Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = neoagarooligosaccharides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4082 KiB  
Article
Odd-Numbered Agaro-Oligosaccharides Produced by α-Neoagaro-Oligosaccharide Hydrolase Exert Antioxidant Activity in Human Dermal Fibroblasts
by Eunyoung Jo, Navindu Dinara Gajanayaka, Minthari Sakethanika Bandara, Svini Dileepa Marasinghe, Gun-Hoo Park, Su-Jin Lee, Chulhong Oh and Youngdeuk Lee
Mar. Drugs 2024, 22(11), 495; https://doi.org/10.3390/md22110495 - 3 Nov 2024
Cited by 1 | Viewed by 1913
Abstract
Agarases produce agar oligosaccharides with various structures exhibiting diverse physiological activities. α-Neoagaro-oligosaccharide hydrolase (α-NAOSH) specifically cleaves even-numbered neoagaro-oligosaccharides, producing 3,6-anhydro-l-galactose (l-AHG) and odd-numbered agaro-oligosaccharides (OAOSs). In this study, α-NAOSH from the agar-degrading marine bacterium Gilvimarinus agarilyticus JEA5 (Gaa117) was [...] Read more.
Agarases produce agar oligosaccharides with various structures exhibiting diverse physiological activities. α-Neoagaro-oligosaccharide hydrolase (α-NAOSH) specifically cleaves even-numbered neoagaro-oligosaccharides, producing 3,6-anhydro-l-galactose (l-AHG) and odd-numbered agaro-oligosaccharides (OAOSs). In this study, α-NAOSH from the agar-degrading marine bacterium Gilvimarinus agarilyticus JEA5 (Gaa117) was purified and characterized using an E. coli expression system to produce OAOSs and determine their bioactivity. Recombinant Gaa117 (rGaa117) showed maximum activity at pH 6.0 and 35 °C. rGaa117 retained >80% of its initial activity after 120 min at 30 °C. The activity was enhanced in the presence of Mn2+. Km, Vmax, and Kcat/Km values of the enzyme were 22.64 mM, 246.3 U/mg, and 15 s−1/mM, respectively. rGaa117 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose, producing OAOSs that commonly contained l-AHG. Neoagarobiose and neoagarotetraose mixtures, designated NAO24, and mixtures of l-AHG and agarotriose, designated AO13, were obtained using recombinant rGaa16B (β-agarase) and rGaa117, respectively, and their antioxidant activities were compared. AO13 showed higher hydrogen peroxide-scavenging activity than NAO24 in human dermal fibroblasts in vitro because of structural differences: AOSs have d-galactose at the non-reducing end, whereas NAOSs have l-AHG. In conclusion, OAOSs exhibited high ROS-scavenging activity in H2O2-induced human dermal fibroblasts. They may be applicable in cosmetics and pharmaceuticals for prevention of skin aging. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

18 pages, 2621 KiB  
Article
Neoagaro-Oligosaccharides Ameliorate Chronic Restraint Stress-Induced Depression by Increasing 5-HT and BDNF in the Brain and Remodeling the Gut Microbiota of Mice
by Yan Zhuang, Runying Zeng, Xiao Liu, Longhe Yang and Zhuhua Chan
Mar. Drugs 2022, 20(11), 725; https://doi.org/10.3390/md20110725 - 18 Nov 2022
Cited by 17 | Viewed by 4194
Abstract
Neoagaro-oligosaccharides (NAOs) belong to the algae oligosaccharides. NAOs have been found to have diverse biological activities. However, the effects of NAOs on depression and their underlying mechanism have not been thoroughly studied. A chronic restraint stress (CRS)-induced C57BL/6J mouse model was used to [...] Read more.
Neoagaro-oligosaccharides (NAOs) belong to the algae oligosaccharides. NAOs have been found to have diverse biological activities. However, the effects of NAOs on depression and their underlying mechanism have not been thoroughly studied. A chronic restraint stress (CRS)-induced C57BL/6J mouse model was used to assess the antidepressant effects of NAOs. Anxiety and depression behaviors were assessed by open field tests (OFT) and forced swimming tests (FST), while interleukin 18 (IL-18), 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) were the molecular biomarkers of depression. Fecal microbiota transplantation (FMT) was performed. The results showed that NAO treatment significantly improved the body weight of depressed mice and reduced the central area time in the OFT and immobility time in the FST. NAO treatment decreased the levels of IL-18 in the serum and increased the levels of 5-HT in the serum and whole brain and of BDNF in the whole brain. NAO treatment mitigated the gut microbiota dysbiosis in the depressed mice and reversed the decreased levels of short-chain fatty acids (SCFAs) in the cecum of the depressed mice. FMT indicated that the gut microbiota is, indeed, linked to depression, which was reflected in the changes in weight gain and behaviors. In a word, NAOs effectively reversed the CRS-induced mice model of depression, which depended on the changes in the gut microbiota and SCFAs, as well as its modulation of 5-HT and BDNF. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

