Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = needle bar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5303 KiB  
Article
Electroacoustic Analysis and Optimization of Needle-Rod Electrodes for Low-Power Impulse Sound Source
by Xiao Du, Jing Zhou and Xu Gao
Sensors 2025, 25(7), 2331; https://doi.org/10.3390/s25072331 - 7 Apr 2025
Cited by 1 | Viewed by 452
Abstract
In acoustic deep detection technology, conventional monopole, dipole, and phased-array sound sources are far inferior to impulsive sound sources in frequency and amplitude. But impulse sound sources mostly work under high-power, high-voltage, and high-current conditions, which are difficult to be applied downhole. The [...] Read more.
In acoustic deep detection technology, conventional monopole, dipole, and phased-array sound sources are far inferior to impulsive sound sources in frequency and amplitude. But impulse sound sources mostly work under high-power, high-voltage, and high-current conditions, which are difficult to be applied downhole. The purpose of this paper is to reduce the power of the impulse sound source system and at the same time to stimulate excellent impulse wave characteristics. Firstly, an experimental impulse sound source system using needle-rod electrodes was constructed, and the discharge experimental results were analysed. Secondly, a finite element model of the needle-rod electrodes of the impulse sound source was established based on the experimental conditions, and the effects of the charging voltage, electrode gap, and liquid conductivity on the power and electroacoustic parameters of the needle-rod electrodes system were investigated separately. Finally, the optimised electroacoustic parameters and curves of the needle-rod electrodes of the low-power impulse sound source were obtained. The results show that the charging voltage is the most significant parameter affecting the power of the needle-rod electrode system; a larger liquid conductivity and a suitable electrode gap are required for the optimal impulse wave parameters. The optimised low-power impulse sound source system with needle-bar electrodes with a power of 20.95 kW achieves an impulse wave intensity of 4.78 MPa, with a sound pressure level above 295 dB up to 1 kHz and above 225 dB from 1 kHz to 300 kHz. Optimised needle-rod electrodes for low-power impulse sound sources have the advantages of a wide bandwidth and high energy. This makes the downhole application of low-power impulse sound sources possible, which will play an important role in oil exploration and other drilling exploration fields. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 7455 KiB  
Article
Swamped with Too Many Articles? GraphRAG Makes Getting Started Easy
by Joëd Ngangmeni and Danda B. Rawat
AI 2025, 6(3), 47; https://doi.org/10.3390/ai6030047 - 1 Mar 2025
Cited by 3 | Viewed by 2270
Abstract
Background: Both early researchers, such as new graduate students, and experienced researchers face the challenge of sifting through vast amounts of literature to find their needle in a haystack. This process can be time-consuming, tedious, or frustratingly unproductive. Methods: Using only abstracts and [...] Read more.
Background: Both early researchers, such as new graduate students, and experienced researchers face the challenge of sifting through vast amounts of literature to find their needle in a haystack. This process can be time-consuming, tedious, or frustratingly unproductive. Methods: Using only abstracts and titles of research articles, we compare three retrieval methods—Bibliographic Indexing/Databasing (BI/D), Retrieval-Augmented Generation (RAG), and Graph Retrieval-Augmented Generation (GraphRAG)—which reportedly offer promising solutions to these common challenges. We assess their performance using two sets of Large Language Model (LLM)-generated queries: one set of queries with context and the other set without context. Our study evaluates six sub-models—four from Light Retrieval-Augmented Generation (LightRAG) and two from Microsoft’s Graph Retrieval-Augmented Generation (MGRAG). We examine these sub-models across four key criteria—comprehensiveness, diversity, empowerment, and directness—as well as the overall combination of these factors. Results: After three separate experiments, we observe that MGRAG has a slight advantage over LightRAG, naïve RAG, and BI/D for answering queries that require a semantic understanding of our data pool. The results (displayed in grouped bar charts) provide clear and accessible comparisons to help researchers quickly make informed decisions on which method best suits their needs. Conclusions: Supplementing BI/D with RAG or GraphRAG pipelines would positively impact the way both beginners and experienced researchers find and parse through volumes of potentially relevant information. Full article
Show Figures

