Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,189)

Search Parameters:
Keywords = neat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7744 KB  
Article
Study on the Structure, Thermal Properties and Antibacterial Properties of Phosphorus-Modified PVA/TiO2 Composite Films
by Alina-Mirela Ipate, Diana Serbezeanu, Ioana-Antonia Iftimie, Gabriela Lisa, Cristina-Mihaela Rîmbu and Tăchiță Vlad-Bubulac
Gels 2025, 11(12), 1020; https://doi.org/10.3390/gels11121020 - 18 Dec 2025
Abstract
Phosphorus-modified poly(vinyl alcohol) (PVA) has recently gained increasing attention as a functional polymeric matrix suitable for gel-based systems, owing to its biocompatibility, film-forming ability, and capacity to develop semi-interpenetrating networks. In this work, PVA was chemically modified through the nucleophilic substitution of its [...] Read more.
Phosphorus-modified poly(vinyl alcohol) (PVA) has recently gained increasing attention as a functional polymeric matrix suitable for gel-based systems, owing to its biocompatibility, film-forming ability, and capacity to develop semi-interpenetrating networks. In this work, PVA was chemically modified through the nucleophilic substitution of its hydroxyl groups with the chloride groups of phenyl dichlorophosphate, following a literature-reported method carried out in N,N-dimethylformamide (DMF) as reaction medium, resulting in phosphorus-containing PVA networks (PVA-OP3). Hybrid gel-like films were then prepared by incorporating titanium dioxide nanoparticles (TiO2 NPs), known for their antimicrobial activity, low toxicity, and high stability. The resulting composites were structurally, morphologically, and thermally characterized using FTIR, SEM, and thermogravimetric analysis. The incorporation of TiO2 NPs significantly improved the thermal stability, with T5% increasing from 240 °C for neat PVA-OP3 to 288 °C for the optimal composite, increased the char residue from 4.5% for the neat polymer to 30.1% for PVA-OP3/TiO2-4, and enhanced antimicrobial activity against both Gram-positive and Gram-negative bacteria. These findings demonstrate that PVA-OP3/TiO2 hybrid films possess promising potential as advanced biomaterials for biomedical, protective, and environmental applications. Full article
(This article belongs to the Special Issue Advances in Gel Films (2nd Edition))
24 pages, 3501 KB  
Article
Low-Quality Coffee Beans Used as a Novel Biomass Source of Cellulose Nanocrystals: Extraction and Application in Sustainable Packaging
by Graziela dos Santos Paulino, Júlia Santos Pereira, Clara Suprani Marques, Kyssila Vitória Reis Vitalino, Victor G. L. Souza, Ananda Pereira Aguilar, Lucas Filipe Almeida, Taíla Veloso de Oliveira, Andréa de Oliveira Barros Ribon, Sukarno Olavo Ferreira, Eveline Teixeira Caixeta Moura, Deusanilde de Jesus Silva and Tiago Antônio de Oliveira Mendes
Resources 2025, 14(12), 191; https://doi.org/10.3390/resources14120191 - 18 Dec 2025
Abstract
Most polymeric plastics used as food packaging are obtained from petroleum or made with non-biodegradable synthetic molecules, which slowly degrade and leach into the environment, resulting in the accumulation of microplastics along the trophic chains. To mitigate these impacts, biodegradable packaging derived from [...] Read more.
Most polymeric plastics used as food packaging are obtained from petroleum or made with non-biodegradable synthetic molecules, which slowly degrade and leach into the environment, resulting in the accumulation of microplastics along the trophic chains. To mitigate these impacts, biodegradable packaging derived from agro-industrial biomass residues has emerged as a promising alternative. In this study, bio-based methylcellulose films reinforced with cellulose nanocrystals (CNCs) extracted from low-quality coffee beans were developed and fully characterized. The extracted CNCs presented a needle-like morphology, with an average height of 7.27 nm and a length of 221.34 nm, with 65.75% crystallinity, were stable at pH 7–8, and presented thermogravimetric mass loss of 8.0%. Methylcellulose films containing 0.6% w/w of CNC were produced by casting and characterized in terms of thermal, mechanical, and optical properties. Notably, the incorporation of CNCs resulted in significantly more flexible and less rigid films, as evidenced by the higher elongation at break (57.90%) and lower Young’s modulus (0.0015 GPa) compared to neat methylcellulose film. The tensile strength was not affected (p > 0.05). Additionally, the MCNC 0.6% films effectively blocked UV light in the 200–300 nm range without compromising transparency. Altogether, these findings underscore the MCNC 0.6% film as a flexible, biodegradable packaging material suitable for food industry application. Full article
Show Figures