12 pages, 1277 KiB  
Article
A Novel Agarase, Gaa16B, Isolated from the Marine Bacterium Gilvimarinus agarilyticus JEA5, and the Moisturizing Effect of Its Partial Hydrolysis Products
by Youngdeuk Lee, Eunyoung Jo, Yeon-Ju Lee, Tae-Yang Eom, Yehui Gang, Yoon-Hyeok Kang, Svini Dileepa Marasinghe, Sachithra Amarin Hettiarachchi, Do-Hyung Kang and Chulhong Oh
Mar. Drugs 2022, 20(1), 2; https://doi.org/10.3390/md20010002 - 21 Dec 2021
Cited by 13 | Viewed by 3474
Abstract
We recently identified a β-agarase, Gaa16B, in the marine bacterium Gilvimarinus agarilyticus JEA5. Gaa16B, belonging to the glycoside hydrolase 16 family of β-agarases, shows less than 70.9% amino acid similarity with previously characterized agarases. Recombinant Gaa16B lacking the carbohydrate-binding region (rGaa16Bc) [...] Read more.
We recently identified a β-agarase, Gaa16B, in the marine bacterium Gilvimarinus agarilyticus JEA5. Gaa16B, belonging to the glycoside hydrolase 16 family of β-agarases, shows less than 70.9% amino acid similarity with previously characterized agarases. Recombinant Gaa16B lacking the carbohydrate-binding region (rGaa16Bc) was overexpressed in Escherichia coli and purified. Activity assays revealed the optimal temperature and pH of rGaa16Bc to be 55 C and pH 6–7, respectively, and the protein was highly stable at 55 C for 90 min. Additionally, rGaa16Bc activity was strongly enhanced (2.3-fold) in the presence of 2.5 mM MnCl2. The Km and Vmax of rGaa16Bc for agarose were 6.4 mg/mL and 953 U/mg, respectively. Thin-layer chromatography analysis revealed that rGaa16Bc can hydrolyze agarose into neoagarotetraose and neoagarobiose. Partial hydrolysis products (PHPs) of rGaa16Bc had an average molecular weight of 88–102 kDa and exhibited > 60% hyaluronidase inhibition activity at a concentration of 1 mg/mL, whereas the completely hydrolyzed product (CHP) showed no hyaluronidase at the same concentration. The biochemical properties of Gaa16B suggest that it could be useful for producing functional neoagaro-oligosaccharides. Additionally, the PHP of rGaa16Bc may be useful in promoting its utilization, which is limited due to the gel strength of agar. Full article
Show Figures