Figure 1

13 pages, 3124 KiB  
Article
Near-Field Direct Write Electrospinning of PET-Carbon Quantum Dot Solutions
by Fatemeh Mohtaram, Michael Petersen, Maria Ahrenst-Mortensen, Liva Skou Boysen, Frederik Hejgaard Gram, Helene Halsen Malling, Noah Frederik Hallundbæk Bang, Yan Jurg Hess and Peter Fojan
Materials 2024, 17(24), 6242; https://doi.org/10.3390/ma17246242 - 20 Dec 2024
Cited by 1 | Viewed by 1579
Abstract
Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to [...] Read more.
Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to generate well-defined patterns. This variation of electrospinning, also known as near-field direct-write electrospinning, allows for precise control of the fiber deposition, sacrificing on the thickness of the resulting fibers. Typically, for this method, melt electrospinning is preferred, since it provides a higher viscosity of the polymer and thereby better control of the fiber deposition. However, when mixing additives into the spinning dope, a solution spinning approach is preferable since it provides a more homogeneous distribution of the additives in the spinning dope. A fluorescent spinning dope of dissolved PET with fluorescent carbon quantum dots has been used to generate the fluorescent patterns. These can be used to generate logos, bar codes, or QR codes to encode information about the material, such as watermarks or counterfeiting tags. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterials for Biomedical Applications)
Show Figures

Figure 1

14 pages, 7421 KiB  
Article
The Treatment of Natural Calcium Materials Using the Supercritical Antisolvent Method for CO2 Capture Applications
by Luís C. S. Nobre, Paula Teixeira, Carla I. C. Pinheiro, António M. F. Palavra, Mário J. F. Calvete, Carlos A. Nieto de Castro and Beatriz P. Nobre
Processes 2024, 12(3), 425; https://doi.org/10.3390/pr12030425 - 20 Feb 2024
Cited by 1 | Viewed by 1819
Abstract
The potential of the supercritical antisolvent micronization (SAS) technique was evaluated for the production of CaO-based particles with a size and a physical structure that could enable high performance for CO2 capture through the calcium looping process. Two sources of calcium derivative [...] Read more.
The potential of the supercritical antisolvent micronization (SAS) technique was evaluated for the production of CaO-based particles with a size and a physical structure that could enable high performance for CO2 capture through the calcium looping process. Two sources of calcium derivative compounds were tested, waste marble powder (WMP) and dolomite. The SAS micronization of the derivate calcium acetate was carried out at 60 °C, 200 bar, a 0.5 mL min−1 flow rate of liquid solution, and 20 mg mL−1 concentration of solute, producing, with a yield of more than 70%, needle-like particles. Moreover, since dolomite presents with a mixture of calcium and magnesium carbonates, the influence of the magnesium fraction in the SAS micronization was also assessed. The micronized mixtures with lower magnesium content (higher calcium fraction) presented needle-like particles similar to WMP. On the other hand, for the higher magnesium fractions, the micronized material was similar to magnesium acetate micronization, presenting sphere-like particles. The use of the micronized material in the Ca-looping processes, considering 10 carbonation-calcination cycles under mild and realistic conditions, showed that under mild conditions, the micronized WMP improved CaO conversion. After 10 cycles the micronization, WMP presented a conversion 1.8 times greater than the unprocessed material. The micronized dolomite, under both mild and real conditions, maintained more stable conversion after 10 cycles. Full article
Show Figures

Figure 1

31 pages, 2122 KiB  
Review
Application of Sorbent-Based Extraction Techniques in Food Analysis
by Natalia Drabińska, Monika A. Marcinkowska, Martyna N. Wieczorek and Henryk H. Jeleń
Molecules 2023, 28(24), 7985; https://doi.org/10.3390/molecules28247985 - 7 Dec 2023
Cited by 18 | Viewed by 4019
Abstract
This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having [...] Read more.
This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed. Full article
Show Figures