Figure 1

20 pages, 2610 KB  
Article
The Influence of Synthesis Parameters on the Properties of Dextran-Based Hydrogels for Colon-Targeted Antitumor Drug Delivery Part I: Room Temperature Synthesis of Dextran/Inulin Hydrogels for Colon-Targeted Antitumor Drug Delivery
by Tamara Erceg, Miloš Radosavljević, Milorad Miljić, Aleksandra Cvetanović Kljakić, Sebastian Baloš, Katarina Mišković Špoljarić, Ivan Ćorić, Ljubica Glavaš-Obrovac and Aleksandra Torbica
Gels 2025, 11(12), 1011; https://doi.org/10.3390/gels11121011 - 16 Dec 2025
Viewed by 65
Abstract
This research successfully developed novel hydrogels composed of methacrylated dextran and inulin for targeted drug delivery in colorectal cancer therapy. The formulation exploits the natural degradation of both biopolymers by the large intestine’s microflora. A key achievement was the development of a room-temperature [...] Read more.
This research successfully developed novel hydrogels composed of methacrylated dextran and inulin for targeted drug delivery in colorectal cancer therapy. The formulation exploits the natural degradation of both biopolymers by the large intestine’s microflora. A key achievement was the development of a room-temperature free radical polymerization synthesis method. The study thoroughly investigated how varying inulin content (10 and 20 wt%) influenced the hydrogels’ properties. The formulation with 20 wt% inulin exhibited the highest swelling ability at both pH 3 and pH 6, and consequently the lowest elastic modulus, measured by a newly established technique for granulated hydrogels. Using uracil as a model drug, in situ incorporated, confirmed that the greatest drug release occurs in the colorectal region for the neat dextran-based hydrogel, triggered by specific microbial enzymes. Notably, the addition of inulin did not enhance biodegradation-driven drug release in combination with dextran; instead, inulin primarily acted as a protective component against premature hydrolysis in the gastric medium. These findings strongly confirm that the targeted action is predominantly governed by the dextran component. The synthesized hydrogels, particularly the dextran-only formulation, therefore show strong potential as effective carriers for colon-targeted drug delivery. The primary objective of this study was to evaluate the feasibility of modified and unmodified dextran and inulin as biodegradable carriers for enzyme-triggered, colon-targeted drug delivery. Full article
(This article belongs to the Special Issue Biopolymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

16 pages, 3130 KB  
Article
Mechanical, Structural, and Electrochemical Performance of Polyurethane Coatings for Corrosion Protection in Wind Energy Systems
by Oscar Xosocotla, María del Pilar Rodríguez-Rojas, Rafael Campos-Amezcua, Horacio Martínez, Victoria Bustos-Terrones and Oscar Guadarrama Pérez
Coatings 2025, 15(12), 1476; https://doi.org/10.3390/coatings15121476 - 15 Dec 2025
Viewed by 205
Abstract
Erosion of the leading edge is one of the most severe forms of damage in wind turbine blades, particularly in offshore wind farms. This degradation, mainly caused by rain, sand, and airborne particles through droplet impingement wear, significantly decreases blade aerodynamic efficiency and [...] Read more.
Erosion of the leading edge is one of the most severe forms of damage in wind turbine blades, particularly in offshore wind farms. This degradation, mainly caused by rain, sand, and airborne particles through droplet impingement wear, significantly decreases blade aerodynamic efficiency and power output. Since blades, typically made of fiber-reinforced polymer composites, are the most expensive components of a turbine, developing protective coatings is essential. In this study, polyurethane (PU) composite coatings reinforced with titanium dioxide (TiO2) particles were added on glass fiber substrates by spray coating. The incorporation of TiO2 improved the mechanical and electrochemical performance of the PU coatings. FTIR and XRD confirmed that low TiO2 loadings (1 and 3 wt%) were well dispersed within the PU matrix due to hydrogen bonding between TiO2 –OH groups and PU –NH groups. The PU/TiO2 3% coating exhibited ~61% lower corrosion current density (I_corr) compared to neat PU, indicating superior corrosion resistance. Furthermore, uniform TiO2 dispersion resulted in statistically significant improvements (p < 0.05) in hardness, yield strength, elastic modulus, and adhesion strength. Overall, the PU/TiO2 coatings, particularly at 3 wt% loading, show strong potential as protective materials for wind turbine blades, given their enhanced mechanical integrity and corrosion resistance. Full article
Show Figures