Figure 1

9 pages, 1687 KiB  
Article
Expression and Characterization of a Novel Cold-Adapted and Stable β-Agarase Gene agaW1540 from the Deep-Sea Bacterium Shewanella sp. WPAGA9
by Wenxin Wang, Jianxin Wang, Ruihua Yan, Runying Zeng, Yaqiang Zuo, Dingquan Wang and Wu Qu
Mar. Drugs 2021, 19(8), 431; https://doi.org/10.3390/md19080431 - 29 Jul 2021
Cited by 13 | Viewed by 2602
Abstract
The neoagaro-oligosaccharides, degraded from agarose by agarases, are important natural substances with many bioactivities. In this study, a novel agarase gene, agaW1540, from the genome of a deep-sea bacterium Shewanella sp. WPAGA9, was expressed, and the recombinant AgaW1540 (rAgaW1540) displayed the maximum activity [...] Read more.
The neoagaro-oligosaccharides, degraded from agarose by agarases, are important natural substances with many bioactivities. In this study, a novel agarase gene, agaW1540, from the genome of a deep-sea bacterium Shewanella sp. WPAGA9, was expressed, and the recombinant AgaW1540 (rAgaW1540) displayed the maximum activity under the optimal pH and temperature of 7.0 and 35 °C, respectively. rAgaW1540 retained 85.4% of its maximum activity at 0 °C and retained more than 92% of its maximum activity at the temperature range of 20–40 °C and the pH range of 4.0–9.0, respectively, indicating its extensive working temperature and pH values. The activity of rAgaW1540 was dramatically suppressed by Cu2+ and Zn2+, whereas Fe2+ displayed an intensification of enzymatic activity. The Km and Vmax of rAgaW1540 for agarose degradation were 15.7 mg/mL and 23.4 U/mg, respectively. rAgaW1540 retained 94.7%, 97.9%, and 42.4% of its maximum activity after incubation at 20 °C, 25 °C, and 30 °C for 60 min, respectively. Thin-layer chromatography and ion chromatography analyses verified that rAgaW1540 is an endo-acting β-agarase that degrades agarose into neoagarotetraose and neoagarohexaose as the main products. The wide variety of working conditions and stable activity at room temperatures make rAgaW1540an appropriate bio-tool for further industrial production of neoagaro-oligosaccharides. Full article
(This article belongs to the Special Issue Discovery of New Marine Natural Products using Omics approaches)
Show Figures

Figure 1

13 pages, 3792 KiB  
Article
Characterization of Neoagarooligosaccharide Hydrolase BpGH117 from a Human Gut Bacterium Bacteroides plebeius
by Yerin Jin, Sora Yu, Dong Hyun Kim, Eun Ju Yun and Kyoung Heon Kim
Mar. Drugs 2021, 19(5), 271; https://doi.org/10.3390/md19050271 - 13 May 2021
Cited by 13 | Viewed by 4360
Abstract
α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis [...] Read more.
α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s−1 mM−1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently. Full article
(This article belongs to the Special Issue Nutra-Cosmeceuticals from Algae for Health and Wellness)
Show Figures

Graphical abstract

13 pages, 2190 KiB  
Article
Neoagarooligosaccharide Protects against Hepatic Fibrosis via Inhibition of TGF-β/Smad Signaling Pathway
by Ji Hye Yang, Sae Kwang Ku, IL Je Cho, Je Hyeon Lee, Chang-Su Na and Sung Hwan Ki
Int. J. Mol. Sci. 2021, 22(4), 2041; https://doi.org/10.3390/ijms22042041 - 18 Feb 2021
Cited by 15 | Viewed by 3834
Abstract
Hepatic fibrosis occurs when liver tissue becomes scarred from repetitive liver injury and inflammatory responses; it can progress to cirrhosis and eventually to hepatocellular carcinoma. Previously, we reported that neoagarooligosaccharides (NAOs), produced by the hydrolysis of agar by β-agarases, have hepatoprotective effects against [...] Read more.
Hepatic fibrosis occurs when liver tissue becomes scarred from repetitive liver injury and inflammatory responses; it can progress to cirrhosis and eventually to hepatocellular carcinoma. Previously, we reported that neoagarooligosaccharides (NAOs), produced by the hydrolysis of agar by β-agarases, have hepatoprotective effects against acetaminophen overdose-induced acute liver injury. However, the effect of NAOs on chronic liver injury, including hepatic fibrosis, has not yet been elucidated. Therefore, we examined whether NAOs protect against fibrogenesis in vitro and in vivo. NAOs ameliorated PAI-1, α-SMA, CTGF and fibronectin protein expression and decreased mRNA levels of fibrogenic genes in TGF-β-treated LX-2 cells. Furthermore, downstream of TGF-β, the Smad signaling pathway was inhibited by NAOs in LX-2 cells. Treatment with NAOs diminished the severity of hepatic injury, as evidenced by reduction in serum alanine aminotransferase and aspartate aminotransferase levels, in carbon tetrachloride (CCl4)-induced liver fibrosis mouse models. Moreover, NAOs markedly blocked histopathological changes and collagen accumulation, as shown by H&E and Sirius red staining, respectively. Finally, NAOs antagonized the CCl4-induced upregulation of the protein and mRNA levels of fibrogenic genes in the liver. In conclusion, our findings suggest that NAOs may be a promising candidate for the prevention and treatment of chronic liver injury via inhibition of the TGF-β/Smad signaling pathway. Full article
Show Figures

