Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = neonatal thermoregulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2450 KB  
Article
ω9 Monounsaturated and Saturated Colostrum Fatty Acids May Benefit Newborns in General and Subtle Hypothyroid Stages
by Meric A. Altinoz, Muhittin A. Serdar, Selim M. Altinoz, Mustafa Eroglu, Murat Muhcu, Pinar Kumru and Aysel Ozpinar
Nutrients 2025, 17(12), 2017; https://doi.org/10.3390/nu17122017 - 17 Jun 2025
Cited by 1 | Viewed by 716
Abstract
Objectives: This study analyzed correlations of colostrum fatty acids (FAs), newborns’ and mothers’ thyroid hormones (THs), and birth weight, all crucially important in neonatal health. Methods: LC-MS/MS was used to measure 22 FAs in the colostrum of 78 healthy mothers who delivered term [...] Read more.
Objectives: This study analyzed correlations of colostrum fatty acids (FAs), newborns’ and mothers’ thyroid hormones (THs), and birth weight, all crucially important in neonatal health. Methods: LC-MS/MS was used to measure 22 FAs in the colostrum of 78 healthy mothers who delivered term babies. FT3, FT4, and TSH levels were determined in the mothers’ serum, and newborns’ TSH was measured in heel-pricked specimens. Correlations were defined in the whole cohort and the subsets, which were separated according to ranges of birth weight, thyroid hormones, and mothers’ body mass index. Phyton Software was used for statistics. Results: The colostrum’s total FA content was highly variable and correlated positively with the percentage values of arachidic, gondoic, and nervonic acids. Five FAs all positively correlated with birth weight for the entire cohort—including ω9 gondoic, erucic, and nervonic acids as well as saturated behenic and lignoceric acids—all produced with the same elongases. These correlations were relevant to gondoic, nervonic, behenic, and lignoceric acids when mothers with low FT4 levels were evaluated separately and to erucic acid in the subset comprising mothers with high TSH values. Conclusions: The priming of breast epithelia to adjust the colostrum quality starts prenatally, whose regulatory mechanisms partially overlap with fetal fat accretion. Thus, colostrum content may undergo modifications to compensate for the harm of subtle TH deficiencies on neonates’ thermoregulation and development. Considering the previous findings showing that milk ω9 FAs are highest in colostrum, and even higher when mothers deliver preterm, our current results indicate their possible protective functions. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

13 pages, 35894 KB  
Article
An Artificial Intelligence Approach to the Craniofacial Recapitulation of Crisponi/Cold-Induced Sweating Syndrome 1 (CISS1/CISS) from Newborns to Adolescent Patients
by Giulia Pascolini, Dario Didona and Luigi Tarani
Diagnostics 2025, 15(5), 521; https://doi.org/10.3390/diagnostics15050521 - 21 Feb 2025
Viewed by 1155
Abstract
Background/Objectives: Crisponi/cold-induced sweating syndrome 1 (CISS1/CISS, MIM#272430) is a genetic disorder due to biallelic variants in CRFL1 (MIM*604237). The related phenotype is mainly characterized by abnormal thermoregulation and sweating, facial muscle contractions in response to tactile and crying-inducing stimuli at an early [...] Read more.
Background/Objectives: Crisponi/cold-induced sweating syndrome 1 (CISS1/CISS, MIM#272430) is a genetic disorder due to biallelic variants in CRFL1 (MIM*604237). The related phenotype is mainly characterized by abnormal thermoregulation and sweating, facial muscle contractions in response to tactile and crying-inducing stimuli at an early age, skeletal anomalies (camptodactyly of the hands, scoliosis), and craniofacial dysmorphisms, comprising full cheeks, micrognathia, high and narrow palate, low-set ears, and a depressed nasal bridge. The condition is associated with high lethality during the neonatal period and can benefit from timely symptomatic therapy. Methods: We collected frontal images of all patients with CISS1/CISS published to date, which were analyzed with Face2Gene (F2G), a machine-learning technology for the facial diagnosis of syndromic phenotypes. In total, 75 portraits were subdivided into three cohorts, based on age (Cohort 1 and 2) and the presence of the typical facial trismus (Cohort 3). These portraits were uploaded to F2G to test their suitability for facial analysis and to verify the capacity of the AI tool to correctly recognize the syndrome based on the facial features only. The photos which passed this phase (62 images) were fed to three different AI algorithms—DeepGestalt, Facial D-Score, and GestaltMatcher. Results: The DeepGestalt algorithm results, including the correct diagnosis using a frontal portrait, suggested a similar facial phenotype in the first two cohorts. Cohort 3 seemed to be highly differentiable. The results were expressed in terms of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and p Value. The Facial D-Score values indicated the presence of a consistent degree of dysmorphic signs in the three cohorts, which was also confirmed by the GestaltMatcher algorithm. Interestingly, the latter allowed us to identify overlapping genetic disorders. Conclusions: This is the first AI-powered image analysis in defining the craniofacial contour of CISS1/CISS and in determining the feasibility of training the tool used in its clinical recognition. The obtained results showed that the use of F2G can reveal valid support in the diagnostic process of CISS1/CISS, especially in more severe phenotypes, manifesting with facial contractions and potentially lethal consequences. Full article
Show Figures