Graphical abstract

11 pages, 6880 KiB  
Article
Development of an Implantable Capacitive Pressure Sensor for Biomedical Applications
by Ji-Hyoung Roh, Kyu-Sik Shin, Tae-Ha Song, Jihong Kim and Dae-Sung Lee
Micromachines 2023, 14(5), 975; https://doi.org/10.3390/mi14050975 - 29 Apr 2023
Cited by 8 | Viewed by 3807
Abstract
In this study, a subminiature implantable capacitive pressure sensor is proposed for biomedical applications. The proposed pressure sensor comprises an array of elastic silicon nitride (SiN) diaphragms formed by the application of a polysilicon (p-Si) sacrificial layer. In addition, using the p-Si layer, [...] Read more.
In this study, a subminiature implantable capacitive pressure sensor is proposed for biomedical applications. The proposed pressure sensor comprises an array of elastic silicon nitride (SiN) diaphragms formed by the application of a polysilicon (p-Si) sacrificial layer. In addition, using the p-Si layer, a resistive temperature sensor is also integrated into one device without additional fabrication steps or extra cost, thus enabling the device to measure pressure and temperature simultaneously. The sensor with a size of 0.5 × 1.2 mm was fabricated using microelectromechanical systems (MEMS) technology and was packaged in needle-shaped metal housing that is both insertable and biocompatible. The packaged pressure sensor immersed in a physiological saline solution exhibited excellent performance without leakage. The sensor achieved a sensitivity of approximately 1.73 pF/bar and a hysteresis of about 1.7%, respectively. Furthermore, it was confirmed that the pressure sensor operated normally for 48 h without experiencing insulation breakdown or degradation of the capacitance. The integrated resistive temperature sensor also worked properly. The response of the temperature sensor varied linearly with temperature variation. It had an acceptable temperature coefficient of resistance (TCR) of approximately 0.25%/°C. Full article
Show Figures

Figure 1

15 pages, 6259 KiB  
Article
Investigation of Microstructures and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy Prepared by Rapid Solidification and Hot Extrusion
by Gaoliang Shen, Zhilei Xiang, Xiaozhao Ma, Jingcun Huang, Yueqing Zhao, Jihao Li, Zhitian Wang, Guodong Shi and Ziyong Chen
Metals 2023, 13(2), 293; https://doi.org/10.3390/met13020293 - 31 Jan 2023
Cited by 5 | Viewed by 2557
Abstract
Al-Zn-Mg-Cu aluminum alloys have the advantages of high specific strength, easy processing, and high toughness, showing great potential application in the aerospace field. However, ultra-high strength aluminum alloys usually contain coarse microstructures, micro-segregation, and casting defects that seriously deteriorate mechanical properties. Here, we [...] Read more.
Al-Zn-Mg-Cu aluminum alloys have the advantages of high specific strength, easy processing, and high toughness, showing great potential application in the aerospace field. However, ultra-high strength aluminum alloys usually contain coarse microstructures, micro-segregation, and casting defects that seriously deteriorate mechanical properties. Here, we report a high-strength aluminum alloy (Al-10.5Zn-2.0Mg-1.2Cu-0.12Zr-0.1Er) prepared by rapid solidification and hot extrusion to explore the microstructure modification of the alloy based on this strategy. The results show that: rapid-solidification technology can significantly refine alloy grains, alloy ribbons were composed of α (Al) equiaxed fine grains, and the average grain size was less than 6 μm. After extrusion, the alloy had partially recrystallized, existing coarse second-phase (T-phase) and needle-shaped precipitates were MgZn2 (η-phase), and the tensile strength and elongation of the extruded bar were 466.4 MPa and 12.9%, respectively. After T6 heat treatment, the tensile strength of the alloy reached 635.8 MPa, while elongation decreased to 10.5%. According to microstructure analysis and considering the contributions of grain boundary, dislocation, and precipitation-strengthening to the improvement of the mechanical properties, it was found that precipitation-strengthening is the main strengthening mechanism. Our research shows that rapid-solidification and hot-extrusion technology have great potential for improving the microstructures and mechanical properties of aluminum alloys. Full article
Show Figures