Figure 1

10 pages, 3001 KiB  
Article
A Novel Route for Agarooligosaccharide Production with the Neoagarooligosaccharide-Producing β-Agarase as Catalyst
by Chengcheng Jiang, Zhen Liu, Jianan Sun, Changhu Xue and Xiangzhao Mao
Catalysts 2020, 10(2), 214; https://doi.org/10.3390/catal10020214 - 10 Feb 2020
Cited by 8 | Viewed by 3525
Abstract
Enzymes are catalysts with high specificity. Different compounds could be produced by different enzymes. In case of agaro-oligosaccharides, agarooligosaccharide (AOS) can be produced by α-agarase through cleaving the α-1,3-glycosidic linkages of agarose, while neoagarooligosaccharide (NAOS) can be produced by β-agarase through cleaving the [...] Read more.
Enzymes are catalysts with high specificity. Different compounds could be produced by different enzymes. In case of agaro-oligosaccharides, agarooligosaccharide (AOS) can be produced by α-agarase through cleaving the α-1,3-glycosidic linkages of agarose, while neoagarooligosaccharide (NAOS) can be produced by β-agarase through cleaving the β-1,4-glycosidic linkages of agarose. However, in this study, we showed that β-agarase could also be used to produce AOSs with high purity and yield. The feasibility of our route was confirmed by agarotriose (A3) and agaropentaose (A5) formation from agaroheptaose (A7) and agarononoses (A9) catalyzed by β-agarase. Agarose was firstly liquesced by citric acid into a mixture of AOSs. The AOSs mixture was further catalyzed by β-agarase. When using the neoagarotetraose-forming β-agarase AgWH50B, agarotriose could be produced with the yield of 48%. When using neoagarotetraose, neoagarohexaose-forming β-agarase DagA, both agarotriose and agaropentaose could be produced with the yield of 14% and 13%, respectively. Our method can be used to produce other value-added agaro-oligosaccharides from agarose by different agarolytic enzymes. Full article
(This article belongs to the Special Issue Biocatalytic Process Optimization)
Show Figures