Figure 1

14 pages, 278 KB  
Article
Maternal Supplementation with Dietary Betaine during Late Gestation Increased Ewe Plasma Creatine and Lamb Thermoregulation under Field Conditions
by Billie-Jaye Brougham, Alice C. Weaver, Alyce M. Swinbourne, Megan R. Tscharke, Amy L. Munn, Jennifer M. Kelly, David O. Kleemann and William H. E. J. van Wettere
Animals 2024, 14(17), 2605; https://doi.org/10.3390/ani14172605 - 7 Sep 2024
Cited by 1 | Viewed by 1386
Abstract
Twin lamb mortality is a significant economic problem impacting the Australian sheep industry. Maternal betaine supplementation improved lamb vigour and early post-natal survival when ewes and lambs were housed indoors, suggesting that betaine may be beneficial to feed under extensive pasture systems. This [...] Read more.
Twin lamb mortality is a significant economic problem impacting the Australian sheep industry. Maternal betaine supplementation improved lamb vigour and early post-natal survival when ewes and lambs were housed indoors, suggesting that betaine may be beneficial to feed under extensive pasture systems. This study investigated whether maternal betaine supplementation during late gestation would improve Merino twin lamb live weight, thermoregulation, vigour and survival to weaning under field conditions. Ewes received dietary betaine at either 0 g/day (CTL; n = 115) or 4 g/day from day 110 of gestation (dG 110) until ~49 days post-partum (pp) (BET; n = 115). Measures indicative of lamb viability and survival were collected within 4–24 h of birth and at ~49 days pp and ~93 days pp. BET ewes had higher creatine and creatinine concentrations at dG 130 than CTL ewes (p < 0.05). BET lambs had a higher rectal temperature within 4–24 h following birth than CTL lambs (p < 0.05). CTL lambs were heavier at ~49 days pp and grew faster from birth to ~49 days pp than BET lambs (both p < 0.05). The time taken after release from the researcher to first suckling was quicker in the CTL lambs than BET lambs (p < 0.05). This study demonstrated that supplementing betaine increased creatine concentration in twin-bearing ewes and thermoregulatory capacity in neonatal lambs under extensive grazing systems. Full article
13 pages, 1694 KB  
Review
Daily Variation of Body Temperature: An Analysis of Influencing Physiological Conditions
by Federica Arrigo, Francesca Arfuso, Caterina Faggio and Giuseppe Piccione
Appl. Sci. 2024, 14(13), 5413; https://doi.org/10.3390/app14135413 - 21 Jun 2024
Cited by 1 | Viewed by 3609
Abstract
The evaluation of thermoregulation in homeothermic animals is important for their health assessment. Body temperature is influenced by the circadian rhythm, which, through certain signals, is regulated by the suprachiasmatic nucleus. Temperature is collected by various methods; to reduce the invasiveness of rectal [...] Read more.
The evaluation of thermoregulation in homeothermic animals is important for their health assessment. Body temperature is influenced by the circadian rhythm, which, through certain signals, is regulated by the suprachiasmatic nucleus. Temperature is collected by various methods; to reduce the invasiveness of rectal temperature sampling, considered the most accurate, infrared thermography has been used. The aim of the present review was to describe the circadian variability of average body temperature in several domestic animal species. In addition to variations due to the circadian rhythm, a number of conditions that can influence body temperature have also been studied. One example of this is exercise, which occurs in the case of domestic animals such as horses, dogs, and donkeys. In particular, it has been analysed in athletic horses, where, following intense exercise, the circadian rhythm of temperature is altered. The daily temperature variation during pregnancy and the neonatal period was also analysed. The circadian rhythm of temperature is influenced by the gestational period of sheep and goats, but this is affected differently depending on the type of species. The same is true for the neonatal period, in kids, lambs, and cattle, where the circadian rhythm is established at different times. Full article
Show Figures

