ω9 Monounsaturated and Saturated Colostrum Fatty Acids May Benefit Newborns in General and Subtle Hypothyroid Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics, Inclusion and Exclusion Criteria
2.2. Sampling and Analysis of Blood and Blood Spots
2.3. Sampling and LC/MS-MS Analysis of Colostrum
2.4. Statistics and Normality Values
3. Results
4. Discussion
4.1. Fetal Fat Accrual, Birth Weight, and Colostrum Protection Against Hypothermia
4.2. Putative Reasons for Encountering Hypothyroid Stage at a High Percentage
4.3. Thyroid Hormones Regulating Fetal Adipogenesis, Brown Fat and Colostrum
4.4. Same FA Elongase Enzymes Produce ω9 and Saturated VLCFAs
4.5. ω9 FAs Exist the Most in Colostrum. Parallelities Between Different Geographies
4.6. ω9 FAs in Neonatal Thermogenesis and Development
4.7. Long-Chain Saturated FAs in Neonatal Thermogenesis and Development
5. Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borer, K.T. Relevance of Milk Composition to Human Longitudinal Growth from Infancy Through Puberty: Facts and Controversies. Nutrients 2025, 17, 827. [Google Scholar] [CrossRef] [PubMed]
- Aslebagh, R.; Whitham, D.; Channaveerappa, D.; Lowe, J.; Pentecost, B.T.; Arcaro, K.F.; Darie, C.C. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis 2023, 44, 1097–1113. [Google Scholar] [CrossRef] [PubMed]
- Okburan, G.; Kızıler, S. Human milk oligosaccharides as prebiotics. Pediatr. Neonatol. 2023, 64, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Freije, A.; Omran, A.; Rondanelli, M.; Marino, M.; Perna, S. Human Milk Fatty Acid Composition and Its Effect on Preterm Infants’ Growth Velocity. Children 2023, 10, 939. [Google Scholar] [CrossRef]
- Ahmed, T.B.; Eggesbø, M.; Criswell, R.; Uhl, O.; Demmelmair, H.; Koletzko, B. Total Fatty Acid and Polar Lipid Species Composition of Human Milk. Nutrients 2021, 14, 158. [Google Scholar] [CrossRef]
- Altinoz, M.A.; Bilir, A.; Elmaci, I. Erucic acid, a component of Lorenzo’s oil and PPAR-δ ligand modifies C6 glioma growth and toxicity of doxorubicin. Experimental data and a comprehensive literature analysis. Chem.-Biol. Interact. 2018, 294, 107–117. [Google Scholar] [CrossRef]
- Ferrero, E.; Vaz, F.M.; Cheillan, D.; Brusco, A.; Marelli, C. The ELOVL proteins: Very and ultra long-chain fatty acids at the crossroads between metabolic and neurodegenerative disorders. Mol. Genet. Metab. 2025, 144, 109050. [Google Scholar] [CrossRef]
- McFadden, J.W. Review: Lipid biology in the periparturient dairy cow: Contemporary perspectives. Anim. Int. J. Anim. Biosci. 2020, 14, s165–s175. [Google Scholar] [CrossRef]
- Redifer, C.A.; Wichman, L.G.; Rathert-Williams, A.R.; Freetly, H.C.; Meyer, A.M. Late gestational nutrient restriction in primiparous beef females: Nutrient partitioning among the dam, fetus, and colostrum during gestation. J. Anim. Sci. 2023, 101, skad195. [Google Scholar] [CrossRef]
- Klosinska, M.; Kaczynska, A.; Ben-Skowronek, I. Congenital Hypothyroidism in Preterm Newborns—The Challenges of Diagnostics and Treatment: A Review. Front. Endocrinol. 2022, 13, 860862. [Google Scholar] [CrossRef]
- McCormick, Q.; Pitts, L.; Hughes, Z. Follow-up of infants with congenital hypothyroidism and low total thyroxine/thyroid stimulating hormone on newborn screen. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Costello, A.M.d.L.; Osrin, D. Micronutrient status during pregnancy and outcomes for newborn infants in developing countries. J. Nutr. 2003, 133 (Suppl. 2), 1757S–1764S. [Google Scholar] [CrossRef]