Figure 1

15 pages, 3725 KiB  
Article
Design and Investigation of a Dynamic Auto-Adjusting Ejector for the MED-TVC Desalination System Driven by Solar Energy
by Jianbo Ren, Heli Zhao, Min Wang, Chao Miao, Yingzhen Wu and Qiang Li
Entropy 2022, 24(12), 1815; https://doi.org/10.3390/e24121815 - 13 Dec 2022
Cited by 8 | Viewed by 2390
Abstract
Ejectors have been widely used in multi-effect distillation, thermal vapor compression (MED-TVC) desalination systems due to their simple structures and low energy consumption. However, traditional fixed geometry ejectors fail to operate under unstable working conditions driven by solar energy. Herein, a dynamic auto-adjusting [...] Read more.
Ejectors have been widely used in multi-effect distillation, thermal vapor compression (MED-TVC) desalination systems due to their simple structures and low energy consumption. However, traditional fixed geometry ejectors fail to operate under unstable working conditions driven by solar energy. Herein, a dynamic auto-adjusting ejector, equipped with a needle at the nozzle throat, is proposed to improve the ejector’s performance under changeable operating conditions. A two-dimensional computational fluid dynamics (CFD) model is built to analyze the performance and flow field of the ejector. It is found that the achievable entrainment ratio gradually increases as the needle approaches the nozzle, and the entrainment ratio of the ejector is relatively stable, varying slightly between 1.1–1.2 when the primary pressure changes from 2.5 to 4 bar. Besides, the performance comparison between the proposed ejector and the traditional ejector is studied under the same primary pressure range. The entrainment ratio of the designed ejector was 1.6 times higher than that of the conventional ejector at a primary pressure of 2.5 bar. Furthermore, the average entrainment ratio of the designed ejector is 1.14, as compared to 0.84 for the traditional ejector. Overall, the proposed auto-adjusting ejector could be potentially used in MED-TVC desalination systems under variable conditions. Full article
(This article belongs to the Special Issue Entropy and Exergy Analysis in Ejector-Based Systems)
Show Figures

Figure 1

13 pages, 2633 KiB  
Article
A Three-Dimensional Bioprinted Copolymer Scaffold with Biocompatibility and Structural Integrity for Potential Tissue Regeneration Applications
by Bou-Yue Peng, Keng-Liang Ou, Chung-Ming Liu, Shu-Fen Chu, Bai-Hung Huang, Yung-Chieh Cho, Takashi Saito, Chi-Hsun Tsai, Kuo-Sheng Hung and Wen-Chien Lan
Polymers 2022, 14(16), 3415; https://doi.org/10.3390/polym14163415 - 21 Aug 2022
Cited by 14 | Viewed by 2974
Abstract
The present study was to investigate the rheological property, printability, and cell viability of alginate–gelatin composed hydrogels as a potential cell-laden bioink for three-dimensional (3D) bioprinting applications. The 2 g of sodium alginate dissolved in 50 mL of phosphate buffered saline solution was [...] Read more.
The present study was to investigate the rheological property, printability, and cell viability of alginate–gelatin composed hydrogels as a potential cell-laden bioink for three-dimensional (3D) bioprinting applications. The 2 g of sodium alginate dissolved in 50 mL of phosphate buffered saline solution was mixed with different concentrations (1% (0.5 g), 2% (1 g), 3% (1.5 g), and 4% (2 g)) of gelatin, denoted as GBH-1, GBH-2, GBH-3, and GBH-4, respectively. The properties of the investigated hydrogels were characterized by contact angle goniometer, rheometer, and bioprinter. In addition, the hydrogel with a proper concentration was adopted as a cell-laden bioink to conduct cell viability testing (before and after bioprinting) using Live/Dead assay and immunofluorescence staining with a human corneal fibroblast cell line. The analytical results indicated that the GBH-2 hydrogel exhibited the lowest loss rate of contact angle (28%) and similar rheological performance as compared with other investigated hydrogels and the control group. Printability results also showed that the average wire diameter of the GBH-2 bioink (0.84 ± 0.02 mm (*** p < 0.001)) post-printing was similar to that of the control group (0.79 ± 0.05 mm). Moreover, a cell scaffold could be fabricated from the GBH-2 bioink and retained its shape integrity for 24 h post-printing. For bioprinting evaluation, it demonstrated that the GBH-2 bioink possessed well viability (>70%) of the human corneal fibroblast cell after seven days of printing under an ideal printing parameter combination (0.4 mm of inner diameter needle, 0.8 bar of printing pressure, and 25 °C of printing temperature). Therefore, the present study suggests that the GBH-2 hydrogel could be developed as a potential cell-laden bioink to print a cell scaffold with biocompatibility and structural integrity for soft tissues such as skin, cornea, nerve, and blood vessel regeneration applications. Full article
(This article belongs to the Special Issue Biomaterials for Bone/Teeth Regeneration Applications)
Show Figures