Figure 1

17 pages, 5204 KB  
Article
Transcriptomic Response of Differentiating Porcine Myotubes to Thermal Stress and Donor Piglet Age
by Fabio Sarais, Katharina Metzger, Frieder Hadlich, Claudia Kalbe and Siriluck Ponsuksili
Int. J. Mol. Sci. 2023, 24(17), 13599; https://doi.org/10.3390/ijms241713599 - 2 Sep 2023
Cited by 3 | Viewed by 1979
Abstract
Climate change is a current concern that directly and indirectly affects agriculture, especially the livestock sector. Neonatal piglets have a limited thermoregulatory capacity and are particularly stressed by ambient temperatures outside their optimal physiological range, which has a major impact on their survival [...] Read more.
Climate change is a current concern that directly and indirectly affects agriculture, especially the livestock sector. Neonatal piglets have a limited thermoregulatory capacity and are particularly stressed by ambient temperatures outside their optimal physiological range, which has a major impact on their survival rate. In this study, we focused on the effects of thermal stress (35 °C, 39 °C, and 41 °C compared to 37 °C) on differentiating myotubes derived from the satellite cells of Musculus rhomboideus, isolated from two different developmental stages of thermolabile 5-day-old (p5) and thermostable 20-day-old piglets (p20). Analysis revealed statistically significant differential expression genes (DEGs) between the different cultivation temperatures, with a higher number of genes responding to cold treatment. These DEGs were involved in the macromolecule degradation and actin kinase cytoskeleton categories and were observed at lower temperatures (35 °C), whereas at higher temperatures (39 °C and 41 °C), the protein transport system, endoplasmic reticulum system, and ATP activity were more pronounced. Gene expression profiling of HSP and RBM gene families, which are commonly associated with cold and heat responses, exhibited a pattern dependent on temperature variability. Moreover, thermal stress exhibited an inhibitory effect on cell cycle, with a more pronounced downregulation during cold stress driven by ADGR genes. Additionally, our analysis revealed DEGs from donors with an undeveloped thermoregulation capacity (p5) and those with a fully developed thermoregulation capacity (p20) under various cultivation temperature. The highest number of DEGs and significant GO terms was observed under temperatures of 35 °C and 37 °C. In particular, under 35 °C, the DEGs were enriched in insulin, thyroid hormone, and calcium signaling pathways. This result suggests that the different thermoregulatory capacities of the donor piglets determined the ability of the primary muscle cell culture to differentiate into myotubes at different temperatures. This work sheds new light on the underlying molecular mechanisms that govern piglet differentiating myotube response to thermal stress and can be leveraged to develop effective thermal management strategies to enhance skeletal muscle growth. Full article
(This article belongs to the Special Issue Cellular Responses to Environmental Changes)
Show Figures