- Desoye, G.; Herrera, E. Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog. Lipid Res. 2021, 81, 101082. [Google Scholar] [CrossRef]
- Mellor, D.J.; Cockburn, F. A comparison of energy metabolism in the new-born infant, piglet and lamb. Q. J. Exp. Physiol. 1986, 71, 361–379. [Google Scholar] [CrossRef]
- Martin, R.J.; Hausman, G.J.; Hausman, D.B. Regulation of adipose cell development in utero. Proceedings of the Society for Experimental Biology and Medicine. Soc. Exp. Biol. Med. 1998, 219, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Ogawa, K.; Kuroshima, A. Postnatal changes in fatty acids composition of brown adipose tissue. Int. J. Biometeorol. 1992, 36, 30–35. [Google Scholar] [CrossRef]
- Fotakis, C.; Moros, G.; Kontogeorgou, A.; Iacovidou, N.; Boutsikou, T.; Zoumpoulakis, P. Uncontrolled Thyroid during Pregnancy Alters the Circulative and Exerted Metabolome. Int. J. Mol. Sci. 2022, 23, 4248. [Google Scholar] [CrossRef]
- Biondi, B. Subclinical Hypothyroidism in Patients with Obesity and Metabolic Syndrome: A Narrative Review. Nutrients 2023, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Ilias, I.; Milionis, C.; Alexiou, M.; Michou, E.; Karavasili, C.; Venaki, E.; Markou, K.; Mamali, I.; Koukkou, E. Changes in Central Sensitivity to Thyroid Hormones vs. Urine Iodine during Pregnancy. Med. Sci. 2024, 12, 50. [Google Scholar] [CrossRef]
- Kart, P.O.; Turkmen, M.K.; Anik, A.; Anik, A.; Unuvar, T. The association of lactating mothers’ urinary and breast milk iodine levels with iodine nutrition status and thyroid hormone levels of newborns. Turk. Arch. Pediatr. 2021, 56, 207–212. [Google Scholar] [CrossRef]
- Santana-Farré, R.; Mirecki-Garrido, M.; Bocos, C.; Henríquez-Hernández, L.A.; Kahlon, N.; Herrera, E.; Norstedt, G.; Parini, P.; Flores-Morales, A.; Fernández-Pérez, L. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood. PLoS ONE 2012, 7, e37386. [Google Scholar] [CrossRef]
- Murakami, M.; Kamiya, Y.; Morimura, T.; Araki, O.; Imamura, M.; Ogiwara, T.; Mizuma, H.; Mori, M. Thyrotropin receptors in brown adipose tissue: Thyrotropin stimulates type II iodothyronine deiodinase and uncoupling protein-1 in brown adipocytes. Endocrinology 2001, 142, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Yau, W.W.; Singh, B.K.; Lesmana, R.; Zhou, J.; Sinha, R.A.; Wong, K.A.; Wu, Y.; Bay, B.-H.; Sugii, S.; Sun, L.; et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy 2019, 15, 131–150. [Google Scholar] [CrossRef]
- Laurberg, P.; Andersen, S.; Karmisholt, J. Cold adaptation and thyroid hormone metabolism. Horm. Metab. Res. Horm.-Stoffwechselforschung Horm. Metab. 2005, 37, 545–549. [Google Scholar] [CrossRef]
- Ramos-Nieves, J.M.; Giesy, S.L.; McGuckin, M.M.; Boisclair, Y.R. Effects of birth weight and dietary fat on intake, body composition, and plasma thyroxine in neonatal lambs. J. Anim. Sci. 2020, 98, skaa364. [Google Scholar] [CrossRef]
- Quesnel, H.; Resmond, R.; Merlot, E.; Père, M.-C.; Gondret, F.; Louveau, I. Physiological traits of newborn piglets associated with colostrum intake, neonatal survival and preweaning growth. Anim. Int. J. Anim. Biosci. 2023, 17, 100843. [Google Scholar] [CrossRef] [PubMed]
- Stanley, R.; Morita, K. Effect of feeding thyroprotein to dairy cattle in a subtropical environment on milk composition and production, rumen metabolism, and fatty acid composition of milk fat. J. Dairy Sci. 1967, 50, 1097–1100. [Google Scholar] [CrossRef]