Graphical abstract

17 pages, 5088 KiB  
Article
The Potential of Neoagaro-Oligosaccharides as a Treatment of Type II Diabetes in Mice
by Fudi Lin, Dongda Yang, Yayan Huang, Yan Zhao, Jing Ye and Meitian Xiao
Mar. Drugs 2019, 17(10), 541; https://doi.org/10.3390/md17100541 - 20 Sep 2019
Cited by 33 | Viewed by 3618
Abstract
Type 2 diabetes mellitus (T2DM) accounts for more than 90% of cases of diabetes mellitus, which is harmful to human health. Herein, neoagaro-oligosaccharides (NAOs) were prepared and their potential as a treatment of T2DM was evaluated in KunMing (KM) mice. Specifically, a T2DM [...] Read more.
Type 2 diabetes mellitus (T2DM) accounts for more than 90% of cases of diabetes mellitus, which is harmful to human health. Herein, neoagaro-oligosaccharides (NAOs) were prepared and their potential as a treatment of T2DM was evaluated in KunMing (KM) mice. Specifically, a T2DM mice model was established by the combination of a high-fat diet (HFD) and alloxan injection. Consequently, the mice were given different doses of NAOs (100, 200, or 400 mg/kg) and the differences among groups of mice were recorded. As a result of the NAOs treatment, the fasting blood glucose (FBG) was lowered and the glucose tolerance was improved as compared with the model group. As indicated by the immunohistochemistry assay, the NAOs treatment was able to ameliorate hepatic macrovesicular steatosis and hepatocyte swelling, while it also recovered the number of pancreatic β-cells. Additionally, NAOs administration benefited the antioxidative capacity in mice as evidenced by the upregulation of both glutathione peroxidase and superoxide dismutase activity and the significant reduction of the malondialdehyde concentration. Furthermore, NAOs, as presented by Western blotting, increased the expression of p-ERK1/2, p-JNK, NQO1, HO-1, and PPARγ, via the MAPK, Nrf2, and PPARγ signaling pathways, respectively. In conclusion, NAOs can be used to treat some complications caused by T2DM, and are beneficial in controlling the level of blood glucose and ameliorating the damage of the liver and pancreatic islands. Full article
Show Figures

Graphical abstract

13 pages, 2872 KiB  
Article
Simple Preparation of Diverse Neoagaro-Oligosaccharides
by Fudi Lin, Jing Ye, Yayan Huang, Yucheng Yang and Meitian Xiao
Processes 2019, 7(5), 267; https://doi.org/10.3390/pr7050267 - 7 May 2019
Cited by 16 | Viewed by 4327
Abstract
A simple method for obtaining pure and well-defined oligosaccharides was established by hydrolyzing agar with β-agarase from Vibrio natriegens. The conditions for enzymolysis were optimized as follows: a temperature of 45 °C, a pH of 8.5, a substrate concentration of 0.3%, an [...] Read more.
A simple method for obtaining pure and well-defined oligosaccharides was established by hydrolyzing agar with β-agarase from Vibrio natriegens. The conditions for enzymolysis were optimized as follows: a temperature of 45 °C, a pH of 8.5, a substrate concentration of 0.3%, an enzyme amount of 100 U/g and an enzymolysis time of 20 h. Neoagaro-oligosaccharides with different degrees of polymerization were obtained by hydrolyzing agar with β-agarase for different lengths of time. After removing pigments using activated carbon and salts by dialyzing, the enzyme hydrolysis solution was separated with Bio-Gel P2 column chromatography. Neoagaro-oligosaccharides with different degrees of polymerization were acquired. By comparing with authentic standard substances, along with further confirmation by FTIR, MS and NMR, structures of the purified neoagaro-oligosaccharides were identified as neoagarobiose (NA2), neoagaroteraose (NA4), neoagarohexaose (NA6), neoagarooctaose (NA8), neoagaro-decaose (NA10) and neoagarododecaose (NA12) with purities of more than 97.0%. The present study established a method for the preparation of various neoagaro-oligosaccharides that may be of great significance for further study of their bioactivities. Full article
(This article belongs to the Special Issue Green Separation and Extraction Processes)
Show Figures