Figure 1

19 pages, 10305 KB  
Article
Graphene Nanofiller Type Matters: Comparative Analysis of Static and Fatigue Delamination Resistance in Modified Carbon Fiber Composites
by Konstantina Zafeiropoulou, Christina Kostagiannakopoulou, George Sotiriadis and Vassilis Kostopoulos
Polymers 2025, 17(24), 3299; https://doi.org/10.3390/polym17243299 - 12 Dec 2025
Viewed by 198
Abstract
Delamination remains a critical failure mode in carbon fiber-reinforced polymer (CFRP) composites, particularly under cyclic loading in aerospace and automotive applications. This study explores whether nanoscale reinforcement with graphene-based materials can enhance delamination resistance and identifies the most effective nanofiller type. Two distinct [...] Read more.
Delamination remains a critical failure mode in carbon fiber-reinforced polymer (CFRP) composites, particularly under cyclic loading in aerospace and automotive applications. This study explores whether nanoscale reinforcement with graphene-based materials can enhance delamination resistance and identifies the most effective nanofiller type. Two distinct graphene nanospecies—reduced graphene oxide (rGO) and carboxyl-functionalized graphene nanoplatelets (HDPlas)—were incorporated at 0.5 wt% into CFRP laminates and tested under static and fatigue mode I loading using double cantilever beam (DCB) tests. Both nanofillers enhanced interlaminar fracture toughness compared to the neat composite: rGO improved the energy release rate by 36%, while HDPlas achieved a remarkable 67% enhancement. Fatigue testing showed even stronger effects, with the fatigue threshold energy release rate rising by 24% for rGO and 67% for HDPlas, leading to a fivefold increase in fatigue life for HDPlas-modified laminates. A compliance calibration method enabled continuous monitoring of crack growth over one million cycles. Fractography analysis using scanning electron microscopy revealed that both nanofillers activated crack bifurcation, enhancing energy dissipation. However, the HDPlas system further exhibited extensive nanoparticle pull-out, creating a more tortuous crack path and superior resistance to crack initiation and growth under cyclic loading. Full article
(This article belongs to the Special Issue Advances in Fatigue and Fracture of Fiber-Reinforced Polymers)
Show Figures

Figure 1

15 pages, 1819 KB  
Article
Development of a High-Sensitivity Humidity Sensor Using Fiber Bragg Grating Coated with LiCl@UIO-66-Doped Hydrogel
by Binxiaojun Liu, Zelin Gao, Runqi Yao, Liyun Ding and Xusheng Xia
Materials 2025, 18(24), 5587; https://doi.org/10.3390/ma18245587 - 12 Dec 2025
Viewed by 190
Abstract
Humidity monitoring is essential in industrial and scientific scenarios, yet remains challenging for compact EMI (electromagnetic interference)-immune sensors with high sensitivity and robust stability. A novel fiber Bragg grating (FBG) humidity sensor was developed, which incorporated LiCl@UIO-66 microfillers within a poly(N-isopropylacrylamide) (PNIPAM) hydrogel [...] Read more.
Humidity monitoring is essential in industrial and scientific scenarios, yet remains challenging for compact EMI (electromagnetic interference)-immune sensors with high sensitivity and robust stability. A novel fiber Bragg grating (FBG) humidity sensor was developed, which incorporated LiCl@UIO-66 microfillers within a poly(N-isopropylacrylamide) (PNIPAM) hydrogel matrix. Structural characterization using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier-transform infrared (FTIR) spectroscopy confirms that LiCl is confined or nanodispersed within intact UIO-66, and that interfacial ion–dipole/hydrogen-bonding exists between the composite and water. Systematic variation in coating time (30–720 min) reveals monotonic growth of the total wavelength shift with diminishing returns. A coating time of 4 h was found to yield a wavelength shift of approximately 0.38–0.40 nm, representing about 82% of the maximum shift observed at 12 h, while maintaining good quasi-linearity and favorable kinetics. Calibration demonstrates sensitivities of 6.7 pm/%RH for LiCl@UIO-66_33 and 10.6 pm/%RH for LiCl@UIO-66_51 over ~0–95%RH. Stepwise tests show response times t90 of ≈14 min for both composites, versus ≈30 min for UIO-66 and ≈55 min for neat PNIPAM. Long-term measurements on the 51 wt.% device are stable over the first ~20 days, with only slow drift thereafter, and repeated humidity cycling is reversible. The wavelength decreases monotonically during drying while settling time increases toward low RH. The synergy of hydrogel–MOF–salt underpins high sensitivity, accelerated transport, and practical stability, offering a scalable route to high-performance optical humidity sensing. Full article
(This article belongs to the Special Issue Reinforced Polymer Composites with Natural and Nano Fillers)
Show Figures