Figure 1

29 pages, 9017 KB  
Review
The Role of Brown Adipose Tissue and Energy Metabolism in Mammalian Thermoregulation during the Perinatal Period
by Cécile Bienboire-Frosini, Dehua Wang, Míriam Marcet-Rius, Dina Villanueva-García, Angelo Gazzano, Adriana Domínguez-Oliva, Adriana Olmos-Hernández, Ismael Hernández-Ávalos, Karina Lezama-García, Antonio Verduzco-Mendoza, Jocelyn Gómez-Prado and Daniel Mota-Rojas
Animals 2023, 13(13), 2173; https://doi.org/10.3390/ani13132173 - 1 Jul 2023
Cited by 27 | Viewed by 10006
Abstract
Hypothermia is one of the most common causes of mortality in neonates, and it could be developed after birth because the uterus temperature is more elevated than the extrauterine temperature. Neonates use diverse mechanisms to thermoregulate, such as shivering and non-shivering thermogenesis. These [...] Read more.
Hypothermia is one of the most common causes of mortality in neonates, and it could be developed after birth because the uterus temperature is more elevated than the extrauterine temperature. Neonates use diverse mechanisms to thermoregulate, such as shivering and non-shivering thermogenesis. These strategies can be more efficient in some species, but not in others, i.e., altricials, which have the greatest difficulty with achieving thermoneutrality. In addition, there are anatomical and neurological differences in mammals, which may present different distributions and amounts of brown fat. This article aims to discuss the neuromodulation mechanisms of thermoregulation and the importance of brown fat in the thermogenesis of newborn mammals, emphasizing the analysis of the biochemical, physiological, and genetic factors that determine the distribution, amount, and efficiency of this energy resource in newborns of different species. It has been concluded that is vital to understand and minimize hypothermia causes in newborns, which is one of the main causes of mortality in neonates. This would be beneficial for both animals and producers. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

20 pages, 9148 KB  
Article
Evaluation of Biophysical Properties of Potential Materials for the Manufacture of Protective Garments for Preterm Infants
by Karolina Wilgocka, Ewa Skrzetuska, Izabella Krucińska and Witold Sujka
Materials 2022, 15(14), 4878; https://doi.org/10.3390/ma15144878 - 13 Jul 2022
Cited by 6 | Viewed by 2039
Abstract
Preterm infants, due to immature and dysfunctional skin, have increased water loss through the skin and consequently a decreased body temperature. In order to develop protective garments for preterm infants, it is important to select materials that will protect the child against water [...] Read more.
Preterm infants, due to immature and dysfunctional skin, have increased water loss through the skin and consequently a decreased body temperature. In order to develop protective garments for preterm infants, it is important to select materials that will protect the child against water and heat loss. The authors are currently involved in the development of protective garments for premature babies, which are similar to baby clothes and contain a membrane that is partially permeable for vapor in combination with textile materials. This article presents the study of materials intended for the production of protective garments for pre-term infants. Samples of materials were investigated to determine biophysical comfort (tests of heat resistance, vapor resistance according to PN-EN ISO 11092:2014-11 and air permeability according to PN-EN ISO 9237) and porosity, surface mass in accordance with PN-EN 12127, and thickness in accordance with PN-EN ISO 5084. In order to determine the porosity of materials and to visualize the structure, tests on computer microtomography were carried out. The mechanical properties of the tested materials and the evaluation of the total hand value were characterized; the samples were tested on the KES device. The aim of this study was to select the most suitable fabrics for protective garments for premature infants to prevent excessive heat and moisture loss from the body, which can lead to hypothermia. For laminates, the optimal results of vapor resistance and heat resistance were obtained for laminate (15 g·m−2 PE foil + 15 g·m−2 PP non-woven), with a level of thermal resistance of 0.0766 m2·K·W−1 and vapor resistance of 188.729 m2·Pa·W−1, and for laminate (15 g·m−2 PE foil + 10 g·m−2 PP non-woven), with a level of thermal resistance of 0.0683 m2·K·W−1 and vapor resistance of 164.085 m2·Pa·W−1. For knitted fabrics, knitwear single cotton 155 g·m−2 showed the highest thermal resistance (0.0296 m2·K·W−1), and knitwear interlock polyester 120 g·m−2 showed the lowest thermal resistance (0.0179 m2·K·W−1). Knitwear cotton 120 g·m−2 had the highest water vapor resistance (8.402 m2·Pa·W−1), while knitwear interlock polyester 130 g·m−2 sample had the lowest resistance (6.356 m2·Pa·W−1). Garments for premature babies should have moisture barrier properties and high thermal insulation. They should also be characterized by optimal air permeability properties. Sample two-layer laminate (15 g·m−2 PE foil + 15 g·m−2 PP non-woven) had the best vapor resistance and thermal insulation properties. Moreover, this sample was characterized by good air permeability and surface weight compared to the other laminate samples. During the design of garments for premature babies, it is important to reduce the surface weight to as low as possible. Among the knitted fabrics, a knitwear single cotton 120 g·m−2 knitwear polyester interlock 120 g·m−2 was selected for having the best THV or tactile comfort. In addition, these knits were chosen for their lower surface weight. Based on the conducted tests, two-layer laminate (15 g·m−2 PE foil + 15 g·m−2 PP non-woven), the knitwear single cotton 120 g·m−2, and knitwear polyester interlock 120 g·m−2 were selected for further research. Full article
Show Figures