- Ves-Losada, A.; Peluffo, R.O. Effect of L-triiodothyronine on delta 9 desaturase activity in liver microsomes of male rats. Lipids 1989, 24, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Guillou, H.; Zadravec, D.; Martin, P.G.; Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 2010, 49, 186–199. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, Z.; Li, X.; Wang, Y.; Zhao, J.; Wang, N.; Duan, Y.; Xia, R.; Han, Z.; Qian, Y.; et al. Identification of oleic acid as an endogenous ligand of GPR3. Cell Res. 2024, 34, 232–244. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Liu, X.; Luo, R.; Liao, G.; Li, L.; Liu, J.; Cheng, J.; Lu, Y.; Chen, Y. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis. Life Sci. 2018, 203, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Pastor, R.; Bouzas, C.; Tur, J.A. Beneficial effects of dietary supplementation with olive oil, oleic acid, or hydroxytyrosol in metabolic syndrome: Systematic review and meta-analysis. Free Radic. Biol. Med. 2021, 172, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Fujimori, K. Very long-chain-fatty acids enhance adipogenesis through coregulation of Elovl3 and PPARγ in 3T3-L1 cells. American journal of physiology. Endocrinol. Metab. 2012, 302, E1461–E1471. [Google Scholar] [CrossRef]
- Yuhas, R.; Pramuk, K.; Lien, E.L. Human milk fatty acid composition from nine countries varies most in DHA. Lipids 2006, 41, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Gao, R.; Tian, F.; Mao, Y.; Wang, B.; Zhou, L.; Shen, L.; Guan, Y.; Cai, M. Fatty acid positional distribution (sn-2 fatty acids) and phospholipid composition in Chinese breast milk from colostrum to mature stage. Br. J. Nutr. 2018, 121, 65–73. [Google Scholar] [CrossRef]
- Nguyen, M.T.T.; Kim, J.; Seo, N.; Lee, A.H.; Kim, Y.-K.; Jung, J.A.; Li, D.; To, X.H.M.; Huynh, K.T.N.; Van Le, T.; et al. Comprehensive analysis of fatty acids in human milk of four Asian countries. J. Dairy Sci. 2021, 104, 6496–6507. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Q. Association of environmental exposure to perchlorate, nitrate, and thiocyanate with overweight/obesity and central obesity among children and adolescents in the United States of America using data from the National Health and Nutrition Examination Survey (NHANES) 2005–2016. New Dir. Child Adolesc. Dev. 2022, 2022, 107–122. [Google Scholar] [CrossRef]
- Ding, D.; He, X.; Agarry, I.E.; Wang, Y.; Zhou, F.; Li, Y.; Kan, J.; Cai, T.; Chen, K. Profile of Human Milk Phospholipids at Different Lactation Stages with UPLC/Q-TOF-MS: Characterization, Distribution, and Differences. J. Agric. Food Chem. 2023, 71, 6326–6337. [Google Scholar] [CrossRef]
- Yu, J.; Yuan, T.; Zhang, X.; Jin, Q.; Wei, W.; Wang, X. Quantification of Nervonic Acid in Human Milk in the First 30 Days of Lactation: Influence of Lactation Stages and Comparison with Infant Formulae. Nutrients 2019, 11, 1892. [Google Scholar] [CrossRef]
- Marosvölgyi, T.; Dergez, T.; Szentpéteri, J.L.; Szabó, É.; Decsi, T. Higher Availability of Long-Chain Monounsaturated Fatty Acids in Preterm than in Full-Term Human Milk. Life 2023, 13, 1205. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Pietrzak-Fiećko, R. Changes in the Fatty Acid Profile of Lactating Women Living in Poland-A Comparison with the Fatty Acid Profile of Selected Infant Formulas. Nutrients 2024, 16, 2411. [Google Scholar] [CrossRef] [PubMed]