Figure 1

12 pages, 2677 KiB  
Case Report
Direct Visualization of Cervical Interlaminar Epidural Injections Using Sonography
by Nana Maeda, Manabu Maeda and Yasuhito Tanaka
Tomography 2022, 8(4), 1869-1880; https://doi.org/10.3390/tomography8040157 - 22 Jul 2022
Cited by 5 | Viewed by 3850
Abstract
In this case series, we describe a novel ultrasound (US)-guided cervical interlaminar epidural steroid injections (CILESIs) procedure that does not depend on the loss-of-resistance method for epidural space identification. A needle is introduced into three US-identified structures (triple bar sign), the interspinal ligament, [...] Read more.
In this case series, we describe a novel ultrasound (US)-guided cervical interlaminar epidural steroid injections (CILESIs) procedure that does not depend on the loss-of-resistance method for epidural space identification. A needle is introduced into three US-identified structures (triple bar sign), the interspinal ligament, ligamentum flavum, and dura mater. The injectants are monitored using superb microvascular imaging during injection. Here, we demonstrate the use of US-guided CILESIs in nine cases and propose the use of sonography, rather than conventional methods, for easier and safer cervical epidural injections. Sonography for direct visualization of cervical epidural injection may allow for outpatient injections. Full article
Show Figures