Figure 1

20 pages, 2176 KB  
Review
Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography
by Karina Lezama-García, Daniel Mota-Rojas, Julio Martínez-Burnes, Dina Villanueva-García, Adriana Domínguez-Oliva, Jocelyn Gómez-Prado, Patricia Mora-Medina, Alejandro Casas-Alvarado, Adriana Olmos-Hernández, Paola Soto and Ramon Muns
Vet. Sci. 2022, 9(5), 246; https://doi.org/10.3390/vetsci9050246 - 23 May 2022
Cited by 32 | Viewed by 6788
Abstract
Thermoregulation in newborn mammals is an essential species-specific mechanism of the nervous system that contributes to their survival during the first hours and days of their life. When exposed to cold weather, which is a risk factor associated with mortality in neonates, pathways [...] Read more.
Thermoregulation in newborn mammals is an essential species-specific mechanism of the nervous system that contributes to their survival during the first hours and days of their life. When exposed to cold weather, which is a risk factor associated with mortality in neonates, pathways such as the hypothalamic–pituitary–adrenal axis (HPA) are activated to achieve temperature control, increasing the circulating levels of catecholamine and cortisol. Consequently, alterations in blood circulation and mechanisms to produce or to retain heat (e.g., vasoconstriction, piloerection, shivering, brown adipocyte tissue activation, and huddling) begin to prevent hypothermia. This study aimed to discuss the mechanisms of thermoregulation in newborn domestic mammals, highlighting the differences between altricial and precocial species. The processes that employ brown adipocyte tissue, shivering, thermoregulatory behaviors, and dermal vasomotor control will be analyzed to understand the physiology and the importance of implementing techniques to promote thermoregulation and survival in the critical post-birth period of mammals. Also, infrared thermography as a helpful method to perform thermal measurements without animal interactions does not affect these parameters. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Figure 1