- Criswell, R.L.; Iszatt, N.; Demmelmair, H.; Ahmed, T.B.; Koletzko, B.V.; Lenters, V.C.; Eggesbø, M.Å. Predictors of Human Milk Fatty Acids and Associations with Infant Growth in a Norwegian Birth Cohort. Nutrients 2022, 14, 3858. [Google Scholar] [CrossRef]
- Samuel, T.M.; Thielecke, F.; Lavalle, L.; Chen, C.; Fogel, P.; Giuffrida, F.; Dubascoux, S.; Martínez-Costa, C.; Haaland, K.; Marchini, G.; et al. Mode of Neonatal Delivery Influences the Nutrient Composition of Human Milk: Results From a Multicenter European Cohort of Lactating Women. Front. Nutr. 2022, 9, 834394. [Google Scholar] [CrossRef]
- Medina, J.M.; Tabernero, A. Astrocyte-synthesized oleic acid behaves as a neurotrophic factor for neurons. J. Physiol. Paris 2002, 96, 265–271. [Google Scholar] [CrossRef]
- Tao, R.; Huang, S.; Zhou, J.; Ye, L.; Shen, X.; Wu, J.; Qian, L. Neonatal Supplementation of Oleamide During Suckling Promotes Learning Ability and Memory in Adolescent Mice. J. Nutr. 2022, 152, 889–898. [Google Scholar] [CrossRef]
- Plötz, T.; Hartmann, M.; Lenzen, S.; Elsner, M. The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells. Nutr. Metab. 2016, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, K.; Mizuno, Y.; Senarath, S.; Yoshinaga-Kiriake, A.; Nagai, T.; Beppu, F.; Tanaka, S.; Gotoh, N. Simultaneous Treatment of Long-chain Monounsaturated Fatty Acid and n-3 Polyunsaturated Fatty Acid Decreases Lipid and Cholesterol Levels in HepG2 Cell. J. Oleo Sci. 2021, 70, 731–736. [Google Scholar] [CrossRef]
- Pozo, M.d.P.d.; Lope, V.; Criado-Navarro, I.; Pastor-Barriuso, R.; de Larrea, N.F.; Ruiz, E.; Castelló, A.; Lucas, P.; Sierra, Á.; Romieu, I.; et al. Serum Phospholipid Fatty Acids Levels, Anthropometric Variables and Adiposity in Spanish Premenopausal Women. Nutrients 2020, 12, 1895. [Google Scholar] [CrossRef] [PubMed]
- Koblin, D.D. Anesthetic requirement in the quaking mouse. Anesthesiology 1981, 54, 17–22. [Google Scholar] [CrossRef]
- Loesche, A.; Wiemann, J.; Al Halabi, Z.; Karasch, J.; Sippl, W.; Csuk, R. Unexpected AChE inhibitory activity of (2E)α,β-unsaturated fatty acids. Bioorg. Med. Chem. Lett. 2018, 28, 3315–3319. [Google Scholar] [CrossRef]
- Altinoz, M.A.; Ozpinar, A. PPAR-δ and erucic acid in multiple sclerosis and Alzheimer’s Disease. Likely benefits in terms of immunity and metabolism. Int. Immunopharmacol. 2019, 69, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Altinoz, M.A. Could dietary erucic acid lower risk of brain tumors? An epidemiological look to Chinese population with implications for prevention and treatment. Metab. Brain Dis. 2022, 37, 2643–2651. [Google Scholar] [CrossRef]
- Hülsmann, W.; Geelhoed-Mieras, M.; Jansen, H.; Houtsmuller, U. Alteration of the lipase activities of muscle, adipose tissue and liver by rapeseed oil feeding of rats. Biochim. Biophys. Acta 1979, 572, 183–187. [Google Scholar] [CrossRef]
- Reyes, H.; Ribalta, J.; Hernández, I.; Arrese, M.; Pak, N.; Wells, M.; Kirsch, R.E. Is dietary erucic acid hepatotoxic in pregnancy? An experimental study in rats and hamsters. Hepatology 1995, 21, 1373–1379. [Google Scholar]
- Chang, Y.; Jiang, M.; Wang, Y.; Fu, Q.; Lin, S.; Wu, J.; Di, W. Erucic acid improves the progress of pregnancy complicated with systemic lupus erythematosus by inhibiting the effector function of CD8+ T cells. MedComm 2023, 4, e382. [Google Scholar] [CrossRef]
- Thompson, S.C.; Beliakoff, R.; Garrett, T.J.; Gonzalez, C.F.; Lorca, G.L. Erucic acid utilization by Lactobacillus johnsonii N6.2. Front. Microbiol. 2024, 15, 1476958. [Google Scholar] [CrossRef] [PubMed]