Figure 1

29 pages, 412 KiB  
Review
Multiple Fuel Injection Strategies for Compression Ignition Engines
by Tyler Simpson and Christopher Depcik
Energies 2022, 15(14), 5214; https://doi.org/10.3390/en15145214 - 19 Jul 2022
Cited by 9 | Viewed by 3289
Abstract
Until the early 1990s, the predominant method of fuel delivery for compression ignition engines was the mechanical pump-line-nozzle system. These systems typically consisted of a cam-driven pump that would send pressurized fuel to the fuel injectors where injection timing was fixed according to [...] Read more.
Until the early 1990s, the predominant method of fuel delivery for compression ignition engines was the mechanical pump-line-nozzle system. These systems typically consisted of a cam-driven pump that would send pressurized fuel to the fuel injectors where injection timing was fixed according to the pressure needed to overcome the spring pressure of the injector needle. These configurations were robust; however, they were limited to a single fuel injection event per thermodynamic cycle and respectively low injection pressures of 200–300 bar. Due to their limited flexibility, a poorly mixed and highly stratified air fuel mixture would result in and produce elevated levels of both nitrogen oxides and particulate matter. The onset of stringent emissions standards caused the advancement of fuel injection technology and eventually led to the proliferation of high-pressure common rail electronic fuel injection systems. This system brought about two major advantages, the first being operation at fuel pressures up to 2500 bar. This allowed better atomization and fuel spray penetration that improves mixing and the degree of charge homogenization of the air fuel mixture. The second is that the electronic fuel injector allows for flexible and precise injection timing and quantity while allowing for multiple fuel injection events per thermodynamic cycle. To supply guidance in this area, this effort reviews the experimental history of multiple fuel injection strategies involving both diesel and biodiesel fuels through 2019. Summaries are supplied for each fuel highlighting literature consensus on the mechanisms that influence noise, performance, and emissions based on timing, amount, and type of fuel injected during multiple fuel injection strategies. Full article
(This article belongs to the Special Issue Internal Combustion Engine: Research and Application)
19 pages, 8007 KiB  
Article
Design of Electromagnetic Control of the Needle Gripping Mechanism
by Jiří Komárek and Vojtěch Klogner
Machines 2022, 10(5), 309; https://doi.org/10.3390/machines10050309 - 26 Apr 2022
Cited by 4 | Viewed by 3273
Abstract
This paper deals with the modification of the mechanical system of the needle bar. The purpose of this work is to reduce the vibration and noise of the sewing machine for creating a decorative stitch. A special floating needle is used to sew [...] Read more.
This paper deals with the modification of the mechanical system of the needle bar. The purpose of this work is to reduce the vibration and noise of the sewing machine for creating a decorative stitch. A special floating needle is used to sew this stitch, in which two mechanical systems of needle bars handover through the sewn material, so that a perfect imitation of a hand stitch is created. The original system, which controls the release of the needle at the handover location by abruptly stopping the needle bar control element, could be replaced by a new system that uses magnetic force to release the needle. In addition to the usual design procedure, numerical simulations of the attractive force of the electromagnet are also used in the design of a suitable electromagnet. At the same time, an electrical circuit is also designed to allow the needle to be released and gripped quickly. The advantages of the new system lie not only in reducing vibrations and the associated increase in the operation speed of the machine, but also in making it easier for the machine to switch to possible automated or semi-automated production. Full article
(This article belongs to the Special Issue Advances in Computer-Aided Technology)
Show Figures

Figure 1

13 pages, 2466 KiB  
Article
Numerical and Experimental Investigation of the Effect of Micro Restriction Geometry on Gas Flows through a Micro Orifice
by Akam Aboubakri, Abdolali Khalili Sadaghiani, Sarp Akgonul, Abdullah Berkan Erdoğmuş, Murat Baki, Fatih Can, Asif Sabanovic and Ali Koşar
Fluids 2022, 7(5), 151; https://doi.org/10.3390/fluids7050151 - 25 Apr 2022
Cited by 1 | Viewed by 2675
Abstract
This study experimentally and numerically investigates the effects of the nozzle/needle distance (clearance) and supply pressure on single phase compressible gas flow in a micro orifice with needle restriction, which play important roles in many engineering applications such as cryogenic cooling and MEMS [...] Read more.
This study experimentally and numerically investigates the effects of the nozzle/needle distance (clearance) and supply pressure on single phase compressible gas flow in a micro orifice with needle restriction, which play important roles in many engineering applications such as cryogenic cooling and MEMS (microelectromechanical systems) device cooling. Nitrogen was used as the working fluid at supply pressures ranging from 10 to 50 bars, while the conical needle draft angle was 15°. The nozzle/needle distance (clearance) was changed from 100 µm to 500 µm. From the experimental point of view, the load provided by the working fluid over the needle was measured by a load sensor. For the numerical analysis, six turbulence models and three wall treatments were considered in numerical simulations. The effect of micro restriction on high-pressure micro-gas flows was further assessed by numerical modeling. It is evident from the results that the utilized turbulence model has a considerable effect on the computed results. The k–ε standard and Spalart–Allmaras models were found to be not suitable for modeling micro-scale gas flows with restriction. On the other hand, the k–ε realizable and k–ω SST models exhibit the best performance in predicting the results. Full article
Show Figures