Graphical abstract

14 pages, 2318 KiB  
Article
Biochemical Characterization of a New β-Agarase from Cellulophaga algicola
by Zhenggang Han, Yuxi Zhang and Jiangke Yang
Int. J. Mol. Sci. 2019, 20(9), 2143; https://doi.org/10.3390/ijms20092143 - 30 Apr 2019
Cited by 21 | Viewed by 3175
Abstract
Cellulophaga algicola DSM 14237, isolated from the Eastern Antarctic coastal zone, was found to be able to hydrolyze several types of polysaccharide materials. In this study, a predicted β-agarase (CaAga1) from C. algicola was heterologously expressed in Escherichia coli. The [...] Read more.
Cellulophaga algicola DSM 14237, isolated from the Eastern Antarctic coastal zone, was found to be able to hydrolyze several types of polysaccharide materials. In this study, a predicted β-agarase (CaAga1) from C. algicola was heterologously expressed in Escherichia coli. The purified recombinant CaAga1 showed specific activities of 29.39, 20.20, 14.12, and 8.99 U/mg toward agarose, pure agar, and crude agars from Gracilaria lemaneiformis and Porphyra haitanensis, respectively. CaAga1 exhibited an optimal temperature and pH of 40 °C and 7, respectively. CaAga1 was stable over a wide pH range from 4 to 11. The recombinant enzyme showed an unusual thermostability, that is, it was stable at temperature below or equal to 40 °C and around 70 °C, but was thermolabile at about 50 °C. With the agarose as the substrate, the Km and Vmax values for CaAga1 were 1.19 mg/mL and 36.21 U/mg, respectively. The reducing reagent (dithiothreitol) enhanced the activity of CaAga1 by more than one fold. In addition, CaAga1 was salt-tolerant given that it retained approximately 70% of the maximum activity in the presence of 2 M NaCl. The thin layer chromatography results indicated that CaAga1 is an endo-type β-agarase and efficiently hydrolyzed agarose into neoagarotetraose (NA4) and neoagarohexaose (NA6). A structural model of CaAga1 in complex with neoagarooctaose (NA8) was built by homology modeling and explained the hydrolysis pattern of CaAga1. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Graphical abstract

10 pages, 1017 KiB  
Article
Quantification of Neoagaro-Oligosaccharide Production through Enzymatic Hydrolysis and Its Anti-Oxidant Activities
by Shu-Ying Xu, Jie Kan, Zhong Hu, Yang Liu, Hong Du, Guang-Chang Pang and Kit-Leong Cheong
Molecules 2018, 23(6), 1354; https://doi.org/10.3390/molecules23061354 - 5 Jun 2018
Cited by 60 | Viewed by 5539
Abstract
Neoagaro-oligosaccharides (NAOS) have health benefits that are related to their amount and degree of polymerization (DP). However, the current methods that are used to quantify enzymatically released NAOS are un-specific and time-consuming. Agar has been extracted from Gelidium amansii and has been degraded [...] Read more.
Neoagaro-oligosaccharides (NAOS) have health benefits that are related to their amount and degree of polymerization (DP). However, the current methods that are used to quantify enzymatically released NAOS are un-specific and time-consuming. Agar has been extracted from Gelidium amansii and has been degraded by AgaXa (a recombinant β-agarase). Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) has been adapted in order to quantify NAOS. In addition, the anti-oxidant activity of the degraded samples has been assessed. We have found that the PACE method provided sensitive, precise, and accurate quantification for each of the six NAOS samples. PACE has revealed that the DP of the enzymatic products from the AgaXa digestion were mainly neoagaro-octaose and neoagaro-decaose. The degraded samples exhibited increased radical-scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzothiazoline sulfonic acid) radicals. While the anti-oxidant activity may have been from NAOS activity and contributions from neoagaro-octaose and neoagaro-decaose. The adapted PACE method that has been presented here is promising for large sample analysis during quality control and for characterizing novel β-agarase degradation mechanisms. Full article
Show Figures