- Keppley, L.J.W.; Walker, S.J.; Gademsey, A.N.; Smith, J.P.; Keller, S.R.; Kester, M.; Fox, T.E. Nervonic acid limits weight gain in a mouse model of diet-induced obesity. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 15314–15326. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Kim, S.J.; Kwon, S.; Jeon, S.Y.; Park, S.E.; Choi, S.-J.; Oh, S.-Y.; Jeon, H.B.; Chang, J.W. Nervonic acid improves fat transplantation by promoting adipogenesis and angiogenesis. Int. J. Mol. Med. 2024, 54, 108. [Google Scholar] [CrossRef]
- Sawaguchi, T.; Nakajima, T.; Hasegawa, T.; Shibasaki, I.; Kaneda, H.; Obi, S.; Kuwata, T.; Sakuma, M.; Toyoda, S.; Ohni, M.; et al. Serum adiponectin and TNFα concentrations are closely associated with epicardial adipose tissue fatty acid profiles in patients undergoing cardiovascular surgery. International journal of cardiology. Heart Vasc. 2017, 18, 86–95. [Google Scholar] [CrossRef]
- Rao, P.S. Fatty acids of cerebrosides in different regions of the developing foetal brain. Lipids 1977, 12, 335–339. [Google Scholar] [CrossRef]
- Martínez, M.; Mougan, I. Fatty acid composition of human brain phospholipids during normal development. J. Neurochem. 1998, 71, 2528–2533. [Google Scholar] [CrossRef]
- Ntoumani, E.; Strandvik, B.; Sabel, K.-G. Nervonic acid is much lower in donor milk than in milk from mothers delivering premature infants—Of neglected importance? Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 241–244. [Google Scholar] [CrossRef]
- Bettger, W.J.; DiMichelle-Ranalli, E.; Dillingham, B.; Blackadar, C.B. Nervonic acid is transferred from the maternal diet to milk and tissues of suckling rat pups. J. Nutr. Biochem. 2003, 14, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Dhobale, M.V.; Wadhwani, N.; Mehendale, S.S.; Pisal, H.R.; Joshi, S.R. Reduced levels of placental long chain polyunsaturated fatty acids in preterm deliveries. Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 149–153. [Google Scholar] [CrossRef]
- Strandvik, B.; Ntoumani, E.; Lundqvist-Persson, C.; Sabel, K.-G. Long-chain saturated and monounsaturated fatty acids associate with development of premature infants up to 18 months of age. Prostaglandins Leukot. Essent. Fat. Acids 2016, 107, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Nasri, K.; Fenina, H.; Ben Ghorbal, S.K.; Maamer, D.; Ben Jamaa, N.; Feki, M.; Gaigi, S.S. Fatty acids profile in pregnancies affected by neural tube defects. J. Dev. Orig. Health Dis. 2024, 15, e18. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-N.; Wang, M.-X.; Han, J.-L.; Feng, C.-Y.; Wang, M.; Wang, M.; Sun, J.-Y.; Li, N.-Y.; Simal-Gandara, J.; Liu, C. Improved colonic inflammation by nervonic acid via inhibition of NF-κB signaling pathway of DSS-induced colitis mice. Phytomed. Int. J. Phytother. Phytopharm. 2023, 112, 154702. [Google Scholar] [CrossRef]
- Westerberg, R.; Månsson, J.-E.; Golozoubova, V.; Shabalina, I.G.; Backlund, E.C.; Tvrdik, P.; Retterstøl, K.; Capecchi, M.R.; Jacobsson, A. ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue. J. Biol. Chem. 2006, 281, 4958–4968. [Google Scholar] [CrossRef]
- Liu, K.; Gu, Y.; Pan, X.; Chen, S.; Cheng, J.; Zhang, L.; Cao, M. Behenic acid alleviates inflammation and insulin resistance in gestational diabetes mellitus by regulating TLR4/NF-κB signaling pathway. iScience 2024, 27, 111019. [Google Scholar] [CrossRef]