8 pages, 243 KB  
Commentary
Phenotypic Variability in Phelan–McDermid Syndrome and Its Putative Link to Environmental Factors
by Luigi Boccuto, Andrew Mitz, Ludovico Abenavoli, Sara M. Sarasua, William Bennett, Curtis Rogers, Barbara DuPont and Katy Phelan
Genes 2022, 13(3), 528; https://doi.org/10.3390/genes13030528 - 17 Mar 2022
Cited by 6 | Viewed by 3044
Abstract
Phelan–McDermid syndrome (PMS) is a multi-systemic disorder characterized by both genetic and phenotypic variability. Genetic abnormalities causing PMS span from pathogenic variants of the SHANK3 gene to chromosomal rearrangements affecting the 22q13 region and leading to the loss of up to over nine [...] Read more.
Phelan–McDermid syndrome (PMS) is a multi-systemic disorder characterized by both genetic and phenotypic variability. Genetic abnormalities causing PMS span from pathogenic variants of the SHANK3 gene to chromosomal rearrangements affecting the 22q13 region and leading to the loss of up to over nine megabases. The clinical presentation of individuals with PMS includes intellectual disability, neonatal hypotonia, delayed or absent speech, developmental delay, and minor dysmorphic facial features. Several other features may present with differences in age of onset and/or severity: seizures, autism, regression, sleep disorders, gastrointestinal problems, renal disorders, dysplastic toenails, and disrupted thermoregulation. Among the causes of this phenotypic variability, the size of the 22q13 deletion has effects that may be influenced by environmental factors interacting with haploinsufficiency or hemizygous variants of certain genes. Another mechanism linking environmental factors and phenotypic variability in PMS involves the loss of one copy of genes like BRD1 or CYP2D6, located at 22q13 and involved in the regulation of genomic methylation or pharmacokinetics, which are also influenced by external agents, such as diet and drugs. Overall, several non-mutually exclusive genetic and epigenetic mechanisms interact with environmental factors and may contribute to the clinical variability observed in individuals with PMS. Characterization of such factors will help to better manage this disorder. Full article
(This article belongs to the Special Issue Gene-Exposome Interactions in Mental Illness)
16 pages, 8291 KB  
Article
A Setup for Camera-Based Detection of Simulated Pathological States Using a Neonatal Phantom
by Florian Voss, Simon Lyra, Daniel Blase, Steffen Leonhardt and Markus Lüken
Sensors 2022, 22(3), 957; https://doi.org/10.3390/s22030957 - 26 Jan 2022
Cited by 5 | Viewed by 3523
Abstract
Premature infants are among the most vulnerable patients in a hospital. Due to numerous complications associated with immaturity, a continuous monitoring of vital signs with a high sensitivity and accuracy is required. Today, wired sensors are attached to the patient’s skin. However, adhesive [...] Read more.
Premature infants are among the most vulnerable patients in a hospital. Due to numerous complications associated with immaturity, a continuous monitoring of vital signs with a high sensitivity and accuracy is required. Today, wired sensors are attached to the patient’s skin. However, adhesive electrodes can be potentially harmful as they can damage the very thin immature skin. Although unobtrusive monitoring systems using cameras show the potential to replace cable-based techniques, advanced image processing algorithms are data-driven and, therefore, need much data to be trained. Due to the low availability of public neonatal image data, a patient phantom could help to implement algorithms for the robust extraction of vital signs from video recordings. In this work, a camera-based system is presented and validated using a neonatal phantom, which enabled a simulation of common neonatal pathologies such as hypo-/hyperthermia and brady-/tachycardia. The implemented algorithm was able to continuously measure and analyze the heart rate via photoplethysmography imaging with a mean absolute error of 0.91 bpm, as well as the distribution of a neonate’s skin temperature with a mean absolute error of less than 0.55 °C. For accurate measurements, a temperature gain offset correction on the registered image from two infrared thermography cameras was performed. A deep learning-based keypoint detector was applied for temperature mapping and guidance for the feature extraction. The presented setup successfully detected several levels of hypo- and hyperthermia, an increased central-peripheral temperature difference, tachycardia and bradycardia. Full article
(This article belongs to the Special Issue Analytics and Applications of Audio and Image Sensing Techniques)
Show Figures