Figure 1

20 pages, 3454 KB  
Article
The Use of Sheep Wool Collected from Sheep Bred in the Kyrgyz Republic as a Component of Biodegradable Composite Material
by Piotr Szatkowski, Jakub Barwinek, Alykeev Ishenbek Zhakypbekovich, Julita Szczecina, Marcin Niemiec, Kinga Pielichowska and Edyta Molik
Appl. Sci. 2025, 15(24), 13054; https://doi.org/10.3390/app152413054 - 11 Dec 2025
Viewed by 152
Abstract
Biocomposites based on natural fibres represent a promising solution for the circular economy. The aim of this study was to develop and characterise a biodegradable composite based on sheep wool from herds raised in the Kyrgyz Republic and polylactide (PLA 4032D). Composite samples [...] Read more.
Biocomposites based on natural fibres represent a promising solution for the circular economy. The aim of this study was to develop and characterise a biodegradable composite based on sheep wool from herds raised in the Kyrgyz Republic and polylactide (PLA 4032D). Composite samples with a wool–PLA ratio of 50:50 were fabricated by thermoforming at a temperature of 168 °C for 30 s (n = 10). Mechanical properties tests were performed (PN-EN ISO 604—compression tests), for impact resistance (Charpy method), differential scanning calorimetry (DSC), and measurements of density and thermal conductivity. Biodegradation samples were subjected to enriched soil conditions for 6 weeks in two variants (with and without irrigation). The results showed that the addition of sheep wool to the PLA matrix significantly increased compressive strength (23.56 ± 5.23 MPa) and impact energy absorption (226.2 ± 23.8 kJ/m2) compared to neat PLA. After biodegradation, a 59% reduction in compressive strength was observed while maintaining an increase in fracture energy, suggesting a change in the failure mechanism. The density (0.27 ± 0.02 g/cm3) and the thermal conductivity (0.127 W/m·K) comparable to polymer foams indicate potential for thermal insulation applications. Microscopy and DSC analysis confirmed complete biodegradation under soil conditions. The developed biocomposite from Kyrgyz sheep wool demonstrates the potential for valorisation of local fibrous waste for biodegradable materials with functional insulation properties. Full article
(This article belongs to the Special Issue Design, Characterization, and Applications of Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 1133 KB  
Article
Expression Alterations and Correlative Analysis of TPH1/hsa-miR-194-5p/NEAT1 and MAOA/hsa-miR-1276/NEAT1 Axes in Pediatric Inflammatory Bowel Disease
by Mehmet Tughan Kiziltug, Mehmet Emin Erdal, Bahar Tasdelen, Ferah Tuncel and Yusuf Usta
Int. J. Mol. Sci. 2025, 26(24), 11923; https://doi.org/10.3390/ijms262411923 - 10 Dec 2025
Viewed by 193
Abstract
Pediatric inflammatory bowel disease (pIBD), comprising ulcerative colitis (UC) and Crohn’s disease (CD), involves complex mechanisms that include non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), alongside enzymes regulating serotonin metabolism. Tryptophan hydroxylase 1 (TPH1) and monoamine oxidase A [...] Read more.