- Meng, F.; Uniacke-Lowe, T.; Lanfranchi, E.; Meehan, G.; O’Shea, C.-A.; Dennehy, T.; Ryan, A.C.; Stanton, C.; Kelly, A.L. A longitudinal study of fatty acid profiles, macronutrient levels, and plasmin activity in human milk. Front. Nutr. 2023, 10, 1172613. [Google Scholar] [CrossRef]
- Carneheim, C.; Cannon, B.; Nedergaard, J.; Wilson, S.M.; Lee, S.C.; Shook, S.; Pappone, P.A. Rare fatty acids in brown fat are substrates for thermogenesis during arousal from hibernation. Am. J. Physiol. 1989, 256 Pt 2, R146–R154. [Google Scholar] [CrossRef] [PubMed]
- Iwen, K.A.; Backhaus, J.; Cassens, M.; Waltl, M.; Hedesan, O.C.; Merkel, M.; Heeren, J.; Sina, C.; Rademacher, L.; Windjäger, A.; et al. Cold-Induced Brown Adipose Tissue Activity Alters Plasma Fatty Acids and Improves Glucose Metabolism in Men. J. Clin. Endocrinol. Metab. 2017, 102, 4226–4234. [Google Scholar] [CrossRef] [PubMed]
- Kokatnur, M.; Brooks, V.; Plauche, W.C. Fatty acids of sphingomyelin from amniotic fluid of normal and diabetic pregnancies. Lipids 1985, 20, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Takeshita, M. Characteristics of synthesis of very-long-chain saturated and tetraenoic fatty acids in swine cerebral microsomes. J. Neurochem. 1986, 46, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Murad, S.; Strycharz, G.D.; Kishimoto, Y. Alpha-Hydroxylation of lignoceric and nervonic acids in the brain. Effects of altered thyroid function on postnatal development of the hydroxylase activity. J. Biol. Chem. 1976, 251, 5237–5241. [Google Scholar] [CrossRef]
- Satomi, D.; Kishimoto, Y. Change of galactolipids and metabolism of fatty acids in the organotypic culture of myelinating mouse brain. Biochim. Biophys. Acta 1981, 666, 446–454. [Google Scholar] [CrossRef]
Age | Mean ± STD | 27.42 ± 5.30 | |||
Median (min–max) | 27 (18–42) | ||||
Whole Cohort | Normal | Overweight | Obese | ||
BMI | n (%) | 78 (100%) | 15 (19.2%) | 37 (47.5%) | 26 (33.3%) |
Mean ± STD | 28.6 ± 4.1 | 23.2 ± 1.3 | 27.4 ± 1.5 | 33.3 ± 2.3 | |
Median (min–max) | 28.1 (20.9–37.7) | 23.3 (20.9–24.9) | 27.3 (25.0–29.9) | 33.1 (30.0–37.7) | |
Whole Cohort | Low | Normal | High | ||
Mother TSH | n (%) | 78 (100%) | 0 (%) | 67 (85.9%) | 11 (14.1%) |
Mean ± STD | 2.9 ± 2.4 | - | 2.2 ± 0.9 | 7.1 ± 4.2 | |
Median (min–max) | 2.4 (0.6–19.2) | - | 2.0 (0.6–4.2) | 6.0 (4.5–19.2) | |
Mother FT3 | n (%) | 78 (100%) | 0 (%) | 76 (97.4%) | 2 (2.6%) |
Mean ± STD | 4.7 ± 0.8 | - | 4.7 ± 0.7 | 7.5 ± 1.0 | |
Median (min–max) | 4.5 (3.4–8.2) | - | 4.7 (3.4–6.6) | 7.5 (6.9–8.2) | |
Mother FT4 | n (%) | 78 (100%) | 34 (43.6%) | 44 (56.4%) | 0 (%) |
Mean ± STD | 12.3 ± 2.1 | 10.4 ± 1.1 | 13.7 ± 1.5 | - | |
Median (min–max) | 12.1 (7.9–18.0) | 10.7 (7.9–11.9) | 13.2 (12.0–18.0) | - | |
Birth Weight | n (%) | 78 (100%) | 5 (6.4%) | 67 (85.9%) | 6 (7.7%) |
Mean ± STD | 3218.5 ± 495.2 | 2208.0 ± 247.3 | 3209.6 ± 351.5 | 4160.0 ± 100.9 | |
Median (min–max) | 3160 (1780–4340) | 2260 (1780–2400) | 3160 (2600–4000) | 4135 (4050–4340) | |
Newborn TSH | n (%) | 78 (100%) | 0 (%) | 72 (92.3%) | 6 (7.7%) |
Mean ± STD | 4.3 ± 2.9 | - | 3.7 ± 2.2 | 11.5 ± 0.8 | |
Median (min–max) | 3.8 (0.1–12.3) | - | 3.5 (0.1–9.8) | 11.5 (10.1–12.3) |
Total Fat—Whole Cohort | Median: 895.2 (13.3–3011.3) µg/mL | ||||||
Total Fat—µg/mL (Mean ± STD) | |||||||
BMI—Normal | BMI—Overweight | BMI—Obese | |||||
669.8 ± 471.7 * | 605.3± 533.4 * | 524.8± 428.9 * | |||||
Birth Weight—Low | Birth Weight—Normal | Birth Weight—High | |||||
470.5 ± 318.6 * | 599.0 ± 506.4 * | 600.9 ± 390.6 * | |||||
TSH (newborn)—Normal | TSH (newborn)—High | ||||||
593.7 ± 500.0 * | 556.9 ± 286.7 * | ||||||