Figure 1

14 pages, 1712 KB  
Review
Pediatric Hypothermia: An Ambiguous Issue
by Dominique Singer
Int. J. Environ. Res. Public Health 2021, 18(21), 11484; https://doi.org/10.3390/ijerph182111484 - 31 Oct 2021
Cited by 22 | Viewed by 9926
Abstract
Hypothermia in pediatrics is mainly about small body size. The key thermal factor here is the large surface-to-volume ratio. Although small mammals, including human infants and children, are adapted to higher heat losses through their elevated metabolic rate and thermogenic capacity, they are [...] Read more.
Hypothermia in pediatrics is mainly about small body size. The key thermal factor here is the large surface-to-volume ratio. Although small mammals, including human infants and children, are adapted to higher heat losses through their elevated metabolic rate and thermogenic capacity, they are still at risk of hypothermia because of a small regulatory range and an impending metabolic exhaustion. However, some small mammalian species (hibernators) use reduced metabolic rates and lowered body temperatures as adaptations to impaired energy supply. Similar to nature, hypothermia has contradictory effects in clinical pediatrics as well: In neonates, it is a serious risk factor affecting respiratory adaptation in term and developmental outcome in preterm infants. On the other hand, it is an important self-protective response to neonatal hypoxia and an evidence-based treatment option for asphyxiated babies. In children, hypothermia first enabled the surgical repair of congenital heart defects and promotes favorable outcome after ice water drowning. Yet, it is also a major threat in various prehospital and clinical settings and has no proven therapeutic benefit in pediatric critical care. All in all, pediatric hypothermia is an ambiguous issue whose harmful or beneficial effects strongly depend on the particular circumstances. Full article
(This article belongs to the Special Issue Accidental and Environmental Hypothermia)
Show Figures

Figure 1

27 pages, 6881 KB  
Review
Physiological and Behavioral Mechanisms of Thermoregulation in Mammals
by Daniel Mota-Rojas, Cristiane Gonçalves Titto, Agustín Orihuela, Julio Martínez-Burnes, Jocelyn Gómez-Prado, Fabiola Torres-Bernal, Karla Flores-Padilla, Verónica Carvajal-de la Fuente and Dehua Wang
Animals 2021, 11(6), 1733; https://doi.org/10.3390/ani11061733 - 10 Jun 2021
Cited by 131 | Viewed by 33764
Abstract
This review analyzes the main anatomical structures and neural pathways that allow the generation of autonomous and behavioral mechanisms that regulate body heat in mammals. The study of the hypothalamic neuromodulation of thermoregulation offers broad areas of opportunity with practical applications that are [...] Read more.
This review analyzes the main anatomical structures and neural pathways that allow the generation of autonomous and behavioral mechanisms that regulate body heat in mammals. The study of the hypothalamic neuromodulation of thermoregulation offers broad areas of opportunity with practical applications that are currently being strengthened by the availability of efficacious tools like infrared thermography (IRT). These areas could include the following: understanding the effect of climate change on behavior and productivity; analyzing the effects of exercise on animals involved in sporting activities; identifying the microvascular changes that occur in response to fear, pleasure, pain, and other situations that induce stress in animals; and examining thermoregulating behaviors. This research could contribute substantially to understanding the drastic modification of environments that have severe consequences for animals, such as loss of appetite, low productivity, neonatal hypothermia, and thermal shock, among others. Current knowledge of these physiological processes and complex anatomical structures, like the nervous systems and their close relation to mechanisms of thermoregulation, is still limited. The results of studies in fields like evolutionary neuroscience of thermoregulation show that we cannot yet objectively explain even processes that on the surface seem simple, including behavioral changes and the pathways and connections that trigger mechanisms like vasodilatation and panting. In addition, there is a need to clarify the connection between emotions and thermoregulation that increases the chances of survival of some organisms. An increasingly precise understanding of thermoregulation will allow us to design and apply practical methods in fields like animal science and clinical medicine without compromising levels of animal welfare. The results obtained should not only increase the chances of survival but also improve quality of life and animal production. Full article
(This article belongs to the Special Issue Thermal stress—Thermoregulatory and Adaptive Responses of Livestock)
Show Figures

Figure 1

Back to TopTop