Pediatric inflammatory bowel disease (pIBD), comprising ulcerative colitis (UC) and Crohn’s disease (CD), involves complex mechanisms that include non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), alongside enzymes regulating serotonin metabolism. Tryptophan hydroxylase 1 (TPH1) and monoamine oxidase A (MAOA) play critical roles in serotonin turnover and may contribute to intestinal inflammation. We investigated the expression of TPH1, MAOA, hsa-miR-194-5p, hsa-miR-1276, and the lncRNA Nuclear Enriched Abundant Transcript 1 (NEAT1) in intestinal tissue biopsies and peripheral blood from pIBD patients and controls. TPH1 was significantly elevated in the inflamed transverse colon (p = 0.034), whereas MAOA was reduced in the ileum (p = 0.041) and descending colon (p = 0.001), with further decreases in inflamed ileum (p < 0.001), ascending (p = 0.008), and descending colon (p = 0.001). Subgroup analysis revealed decreased MAOA in the ascending colon of UC patients (p = 0.011). hsa-miR-194-5p was upregulated in the transverse colon (p = 0.015), inflamed transverse (p = 0.013) and descending colon (p = 0.015), and in blood of UC patients (p = 0.01). NEAT1 expression increased in the ascending colon (p = 0.042) but decreased in the ileum (p = 0.006). Correlation analysis showed strong positive associations between TPH1 and NEAT1 in the ileum (r = 0.945, p < 0.01) and transverse colon (r = 0.609, p < 0.01). These results highlight region-specific dysregulation of serotonin-related genes and ncRNAs in pIBD, with the TPH1/miR-194-5p/NEAT1 axis potentially contributing to disease pathophysiology and warranting further mechanistic investigation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 7222 KB  
Article
Wear and Friction Reduction on Polyethersulfone Matrix Composites Containing Polytetrafluoroethylene Coated with ZrW2O8 Particles at Elevated Temperatures
by Andrey I. Dmitriev, Sergei Yu. Tarasov, Dmitry G. Buslovich, Sergey V. Panin, Nikolai L. Savchenko, Lyudmila A. Kornienko, Evgeny Yu. Filatov, Evgeny N. Moskvichev and Dmitry V. Lychagin
Lubricants 2025, 13(12), 535; https://doi.org/10.3390/lubricants13120535 - 9 Dec 2025
Viewed by 151
Abstract
Polymer matrix composites (PMCs) have been prepared having a polyethersulfone (PES) matrix loaded with polytetrafluoroethylene (PTFE) particles coated with negative thermal expansion zirconium tungstate (ZT) with an aim to reduce the thermal mismatch stresses at the PES/PTFE interfaces and, thus, reduce wear rate [...] Read more.
Polymer matrix composites (PMCs) have been prepared having a polyethersulfone (PES) matrix loaded with polytetrafluoroethylene (PTFE) particles coated with negative thermal expansion zirconium tungstate (ZT) with an aim to reduce the thermal mismatch stresses at the PES/PTFE interfaces and, thus, reduce wear rate when sliding against a ball bearing AISI 52100 steel counterpart at elevated temperatures. The zirconium tungsten particles were synthesized using thermal decomposition from hydrothermally prepared precursors. The PMCs have been obtained using compression molding at 370 °C and contained, according to XRD, only the hexagonal α-ZrW2O8 phase. Wear testing was carried out at 25, 120, and 180 °C using a ball-on-disk scheme at 5 N and 0.3 m/s. The resulting wear tracks’ radial profiles were registered by means of profilometry, which was then used for calculating the wear rate. It was shown that both wear rate and friction reduced in testing the PES/PTFE/ZT samples at 180 °C compared to those of PES/PTFE containing only neat PTFE particles. Wear mechanism transitions have been observed from low-temperature generation of the tribological layer by the PTFE smearing to flow and abrasion wear at high temperatures. Full article
(This article belongs to the Special Issue Tribological Behaviours of Advanced Polymeric Materials)
Show Figures