TSH (mother)—Normal | TSH (mother)—High | ||||||
586.5 ± 510.3 * | 617.7 ± 312.1 * | ||||||
FT4 (mother)—Normal | FT4 (mother)—Low | ||||||
664.6 ± 564.4 * | 495.5 ± 345.0 * | ||||||
ω9 Monounsaturated FAs—Whole Cohort | |||||||
Oleic Acid | Gondoic Acid | Erucic Acid | Nervonic Acid | ||||
Level (%) | 29.5 ± 2.3 | 0.67 ± 0.16 | 0.30 ± 0.13 | 0.15 ± 0.07 | |||
Level (µg/mL) | 17,985.4 ± 15,101.7 | 435.9 ± 445.9 | 180.0 ± 176.0 | 101.4 ± 111.4 | |||
Saturated FAs—Whole Cohort | |||||||
Stearic Acid | Arachidic Acid | Behenic Acid | Lignoceric Acid | ||||
Level (%) | 7.2 ± 1.3 | 0.08 ± 0.05 | 0.31 ± 0.13 | 0.45 ± 0.62 | |||
Level (µg/mL) | 4329.6 ± 3604.4 | 53.8 ± 56.7 | 177.0 ± 159.1 | 204.2 ± 194.1 |
FAs | Whole Group | BMI Normal | BMI Overweight | BMI Obese | TSH Mother Normal | TSH Mother High | FT4 Mother Normal | FT4 Mother Low | TSH Newb. Normal | TSH Newb. High | |
---|---|---|---|---|---|---|---|---|---|---|---|
ω9 FAs | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | |
Oleic | r | 0.12 | 0.13 | 0.06 | 0.21 | 0.12 | −0.08 | −0.17 | 0.37 | 0.05 | 0.77 |
p | 0.251 | 0.230 | 0.882 | 0.335 | 0.343 | 0.811 | 0.268 | 0.029 | 0.685 | 0.072 | |
Gondoic | r | 0.32 | 0.40 | 0.16 | 0.45 | 0.35 | −0.23 | 0.03 | 0.62 | 0.24 | 0.94 |
p | 0.005 | 0.169 | 0.534 | 0.031 | 0.004 | 0.502 | 0.863 | 0.0001 | 0.046 | 0.005 | |
Erucic | r | 0.25 | 0.63 | 0.26 | −0.02 | 0.23 | 0.61 | 0.21 | 0.31 | 0.33 | −0.77 |
p | 0.030 | 0.005 | 0.155 | 0.923 | 0.067 | 0.047 | 0.163 | 0.075 | 0.005 | 0.072 | |
Nervonic | r | 0.22 | −0.13 | 0.28 | 0.26 | 0.20 | 0.50 | 0.04 | 0.40 | 0.28 | 0.03 |
p | 0.049 | 0.545 | 0.438 | 0.285 | 0.105 | 0.117 | 0.791 | 0.019 | 0.018 | 0.957 | |
ω9 FAs | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | |
Oleic | r | 0.26 | 0.12 | 0.16 | 0.48 | 0.34 | −0.13 | 0.08 | 0.50 | 0.30 | 0.43 |
p | 0.021 | 0.867 | 0.450 | 0.010 | 0.005 | 0.709 | 0.593 | 0.003 | 0.009 | 0.397 | |
Gondoic | r | 0.12 | −0.09 | 0.18 | 0.13 | 0.09 | −0.02 | −0.03 | 0.24 | 0.03 | −0.20 |
p | 0.298 | 0.542 | 0.480 | 0.349 | 0.452 | 0.947 | 0.163 | 0.866 | 0.808 | 0.704 | |
Erucic | r | 0.02 | 0.04 | 0.18 | −0.45 | 0.12 | 0.47 | 0.40 | −0.10 | 0.15 | −0.31 |
p | 0.877 | 0.923 | 0.395 | 0.015 | 0.341 | 0.145 | 0.007 | 0.57 | 0.195 | 0.544 | |
Nervonic | r | −0.04 | 0.46 | −0.02 | −0.27 | 0.01 | 0.36 | 0.15 | −0.05 | 0.10 | −0.37 |
p | 0.740 | 0.240 | 0.446 | 0.152 | 0.926 | 0.270 | 0.765 | 0.323 | 0.409 | 0.468 | |
ω9 FAs | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | |
Oleic | r | −0.27 | −0.14 | −0.24 | −0.40 | −0.22 | −0.33 | −0.01 | −0.52 | −0.23 | −0.12 |
p | 0.018 | 0.788 | 0.160 | 0.036 | 0.079 | 0.319 | 0.970 | 0.002 | 0.054 | 0.827 | |
Gondoic | r | −0.19 | 0.05 | −0.28 | −0.21 | −0.22 | −0.04 | −0.29 | −0.08 | −0.14 | −0.46 |
p | 0.090 | 0.818 | 0.207 | 0.291 | 0.072 | 0.914 | 0.059 | 0.638 | 0.233 | 0.354 | |
Erucic | r | 0.13 | 0.11 | 0.15 | 0.33 | 0.08 | 0.14 | 0.05 | 0.16 | 0.05 | 0.81 |
P | 0.271 | 0.690 | 0.154 | 0.070 | 0.527 | 0.685 | 0.760 | 0.362 | 0.666 | 0.049 | |
Nervonic | R | 0.06 | 0.22 | −0.17 | 0.29 | −0.03 | 0.23 | 0.03 | −0.04 | −0.05 | 0.41 |
P | 0.583 | 0.384 | 0.612 | 0.022 | 0.813 | 0.5043 | 0.871 | 0.830 | 0.699 | 0.425 | |
FAs | Whole Group | BMI Normal | BMI Overweight | BMI Obese | TSH Mother Normal | TSH Mother High | FT4 Mother Normal | FT4 Mother Low | TSH Newb. Normal | TSH Newb. High | |
Saturated FAs | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | Birth Weight | |