Figure 1

10 pages, 4348 KiB  
Article
Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides
by Ji Hye Kim, Eun Ju Yun, Sora Yu, Kyoung Heon Kim and Nam Joo Kang
Mar. Drugs 2017, 15(10), 321; https://doi.org/10.3390/md15100321 - 20 Oct 2017
Cited by 78 | Viewed by 7682
Abstract
3,6-Anhydro-l-galactose (AHG), a major monomeric constituent of red macroalgae (Rhodophyta), was recently reported to possess skin whitening activity. Moreover, AHG-containing oligosaccharides, such as agarooligosaccharides (AOSs) and neoagarooligosaccharides (NAOSs), have various physiological activities, including anti-inflammatory, antioxidant, and skin moisturizing effects. [...] Read more.
3,6-Anhydro-l-galactose (AHG), a major monomeric constituent of red macroalgae (Rhodophyta), was recently reported to possess skin whitening activity. Moreover, AHG-containing oligosaccharides, such as agarooligosaccharides (AOSs) and neoagarooligosaccharides (NAOSs), have various physiological activities, including anti-inflammatory, antioxidant, and skin moisturizing effects. In this study, AHG and NAOSs were produced from agarose by enzymatic reactions catalyzed by an endo-type β-agarase, an exo-type β-agarase, and a neoagarobiose hydrolase. In a cell proliferation assay, AHG, AOSs, and NAOSs at 12.5, 25, and 50 μg/mL concentrations did not exhibit cytotoxicity toward murine B16 melanoma cells or human epidermal melanocytes. In an in vitro skin whitening activity assay of AHG, AOSs, and NAOSs at 50 μg/mL, AHG showed the highest skin whitening activity in both murine B16 melanoma cells and human epidermal melanocytes; this activity was mediated by the inhibition of melanogenesis. Neoagarotetraose and neoagarohexaose also exhibited in vitro skin whitening activity, whereas neoagarobiose and AOSs with degrees of polymerization of 3 (agarotriose), 5 (agaropentaose), and 7 (agaroheptaose) did not. Therefore, AHG is responsible for the skin whitening activity of agar-derived sugars, and the structural differences among the AHG-containing oligosaccharides may be responsible for their different skin whitening activities. Full article
(This article belongs to the Special Issue Marine Products for Health and Beauty)
Show Figures

Graphical abstract

12 pages, 2156 KiB  
Article
Anti-Obesity and Anti-Diabetic Effect of Neoagarooligosaccharides on High-Fat Diet-Induced Obesity in Mice
by Sun Joo Hong, Je-Hyeon Lee, Eun Joo Kim, Hea Jung Yang, Jae-Seon Park and Soon-Kwang Hong
Mar. Drugs 2017, 15(4), 90; https://doi.org/10.3390/md15040090 - 23 Mar 2017
Cited by 95 | Viewed by 8166
Abstract
Neoagarooligosaccharides (NAOs), mainly comprising neoagarotetraose and neoagarohexaose, were prepared by hydrolyzing agar with β-agarase DagA from Streptomyces coelicolor, and the anti-obesity and anti-diabetic effects of NAOs on high-fat diet (HFD)-induced obesity in mice were investigated after NAOs-supplementation for 64 days. Compared to the [...] Read more.
Neoagarooligosaccharides (NAOs), mainly comprising neoagarotetraose and neoagarohexaose, were prepared by hydrolyzing agar with β-agarase DagA from Streptomyces coelicolor, and the anti-obesity and anti-diabetic effects of NAOs on high-fat diet (HFD)-induced obesity in mice were investigated after NAOs-supplementation for 64 days. Compared to the HFD group, the HFD-0.5 group that was fed with HFD + NAOs (0.5%, w/w) showed remarkable reduction of 36% for body weight gain and 37% for food efficiency ratios without abnormal clinical signs. Furthermore, fat accumulation in the liver and development of macrovesicular steatosis induced by HFD in the HFD-0.5 group were recovered nearly to the levels found in the normal diet (ND) group. NAOs intake could also effectively reduce the size (area) of adipocytes and tissue weight gain in the perirenal and epididymal adipose tissues. The increased concentrations of total cholesterol, triglyceride, and free fatty acid in serum of the HFD group were also markedly ameliorated to the levels found in serum of the ND group after NAOs-intake in a dose dependent manner. In addition, insulin resistance and glucose intolerance induced by HFD were distinctly improved, and adiponectin concentration in the blood was notably increased. All these results strongly suggest that intake of NAOs can effectively suppress obesity and obesity-related metabolic syndromes, such as hyperlipidemia, steatosis, insulin resistance, and glucose intolerance, by inducing production of adiponectin in the HFD-induced obese mice. Full article
Show Figures