Figure 1

24 pages, 6846 KB  
Article
Comparative Role of rGO, AgNWs, and rGO–AgNWs Hybrid Structure in the EMI Shielding Performance of Polyaniline/PCL-Based Flexible Films
by Brankica Gajić, Marija Radoičić, Muhammad Yasir, Warda Saeed, Silvester Bolka, Blaž Nardin, Jelena Potočnik, Gordana Ćirić-Marjanović, Zoran Šaponjić and Svetlana Jovanović
Molecules 2025, 30(24), 4693; https://doi.org/10.3390/molecules30244693 - 8 Dec 2025
Viewed by 290
Abstract
The present study explores the comparative influence of reduced graphene oxide (rGO), silver nanowires (AgNWs), and their hybrid rGO–AgNWs on the electromagnetic interference (EMI) shielding performance of polyaniline (PANI)-based flexible films prepared using a polycaprolactone (PCL) matrix. The nanocomposites were synthesized through in [...] Read more.
The present study explores the comparative influence of reduced graphene oxide (rGO), silver nanowires (AgNWs), and their hybrid rGO–AgNWs on the electromagnetic interference (EMI) shielding performance of polyaniline (PANI)-based flexible films prepared using a polycaprolactone (PCL) matrix. The nanocomposites were synthesized through in situ oxidative polymerization of aniline in the presence of individual or hybrid fillers, followed by their dispersion in the PCL matrix and casting of the corresponding films. Morphological and structural characterization (SEM, Raman, and FTIR spectroscopy) confirmed a uniform PANI coating on both rGO sheets and AgNWs, forming hierarchical 3D conductive networks. Thermal (TGA) and thermomechanical (TMA) analyses revealed enhanced thermal stability and stiffness across all composite systems, driven by strong interfacial interactions and restricted polymer chain mobility. Tmax increased from 437.9 °C for neat PCL to 487.9 °C for PANI/PCL, 480.6 °C for PANI/rGO/PCL, 499.4 °C for PANI/AgNWs/PCL and 495.0 °C for the hybrid PANI/rGO–AgNWs/PCL film. The gradual decrease in contact angle following the order PANI/AgNWs/PCL < PANI/rGO–AgNWs/PCL < PANI/rGO/PCL < PANI/PCL < PCL clearly indicates a systematic increase in surface polarity and surface energy with the incorporation of conductive nanofillers. Electrical conductivity reached 60.8 S cm−1 for PANI/rGO/PCL, gradually decreasing to 27.4 S cm−1 for PANI/AgNWs/PCL and 22.1 S cm−1 for the quaternary hybrid film. The EMI shielding effectiveness (SET) measurements in the X-band (8–12 GHz) demonstrated that the PANI/rGO/PCL film exhibited the highest attenuation (~7.2 dB). In contrast, the incorporation of AgNWs partially disrupted the conductive network, reducing SE to ~5–6 dB. The findings highlight the distinct and synergistic roles of 1D and 2D fillers in modulating the electrical, thermal, and mechanical properties of biodegradable polymer films, offering a sustainable route toward lightweight, flexible EMI shielding materials. Full article
Show Figures

Figure 1

24 pages, 7256 KB  
Article
Compression Molding of Thermoplastic Polyurethane Composites for Shape Memory Polymer Actuation
by Denise Bellisario, Luca Burratti, Luca Maiolo, Francesco Maita, Ivano Lucarini and Fabrizio Quadrini
J. Compos. Sci. 2025, 9(12), 681; https://doi.org/10.3390/jcs9120681 - 8 Dec 2025
Viewed by 304
Abstract
Background: Soft actuation relies on materials that are lightweight, flexible, and responsive to external stimuli. In biomedical applications, miniaturization and biocompatibility are key requirements for developing smart devices. Thermoplastic polyurethane (TPU) is particularly attractive due to its elasticity, processability, and biocompatibility; however, an [...] Read more.
Background: Soft actuation relies on materials that are lightweight, flexible, and responsive to external stimuli. In biomedical applications, miniaturization and biocompatibility are key requirements for developing smart devices. Thermoplastic polyurethane (TPU) is particularly attractive due to its elasticity, processability, and biocompatibility; however, an improvement in its shape-recovery performance would significantly enhance its suitability for actuation systems. This study aims to develop TPU-based shape memory polymer (SMP) composites with improved functional behavior for biomedical applications. Methods: TPU was modified with aluminum nanoparticles (AlNPs) and multi-walled carbon nanotubes (MWCNTs), incorporated individually (1 wt.% and 3 wt.%) and in hybrid combinations (MWCNT:AlNP ratios of 2:1, 5:1, and 10:1). Samples were produced by compression molding and characterized through thermal, mechanical, electrical, and shape-recovery tests, supported by morphological analysis. Results: AlNPs moderately improved thermal conductivity, while MWCNTs significantly enhanced electrical conductivity and doubled the recovery force compared with neat TPU. Hybrid composites showed intermediate properties, with the 5:1 MWCNT:AlNP ratio offering the best balance between recovery force and activation speed. Conclusions: The synergistic combination of MWCNTs and AlNPs effectively enhances TPU’s multifunctional behavior, demonstrating strong potential for soft actuation in biomedical devices. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