Stearic | R | 0.02 | 0.11 | −0.22 | 0.11 | 0.106 | −0.636 | −0.060 | 0.142 | −0.02 | 0.77 |
P | 0.869 | 0.188 | 0.502 | 0.696 | 0.395 | 0.035 | 0.699 | 0.422 | 0.869 | 0.072 | |
Arachidic | R | 0.10 | −0.09 | 0.34 | −0.22 | 0.118 | 0.001 | 0.043 | 0.152 | 0.15 | −0.71 |
P | 0.381 | 0.823 | 0.142 | 0.216 | 0.341 | 0.998 | 0.781 | 0.392 | 0.222 | 0.111 | |
Behenic | R | 0.24 | 0.69 | 0.20 | 0.09 | 0.293 | −0.300 | 0.036 | 0.516 | 0.24 | −0.09 |
P | 0.036 | 0.010 | 0.886 | 0.777 | 0.016 | 0.370 | 0.816 | 0.002 | 0.038 | 0.872 | |
Lignoceric | R | 0.27 | 0.64 | 0.17 | 0.17 | 0.329 | −0.327 | 0.079 | 0.524 | 0.27 | 0.31 |
P | 0.018 | 0.003 | 0.181 | 0.313 | 0.007 | 0.326 | 0.612 | 0.001 | 0.020 | 0.544 | |
Saturated FAs | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | TSH Newb. | |
Stearic | r | −0.24 | −0.41 | −0.25 | 0.02 | −0.21 | −0.523 | −0.213 | −0.216 | −0.26 | 0.43 |
p | 0.036 | 0.302 | 0.221 | 0.973 | 0.089 | 0.098 | 0.165 | 0.219 | 0.027 | 0.397 | |
Arachidic | r | 0.05 | 0.64 | 0.02 | −0.34 | 0.097 | −0.123 | 0.065 | 0.015 | 0.06 | 0.09 |
p | 0.680 | 0.018 | 0.658 | 0.126 | 0.435 | 0.719 | 0.673 | 0.932 | 0.595 | 0.872 | |
Behenic | r | 0.01 | −0.03 | 0.02 | −0.12 | 0.019 | −0.159 | 0.104 | −0.073 | −0.05 | 0.09 |
p | 0.968 | 0.801 | 0.886 | 0.277 | 0.877 | 0.640 | 0.499 | 0.681 | 0.654 | 0.872 | |
Lignoceric | r | −0.05 | −0.18 | 0.04 | 0.21 | −0.03 | −0.232 | −0.019 | −0.053 | −0.08 | 0.77 |
p | 0.638 | 0.407 | 0.765 | 0.975 | 0.809 | 0.492 | 0.903 | 0.766 | 0.499 | 0.072 | |
Saturated FAs | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | Mother Age | |
Stearic | R | 0.07 | 0.31 | 0.24 | −0.15 | 0.08 | 0.157 | 0.022 | 0.170 | 0.10 | −0.12 |
P | 0.562 | 0.307 | 0.143 | 0.622 | 0.520 | 0.645 | 0.888 | 0.336 | 0.422 | 0.827 | |
Arachidic | R | −0.06 | 0.19 | −0.11 | 0.00 | −0.139 | 0.346 | −0.131 | −0.054 | −0.10 | −0.14 |
P | 0.573 | 0.535 | 0.819 | 0.987 | 0.263 | 0.298 | 0.397 | 0.762 | 0.386 | 0.784 | |
Behenic | R | 0.00 | 0.04 | 0.12 | −0.02 | −0.113 | −0.512 | −0.244 | −0.100 | −0.16 | 0.14 |
P | 0.989 | 0.807 | 0.284 | 0.552 | 0.361 | 0.108 | 0.110 | 0.572 | 0.177 | 0.784 | |
Lignoceric | R | 0.03 | 0.02 | 0.17 | −0.26 | 0.020 | −0.447 | −0.135 | 0.072 | −0.02 | 0.06 |
P | 0.815 | 0.943 | 0.208 | 0.662 | 0.871 | 0.168 | 0.382 | 0.685 | 0.865 | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altinoz, M.A.; Serdar, M.A.; Altinoz, S.M.; Eroglu, M.; Muhcu, M.; Kumru, P.; Ozpinar, A. ω9 Monounsaturated and Saturated Colostrum Fatty Acids May Benefit Newborns in General and Subtle Hypothyroid Stages. Nutrients 2025, 17, 2017. https://doi.org/10.3390/nu17122017
Altinoz MA, Serdar MA, Altinoz SM, Eroglu M, Muhcu M, Kumru P, Ozpinar A. ω9 Monounsaturated and Saturated Colostrum Fatty Acids May Benefit Newborns in General and Subtle Hypothyroid Stages. Nutrients. 2025; 17(12):2017. https://doi.org/10.3390/nu17122017
Chicago/Turabian StyleAltinoz, Meric A., Muhittin A. Serdar, Selim M. Altinoz, Mustafa Eroglu, Murat Muhcu, Pinar Kumru, and Aysel Ozpinar. 2025. "ω9 Monounsaturated and Saturated Colostrum Fatty Acids May Benefit Newborns in General and Subtle Hypothyroid Stages" Nutrients 17, no. 12: 2017. https://doi.org/10.3390/nu17122017
APA StyleAltinoz, M. A., Serdar, M. A., Altinoz, S. M., Eroglu, M., Muhcu, M., Kumru, P., & Ozpinar, A. (2025). ω9 Monounsaturated and Saturated Colostrum Fatty Acids May Benefit Newborns in General and Subtle Hypothyroid Stages. Nutrients, 17(12), 2017. https://doi.org/10.3390/nu17122017