Figure 1

9 pages, 795 KiB  
Article
Influence of Needle Design and Irrigant Flow Rate on the Removal of Enterococcus faecalis Biofilms In Vitro
by Charley Provoost, Giovanni Tommaso Rocca, Anna Thibault, Pierre Machtou and Serge Bouilllaguet
Dent. J. 2022, 10(4), 59; https://doi.org/10.3390/dj10040059 - 2 Apr 2022
Cited by 13 | Viewed by 3210
Abstract
This study aimed to evaluate the influence of needle design and irrigant flow rate on the removal of Enterococcus faecalis mature biofilms during sodium hypochlorite irrigation. Forty-eight single-rooted human teeth were instrumented (ProTaper F3), autoclaved and inoculated with Enterococcus faecalis to establish a [...] Read more.
This study aimed to evaluate the influence of needle design and irrigant flow rate on the removal of Enterococcus faecalis mature biofilms during sodium hypochlorite irrigation. Forty-eight single-rooted human teeth were instrumented (ProTaper F3), autoclaved and inoculated with Enterococcus faecalis to establish a two-week-old biofilm. E. faecalis biofilms were treated with Sodium hypochlorite that was injected in the root canals using three types of needles (NaviTip, ProRinse, IrriFlex). For the IrriFlex needle, one, two, or four bars of pressure was applied to the irrigating solution to increase flow rates. Bacteria were labeled with the LIVE/DEAD BacLight Bacterial Viability kit, and viability was assessed by flow cytometry (FCM). Results were statistically analyzed using one-way ANOVA and Tukey multiple comparison intervals (α = 0.05). Bacterial viability was significantly reduced after sodium hypochlorite passive irrigation but the number of viable bacteria retrieved from root canal specimens irrigated with the Pro-Rinse needle was significantly higher compared to NaviTip and IrriFlex needles (p < 0.05). When the irrigant flow rate was increased, the viability of bacterial biofilms was significantly reduced compared to passive irrigation using the IrriFlex needle (p < 0.05). Applying higher flow rates during irrigation using the IrriFlex needle did not further reduce bacterial viability. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Figure 1

11 pages, 6778 KiB  
Article
Influence of Draw Ratio and Take-Up Velocity on Properties of Ultrafiltration Hollow Fiber Membranes from Polyethersulfone
by George Dibrov, George Kagramanov, Vladislav Sudin, Sergey Molchanov, Evgenia Grushevenko, Alexey Yushkin and Vladimir Volkov
Fibers 2022, 10(3), 29; https://doi.org/10.3390/fib10030029 - 17 Mar 2022
Cited by 10 | Viewed by 4285
Abstract
This study aimed to reveal the influence of the draw ratio and take-up speed on the pore size distribution and morphology of the hollow fiber ultrafiltration membrane selective layer. To this end, spinnerets with ring ducts of 1.8 and 1.3 mm were employed, [...] Read more.
This study aimed to reveal the influence of the draw ratio and take-up speed on the pore size distribution and morphology of the hollow fiber ultrafiltration membrane selective layer. To this end, spinnerets with ring ducts of 1.8 and 1.3 mm were employed, whereas the external diameter of the obtained fiber was kept equal. Atomic force microscopy and scanning electron microscopy were employed to study the morphology of the selective layer. Liquid–liquid displacement porosimetry was used to determine the limiting pore size distribution. The produced polyethersulfone ultrafiltration membranes had a robust, sponge-like porous structure, permeance 1000 L/(m2·h·bar), smooth selective layer, and mean pore size 25 nm. It was found that limiting pore sizes are affected more by the change in the take-up speed, whereas the surface pore sizes, roughness, and morphology are controlled by the draw ratio. It was shown that excessive draw causes the selective layer stretching and crop-up of the porous sublayer. Consequently, the diameters of the spinneret ring duct and the bore needle should match the hollow fiber outer and lumen diameters, respectively. Full article
Show Figures

Figure 1

Back to TopTop