0 pages, 1740 KB  
Article
The Influence of Zinc Oxide Nanoparticles on Dispersion, Rheology, and Mechanical Properties of Epoxy-Based Composites
by Tsz Ting Wong, Solange Amigues and Firas Awaja
Polymers 2025, 17(24), 3253; https://doi.org/10.3390/polym17243253 - 6 Dec 2025
Viewed by 313
Abstract
The impact of zinc oxide (ZnO) nanoparticles on the dispersion, rheological behaviour, and mechanical properties of epoxy-based composites was investigated. Through experimental examinations, we found that 100 nm ZnO with a 4 wt.% content, when incorporated into epoxy, demonstrated homogeneous dispersion. Conversely, an [...] Read more.
The impact of zinc oxide (ZnO) nanoparticles on the dispersion, rheological behaviour, and mechanical properties of epoxy-based composites was investigated. Through experimental examinations, we found that 100 nm ZnO with a 4 wt.% content, when incorporated into epoxy, demonstrated homogeneous dispersion. Conversely, an increase in ZnO nanoparticle content led to particle agglomeration within the composite’s core. Rheology tests revealed that the 4 wt.% ZnO/epoxy mixture exhibited the lowest shear stress value, surpassing even the neat epoxy. Additionally, theoretical models were employed to evaluate the stress–strain properties of the ZnO/epoxy with the hollow glass fibre composite system. The study demonstrates the critical role of ZnO nanoparticle content in achieving dispersion and mechanical strength without the need for chemical solvents or surface modifications. Furthermore, variations in ZnO content within the composite resulted in a differing Young’s Modulus and UV absorbability, highlighting the importance of nanoparticle concentration in determining material properties. The study also delves into the effects of core diameter, length of hollow glass fibres (HGF), and adhesive layer thickness on stress transfer and strain deformation mechanisms within the composite system. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

0 pages, 4282 KB  
Article
Formulation and Characterization of Chitosan Films Incorporating Hawthorn Polyphenolic Extracts via Natural Deep Eutectic Solvents
by Oana Ciocirlan, Adina Gavrila, Gabriela Isopencu, Ludmila Motelica, Ovidiu-Cristian Oprea, Adrian Ionut Nicoara, Sergiu Sima and Paul Stanescu
Polymers 2025, 17(24), 3250; https://doi.org/10.3390/polym17243250 - 6 Dec 2025
Viewed by 335
Abstract
This study develops biodegradable chitosan (CS) films plasticized with natural deep eutectic solvents (NaDES) composed of choline chloride and glycolic acid (1:3 molar ratio). The same NaDES served as an effective extraction medium for bioactive compounds from hawthorn (Crataegus monogyna), which [...] Read more.
This study develops biodegradable chitosan (CS) films plasticized with natural deep eutectic solvents (NaDES) composed of choline chloride and glycolic acid (1:3 molar ratio). The same NaDES served as an effective extraction medium for bioactive compounds from hawthorn (Crataegus monogyna), which were incorporated into the chitosan matrix to enhance functionality. CS films with 44–70 wt% NaDES were evaluated, and the 50 wt% formulation exhibited the optimal mechanical and barrier performance. Upon extract incorporation, this film showed marked decreases in Young’s modulus (131→30 MPa) and tensile strength (24→12 MPa), relative to the extract-free counterparts, indicating enhanced flexibility. Stress–strain analyses confirmed a progressive reduction in stiffness with increasing NaDES content, evidencing its plasticizing effect. FTIR analysis revealed extensive hydrogen-bonding between CS and NaDES, alongside successful integration of polyphenolics extracted from hawthorn. Morphological analysis showed smooth, dense, homogeneous surfaces. Films exhibited strong UV absorption, with extract-loaded samples extending into the UVA and visible ranges, enhancing light-barrier properties. The presence of polyphenolic compounds enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity to nearly twice that of the neat CS films. These combined mechanical, optical, and antioxidant properties highlight the potential of these NaDES-based chitosan films for sustainable active packaging. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