Figure 1

12 pages, 5563 KiB  
Article
Isolation and Characterization of a Glycosyl Hydrolase Family 16 β-Agarase from a Mangrove Soil Metagenomic Library
by Zhimao Mai, Hongfei Su and Si Zhang
Int. J. Mol. Sci. 2016, 17(8), 1360; https://doi.org/10.3390/ijms17081360 - 19 Aug 2016
Cited by 30 | Viewed by 5483
Abstract
A mangrove soil metagenomic library was constructed and a β-agarase gene designated as AgaML was isolated by functional screening. The gene encoded for a 659-amino-acids polypeptide with an estimated molecular mass of 71.6 kDa. The deduced polypeptide sequences of AgaML showed the highest [...] Read more.
A mangrove soil metagenomic library was constructed and a β-agarase gene designated as AgaML was isolated by functional screening. The gene encoded for a 659-amino-acids polypeptide with an estimated molecular mass of 71.6 kDa. The deduced polypeptide sequences of AgaML showed the highest identity of 73% with the glycoside hydrolase family 16 β-agarase from Microbulbifer agarilyticus in the GenBank database. AgaML was cloned and highly expressed in Escherichia coli BL21(DE3). The purified recombinant protein, AgaML, showed optimal activity at 50 °C and pH 7.0. The kinetic parameters of Km and Vmax values toward agarose were 4.6 mg·mL−1 and 967.5 μM·min−1·mg−1, respectively. AgaML hydrolyzed the β-1,4-glycosidic linkages of agar to generate neoagarotetraose (NA4) and neoagarohexaose (NA6) as the main products. These characteristics suggest that AgaML has potential application in cosmetic, pharmaceuticals and food industries. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 3207 KiB  
Article
Extracellular Production of a Novel Endo-β-Agarase AgaA from Pseudomonas vesicularis MA103 that Cleaves Agarose into Neoagarotetraose and Neoagarohexaose
by Pang-Hung Hsu, Chien-Han Wei, Wen-Jung Lu, Fen Shen, Chorng-Liang Pan and Hong-Ting Victor Lin
Int. J. Mol. Sci. 2015, 16(3), 5590-5603; https://doi.org/10.3390/ijms16035590 - 11 Mar 2015
Cited by 25 | Viewed by 6233
Abstract
The gene agaA, of the isolated marine bacterium Pseudomonas vesicularis MA103, comprised 2958-bp nucleotides encoding a putative agarase AgaA of 985 amino acids, which was predicted to contain a signal peptide of 29 amino acids in the N-terminus, a catalytic domain [...] Read more.
The gene agaA, of the isolated marine bacterium Pseudomonas vesicularis MA103, comprised 2958-bp nucleotides encoding a putative agarase AgaA of 985 amino acids, which was predicted to contain a signal peptide of 29 amino acids in the N-terminus, a catalytic domain of glycoside hydrolase 16 (GH16) family, a bacterial immunoglobulin group 2 (Big 2), and three carbohydrate binding modules 6 (CBM 6). The gene agaA was cloned and overexpressed in Escherichia coli, and the optimum temperatures for AgaA overexpression were 16, 20 and 24 °C. The agaA was cloned without its signal peptide for cytosolic production overexpression, whereas it was cloned with the heterologous signal peptide PelB and its endogenous signal peptide for periplasmic and extracellular productions, respectively. Extracellular and periplasmic rAgaA showed greater activity than that of cytosolic rAgaA, indicating that membrane translocation of AgaA may encourage proper protein folding. Time-course hydrolysis of agarose by rAgaA was accomplished and the products were analyzed using thin layer chromatography and matrix-assisted laser desorption inoization-time of flight mass spectrometry, indicating that AgaA from P. vesicularis was an endo-type β-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop