxicity in N2a Cells via Anti-inflammatory Activity, Suppression of Oxidative Stress, and Apoptosis. Mol. Neurobiol. 2018, 55, 421–434. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, B.; Shen, J.; Wan, L.; Zhu, Y.; Yi, T.; Xiao, Z. The Beneficial Effects of Quercetin, Curcumin, and Resveratrol in Obesity. Oxid. Med. Cell. Longev. 2017, 2017, 1459497. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.S.; Melton, D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 1996, 93, 8455–8459. [Google Scholar] [CrossRef] [PubMed]
Animal Species | Exposure Route(s) | Major Skeletal Effects | Susceptibility Level | References |
---|---|---|---|---|
Rodents (Rats, Mice) | SC injection, Oral gavage, Drinking water | Significant ↓ BMD, ↓ trabecular bone volume, ↓ bone strength, ↑ OC activity | High | [70,71] |
Fish (Zebrafish, Medaka) | Water (gills/skin), Dietary | Severe vertebral deformities, spinal curvature, mineralization defects (prominent developmental toxicity) | High | [72] |
Birds (Laying hens, Quail) | Dietary | Significant ↓ eggshell quality (disrupted Ca metabolism), ↓ bone mineralization, ↓ bone biomechanical properties | Moderate–High | [73,74] |
Target/Mechanism | Potential Intervention | Proposed Action | Evidence Level (Animal Models) | References |
---|---|---|---|---|
General Oxidative Stress | N-Acetylcysteine (NAC), Melatonin | ↑ GSH synthesis, direct ROS scavenging | Rodents | [45,76] |
Curcumin, Resveratrol, Quercetin | Antioxidant, anti-inflammatory properties | Rodents | [85,86] | |
Osteoclast Activation | Bisphosphonates (e.g., Zoledronate) | Induce OC apoptosis, inhibit resorption | Rodents | [77] |
Anti-RANKL (e.g., Denosumab analog) | Block RANKL binding to RANK, inhibit OC formation | Hypothesized | [78] | |
Inflammation | TNF-α Inhibitors (e.g., Etanercept analog) | Neutralize TNF-α, reduce pro-osteoclastogenic signaling | Limited Rodent | [80] |
IL-1 Receptor Antagonist | Block IL-1 signaling | Hypothesized | [79] | |
Wnt Inhibition (OBs) | Anti-Sclerostin Antibody | Neutralize SOST, restore Wnt signaling, ↑ OB formation | Hypothesized (Romosozumab known effective in osteoporosis) | [81] |
GSK-3β Inhibitors (e.g., Lithium) | Stabilize β-catenin, enhance Wnt signaling | In vitro/Hypothesized | [87] | |
Cellular Senescence | Senolytics (e.g., Dasatinib + Quercetin) | Eliminate senescent cells (OBs, others), remove SASP source | Emerging in other contexts | [82] |
Nutritional Support | Adequate Calcium and Vitamin D | ↓ Cd absorption, support mineralization, bone health | Rodents/Livestock | [83] |
Cd Burden Reduction | Chelators (e.g., EDTA, DMPS—cautious use) | Bind Cd, enhance excretion (primarily acute/high dose) | Variable efficacy, side effects | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Zhang, K. Cadmium-Induced Bone Toxicity: Deciphering the Osteoclast–Osteoblast Crosstalk. Biology 2025, 14, 1051. https://doi.org/10.3390/biology14081051
He S, Zhang K. Cadmium-Induced Bone Toxicity: Deciphering the Osteoclast–Osteoblast Crosstalk. Biology. 2025; 14(8):1051. https://doi.org/10.3390/biology14081051
Chicago/Turabian StyleHe, Shuangjiang, and Kanglei Zhang. 2025. "Cadmium-Induced Bone Toxicity: Deciphering the Osteoclast–Osteoblast Crosstalk" Biology 14, no. 8: 1051. https://doi.org/10.3390/biology14081051
APA StyleHe, S., & Zhang, K. (2025). Cadmium-Induced Bone Toxicity: Deciphering the Osteoclast–Osteoblast Crosstalk. Biology, 14(8), 1051. https://doi.org/10.3390/biology14081051