19 pages, 3444 KB  
Article
Effect of PBAT-g-MAH Compatibilization and Bamboo Flour Loadings on Melt Flow and Early Soil–Compost Mineralization of PLA Biocomposites for FFF 3D Printing
by César A. Paltán, Jorge I. Fajardo, Diana V. Rodriguez and Edwuin Carrasquero
Polymers 2025, 17(24), 3240; https://doi.org/10.3390/polym17243240 - 5 Dec 2025
Viewed by 319
Abstract
Objective. To determine how bamboo loadings (2.5–5 wt%) and compatibilization with PBAT-g-MAH (BP-1, 10 wt%) affect melt flow and early-time mineralization of PLA biocomposites under near-ambient soil–compost conditions (ASTM D5988), while using PBAT-g-GMA (BP-2) only as a melt-flow screening reference. Methods. Melt flow [...] Read more.
Objective. To determine how bamboo loadings (2.5–5 wt%) and compatibilization with PBAT-g-MAH (BP-1, 10 wt%) affect melt flow and early-time mineralization of PLA biocomposites under near-ambient soil–compost conditions (ASTM D5988), while using PBAT-g-GMA (BP-2) only as a melt-flow screening reference. Methods. Melt flow index (MFI, ASTM D1238, 2.16 kg; 190/210/230 °C) was first measured for neat PLA and PLA/BP-1/BP-2 blends to select a printable matrix. PLA/10BP-1 composites containing 2.5–5 wt% bamboo were then compounded, extruded as bars for biodegradation tests, and validated by FFF printing. Biodegradation was quantified from titrimetric CO2 evolution in soil–compost reactors at 21 ± 2 °C and pH ≈ 7 (triplicate specimens plus triplicate blanks; mean ± SD and endpoint statistics). ATR-FTIR was used to support mechanistic interpretation. Results. BP-1 markedly increased MFI relative to neat PLA, whereas BP-2 remained close to the neat matrix, consistent with epoxy-driven coupling that can raise viscosity. Under ambient burial, all materials exhibited very low mineralization over 0–23 days; PLA/10BP-1/2.5B and PLA/10BP-1/5B showed a slight increase in net CO2 evolution compared with neat PLA, but the differences remained modest and within the experimental uncertainty, reflecting a balance between bamboo’s pro-hydrolytic effect and the sealing action of PBAT-g-MAH compatibilization. Significance. The data delineate a printing–degradation window in which PLA/10BP-1 with 2.5–5 wt% bamboo combines easy processing and short-term durability while preserving industrial compostability at end-of-life. Full article
(This article belongs to the Special Issue Mechanical Properties of 3D Printed Polymer Composites)
Show Figures

Figure 1

36 pages, 18724 KB  
Article
Statistical Optimization of Graphene Nanoplatelet-Reinforced Epoxy Nanocomposites via Box–Behnken Design for Superior Flexural and Dynamic Mechanical Performance
by Júlia Mendes, Camila Prudente Magalhães, Letícia Vitorazi, Noemi Raquel Checca Huaman, Sergio Neves Monteiro, Teresa Gómez-del Río and Ulisses Oliveira Costa
Polymers 2025, 17(23), 3218; https://doi.org/10.3390/polym17233218 - 3 Dec 2025
Viewed by 365
Abstract
Graphene nanoplatelets (GNPs) are efficient nanofillers for improving the mechanical and thermal properties of epoxy resins due to their high stiffness, aspect ratio, and interfacial reinforcement ability. This study employs a three-factor, three-level Box–Behnken Design (BBD) to investigate the combined effect of GNP [...] Read more.
Graphene nanoplatelets (GNPs) are efficient nanofillers for improving the mechanical and thermal properties of epoxy resins due to their high stiffness, aspect ratio, and interfacial reinforcement ability. This study employs a three-factor, three-level Box–Behnken Design (BBD) to investigate the combined effect of GNP content (0.5–3.5 wt.%), hardener concentration (9–17 phr), and post-curing temperature (30–120 °C) on DGEBA/TETA epoxy nanocomposites. Mechanical, thermal, dynamic mechanical, and morphological characterizations (flexural testing, DMA, TGA, DSC, FTIR, SEM, TEM, and AFM) established structure–property correlations. The optimized formulation (2.0 wt.% GNP, 9 phr hardener, and 120 °C post-curing) exhibited superior reinforcement, with flexural strength of 322.0 ± 12.8 MPa, flexural modulus of 9.7 ± 0.5 GPa, and strain at break of 4.4 ± 0.2%, corresponding to increases of 197%, 155%, and 91% compared with neat epoxy. DMA confirmed a rise in storage modulus from 2.9 to 7.5 GPa and a Tg of 143 °C, while TGA showed a 15 °C improvement in thermal stability. Statistical analysis identified post-curing temperature as the dominant factor governing Tg, stiffness, and thermal stability, with synergistic contributions from GNP content and hardener concentration to the overall network performance. These results surpass those of GO- and CNT-based systems, demonstrating the superior efficiency of GNPs under optimized conditions. The proposed approach provides a robust pathway for developing epoxy nanocomposites with low filler content and enhanced multifunctional performance. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

Back to TopTop