# Design of Electromagnetic Control of the Needle Gripping Mechanism

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Current Method of Gripping the Needle

## 3. Design of a New System

#### 3.1. Requirements for a New Mechanism

#### 3.2. Winding Dimensioning

_{s}, heat conduction coefficient α, and finally the temperature difference between the operating temperature and the environment ϑ

_{m}.

_{C}and current I flowing through the coil at a given voltage. Other values that need to be selected are related to the design of the electromagnet itself, especially the air gap between the components.

#### 3.3. Simulation of the Attractive Force of an Electromagnet

^{−8}.

#### 3.4. Coil Electrical Circuit Design

_{1}and C

_{2}can be calculated and substituted into the solution:

_{ref}, a faster charge will occur in time t

_{n}

_{2}than at a nominal voltage t

_{n}

_{1}. The situation is the same for discharging, only due to the initial conditions, it is necessary to move the discharge at higher voltages along the horizontal axis so that at time t = 0, the current value is equal to the static value of the coil current. The graph also plots the values of sufficient approximation to the current asymptote, one for charging and the other for discharging the coil.

## 4. Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Beran, J.; Bílek, M.; Komárek, J.; Němeček, P. Experimental analysis of the sewing machine. MATEC Web Conf.
**2016**, 89, 01002. [Google Scholar] [CrossRef] [Green Version] - Pejchar, K.; Beran, J. Optimization of the Needle Bar Mechanism. In Proceedings of the X. International Scientific Conference Transfer 2009, Trenčín, Slovakia, 17–18 November 2009; pp. 44–49, ISBN 978-80-8075-414-3. [Google Scholar]
- Komárek, J.; Beran, J.; Lima, M.; Machado, J.; Silva, J. Finding the Optimal Setting of the Sewing Needle Transfer Mechanism Using Simulation Software. In Proceedings of the TRS 2012, the 41st Textile Research Symposium, Guimaraes, Portugal, 12–14 September 2012; pp. 401–404, ISBN 978-972-8063-67-2. [Google Scholar]
- Barborák, O. Oděvnictví II, Šijacie Stroje v Odevnej Výrobe; Trenčianská univerzita A. Dubčeka v Trenčíně: Trenčín, Slovakia, 2002; ISBN 80-88914-77-9. [Google Scholar]
- Fiddlebase: Website about the History of Sewing Machines. Available online: https://www.fiddlebase.com/the-invention-of-the-sewing-machine-by-grace-rogers-cooper/ (accessed on 31 March 2022).
- Clifford, L.B. The Sewing Machine Master Guide: From Basic to Expert; Blodget Publishing LLC: 2013; ISBN 0990022722, 978-0990022725. Available online: https://www.amazon.com/Sewing-Machine-Master-Guide-Expert/dp/0990022722 (accessed on 18 April 2022).
- Langner, S. Improvements in or Relating to Double-Pointed Needles Adapted for Use in Sewing Machines Having Alternately Operating Needle Bars. U.S. Patent 496,859, 1938. [Google Scholar]
- Johnson, W.C. Sewing Machine Needle Bar Mechanism. U.S. Patent US2402251A, 18 June 1946. [Google Scholar]
- Šidlof, P.; Votrubec, V. Vibrations Reduction of Industrial Sewing Machines. In Vibration Problems ICOVP 2011; Springer Proceedings in Physics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 139. [Google Scholar] [CrossRef]
- Asif, A.; Hasan, M. Lean Manufacturing for Improving Productivity at Sewing Section in Apparel Industry: An Empirical Study. J. Text. Eng.
**2018**, 8, 1–9. [Google Scholar] [CrossRef] - Tomozei, C.; Pipa, A.; Irimia, O.; Panainte-Lehadus, M.; Nedeff, F. Measuring noise level in the textile industry. J. Eng. Stud. Res.
**2019**, 24, 43–49. [Google Scholar] [CrossRef] - Kirin, S.; Lauš, K. A study of noise levels in the sewing process. Saf. J. Saf. Work. Organ. Living Environ.
**2011**, 53, 243–250. Available online: https://hrcak.srce.hr/71905 (accessed on 18 April 2022). - Zhang, Z.; Liu, X.; Huang, C.; Pan, D. Noise source identification for industrial sewing machines based on non-linear partial least squares regression model. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2016**, 230, 220–225. [Google Scholar] [CrossRef] - Nayak, R.; Padhye, R. Automation in Garment Manufacturing; Woodhead Publishing: Duxford, UK, 2018; pp. 1–290. [Google Scholar]
- Jindal, H.; Kaur, S. Robotics and Automation in Textile Industry. Int. J. Sci. Res. Sci. Eng. Technol.
**2021**, 8, 40–45. [Google Scholar] [CrossRef] - Salahuddin, M.; Lee, Y.A. Automation with Robotics in Garment Manufacturing. In Leading Edge Technologies in Fashion Innovation. Palgrave Studies in Practice: Global Fashion Brand Management; Palgrave Macmillan: London, UK, 2022. [Google Scholar] [CrossRef]
- Lee, S.; Rho, S.; Lim, D.; Jeong, W. A Basic Study on Establishing the Automatic Sewing Process According to Textile Properties. Processes
**2021**, 9, 1206. [Google Scholar] [CrossRef] - Komárek, J. Dynamic model of the mechanical system of the needle bar. In Proceedings of the XII International Conference on the Theory of Machines and Mechanisms, Liberec, Czech Republic, 6–8 September 2016; pp. 323–329, ISBN 978-3-319-44086-6. [Google Scholar]
- Komárek, J.; Nag, R. Verification of Mathematical Model of Mechanical System of Needle Bar using Laser Doppler Vibrometer, In Proceedings of the International Conference on the Theory of Machines and Mechanisms, Liberec, Czech Republic, 7–9 September 2021; Advances in Mechanism Design III, TMM 2020; Mechanisms and Machine Science. Springer: Berlin/Heidelberg, Germany, 2020; Volume 85, pp. 304–311. [CrossRef]
- Krpeš, P. Design of the Needle Exchange System of Sewing Machine DECO 2000. Diploma Thesis, Technical University of Liberec, Liberec, Czech Republic, 2009. [Google Scholar]
- Asadi Khanouki, M.; Sedaghati, R.; Hemmatian, M. Multidisciplinary Design Optimization of a Novel Sandwich Beam-Based Adaptive Tuned Vibration Absorber Featuring Magnetorheological Elastomer. Materials
**2020**, 13, 2261. [Google Scholar] [CrossRef] [PubMed] - Lyshevski, S.E. Electromechanical Systems, Electric Machines, and Applied Mechatronics; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Robert, N.L. Cam Design and Manufacturing Handbook; Industrial Press: New York, NY, USA, 2002; ISBN 0-8311-3122-5. [Google Scholar]
- Cigánek, L. Elektrické přístroje spínací, ochranné a řídící: Působení, provedení; SNTL: Praha, Czech Republic, 1956. [Google Scholar]
- Baltzis, K. The finite element method magnetics (FEMM) freeware package: May it serve as an educational tool in teaching electromagnetics? Educ. Inf. Technol.
**2010**, 15, 19–36. [Google Scholar] [CrossRef] - Baltzis, K. The FEMM Package: A Simple, Fast, and Accurate Open Source Electromagnetic Tool in Science and Engineering. J. Eng. Sci. Technol. Rev.
**2008**, 1, 83–89. [Google Scholar] [CrossRef] - Hairer, E.; Nørsett, S.; Wanner, G. Solving Ordinary Differential Equations I, Nonstiff Problems; Springer: Berlin, Germany, 1993; ISBN 978-3-540-56670-0. [Google Scholar]

**Figure 10.**Graphical representation of the dependence of the coil and armature weights on the dimensional ratios.

**Figure 13.**Simulation of the attractive force of an electromagnet: (

**a**) mathematical model with created simulation network; (

**b**) simulation result with shown magnetic flux lines and magnetic field intensity.

Parameter | Symbol | Value |
---|---|---|

Attractive force at maximum stroke | F | 6 N |

Air gab at maximum stroke | $\delta $ | 2 mm |

Coil voltage | U | 3 V |

Coil winding factor | ξ | 0.7 |

Magnetic circuit saturation factor | ${k}_{s}$ | 1.3 |

Flux increase factor | ν | $1.41\times {10}^{-5}$ |

Magnetic flux deflection factor | ε | 1 |

Length ratio to armature diameter | λ | 2 |

Ratio of winding thickness to armature diameter | β | 0.4 |

Parameter | Symbol | Value |
---|---|---|

Armature diameter | d | 12 mm |

Coil diameter | D | 25.6 mm |

Coil length | L | 28.8 mm |

Coil conductor diameter | ${d}_{C}$ | 0.6 mm |

Magnetic induction in the centre of the coil | B | 0.36 T |

Number of turns of coil | N | 400 |

Static current | I | 1.9 A |

Parameter | Symbol | Value |
---|---|---|

Air gap | $\delta $ | 0–2 mm |

Internal air gap 1 | $\Delta 1$ | 1 mm |

Internal air gap 2 | $\Delta 2$ | 0.1 mm |

Internal air gap 3 | $\Delta 3$ | 0.1 mm |

External air gap | $\Delta 4$ | 0.1 mm |

Shaft radius | rk | 2 mm |

Armature radius | r1 | 6 mm |

Coil inside radius | Rin | 8 mm |

Coil outside radius | R | 12.8 mm |

Skeletal thickness radial | tk | 1 mm |

Skeletal thickness axial | tb | 1 mm |

Coil length | L | 28.8 mm |

Housing thickness 1 | a1 | 7 mm |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Komárek, J.; Klogner, V.
Design of Electromagnetic Control of the Needle Gripping Mechanism. *Machines* **2022**, *10*, 309.
https://doi.org/10.3390/machines10050309

**AMA Style**

Komárek J, Klogner V.
Design of Electromagnetic Control of the Needle Gripping Mechanism. *Machines*. 2022; 10(5):309.
https://doi.org/10.3390/machines10050309

**Chicago/Turabian Style**

Komárek, Jiří, and Vojtěch Klogner.
2022. "Design of Electromagnetic Control of the Needle Gripping Mechanism" *Machines* 10, no. 5: 309.
https://doi.org/10.3390/machines10050309