Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = near-surface repository

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 250 KB  
Article
AHP-Based Methodological Proposal for Identifying Suitable Sites for the Italian Near-Surface Repository
by Giambattista Guidi, Anna Carmela Violante and Francesca Romana Macioce
J. Nucl. Eng. 2025, 6(4), 39; https://doi.org/10.3390/jne6040039 - 26 Sep 2025
Viewed by 266
Abstract
The selection of suitable sites for the disposal of radioactive waste constitutes a critical component of nuclear waste management. This study presents an original methodological proposal based on the Analytic Hierarchy Process (AHP), designed to support early-stage site screening for a near-surface repository [...] Read more.
The selection of suitable sites for the disposal of radioactive waste constitutes a critical component of nuclear waste management. This study presents an original methodological proposal based on the Analytic Hierarchy Process (AHP), designed to support early-stage site screening for a near-surface repository in Italy. AHP could be used to identify appropriate locations, focusing on 51 areas that have already undergone a preliminary screening phase. These areas, included in the National Map of Suitable Areas (CNAI), were selected as they fulfill all the technical requirements (geological, geomorphological, and hydraulic stability) necessary to ensure the safety performance of the engineering structures to be implemented through multiple artificial barriers, as specified in Technical Guide N. 29. The proposed methodology is applicable in cases where multiple sites listed in the CNAI have been identified as potential candidates for hosting the repository. A panel of 20 multidisciplinary experts, including engineers, environmental scientists, sociologists, and economists, evaluated two environmental, two economic, and two social criteria not included among the criteria outlined in Technical Guide N. 29. Pairwise comparisons were aggregated using the geometric mean, and consistency ratios (CRs) were calculated to ensure the coherence of expert judgements. Results show that social criteria received the highest overall weight (0.53), in particular the “degree of site acceptability”, followed by environmental (0.28) and economic (0.19) criteria. While the method does not replace detailed site investigations (which will nevertheless be carried out once the site has been chosen), it can facilitate the early identification of promising areas and guide future engagement with local communities. The approach is reproducible, adaptable to additional criteria or national requirements, and may be extended to other countries facing similar nuclear waste management challenges. Full article
Show Figures

Graphical abstract

24 pages, 5892 KB  
Article
Reactive Transport Model of Steel/Bentonite Interactions in the FEBEX In Situ Test
by Javier Samper, Alba Mon and Luis Montenegro
Minerals 2025, 15(9), 940; https://doi.org/10.3390/min15090940 - 3 Sep 2025
Cited by 1 | Viewed by 518 | Correction
Abstract
Steel corrosion plays a major role in the geochemical evolution at the canister/bentonite interface of the engineered barrier systems of geological radioactive waste repositories. The interactions between corrosion products and bentonite can significantly affect bentonite properties and performance. These interactions have been investigated [...] Read more.
Steel corrosion plays a major role in the geochemical evolution at the canister/bentonite interface of the engineered barrier systems of geological radioactive waste repositories. The interactions between corrosion products and bentonite can significantly affect bentonite properties and performance. These interactions have been investigated by resorting to in situ tests conducted in underground laboratories, such as the FEBEX (Full-scale Engineered Barrier Experiment) test. The FEBEX in situ test, which was conducted at the Grimsel underground research laboratory in Switzerland from 1997 to 2015, demonstrated substantial corrosion of the steel liner in areas without a heater, primarily due to the presence of O2. Here we report a reactive transport model that simulates steel corrosion products and their interactions with bentonite. The model builds on a previously published conceptual geochemical model and addresses its limitations by integrating a more detailed representation of temperature and unsaturated flow conditions, leveraging prior thermo–hydrodynamic–mechanical–chemical (THMC) models. Given the prevailing uncertainties in O2 and redox conditions during the test and the limited data on liner corrosion and gas conditions at the liner–bentonite interface, liner corrosion was modeled by using a prescribed time-dependent function for the corrosion rate. Goethite, hematite, and magnetite were the Fe minerals allowed to precipitate in the model. The corrosion rate and the specific surface area of the hematite and magnetite were calibrated based on the profiles of goethite, hematite, and total Fe (including dissolved, exchanged and sorbed forms) observed at the post mortem analysis of the FEBEX in situ test. The model reproduces the observed goethite and hematite precipitation near the liner but underestimates the measured values at greater distances from the liner. The pattern of total calculated Fe concentrations reproduce the measured values except at a distance between 15 and 50 mm from the liner. Goethite is the predominant corrosion product in the model results, even under reducing conditions, owing to kinetic constraints on magnetite and hematite precipitation and to the enhanced stability of goethite driven by pH increase and thermal evolution. Full article
Show Figures

Graphical abstract

18 pages, 4570 KB  
Article
Validation of Water Radiolysis Models Against Experimental Data in Support of the Prediction of the Radiation-Induced Corrosion of Copper-Coated Used Fuel Containers
by Scott Briggs, Mehran Behazin and Fraser King
Corros. Mater. Degrad. 2025, 6(2), 14; https://doi.org/10.3390/cmd6020014 - 1 Apr 2025
Cited by 1 | Viewed by 774
Abstract
Copper has been proposed as a container material for the disposal of used nuclear fuel in a number of countries worldwide. The container materials will be subject to various corrosion processes in a deep geological repository, including radiation-induced corrosion (RIC) resulting from the [...] Read more.
Copper has been proposed as a container material for the disposal of used nuclear fuel in a number of countries worldwide. The container materials will be subject to various corrosion processes in a deep geological repository, including radiation-induced corrosion (RIC) resulting from the γ-irradiation of the near-field environment. A comprehensive model is being developed to predict the extent of RIC by coupling a radiolysis model to the interfacial electrochemical reactions on the container surface. An important component of the overall model is a radiolysis model to predict the time-dependent concentration of oxidizing and reducing radiolysis products. As a first step in the model development, various radiolysis models have been validated against experimental measurements of the concentrations of dissolved and gaseous radiolysis products. Experimental data are available for pure H2O- and Cl-containing solutions, with and without a gas headspace. The results from these experiments have been compared with predictions from corresponding radiolysis models, including the effects of the partitioning of gaseous species (O2 and H2) at the gas–solution interface. Different reaction schemes for the Cl radiolysis models are also compared. The validated radiolysis model will then be coupled with interfacial reactions on the copper surface and additional processes related to the presence of bentonite clay in Steps 2 and 3 of the overall model, respectively. Full article
Show Figures

Figure 1

15 pages, 6136 KB  
Article
Reduction in Apparent Permeability Owing to Surface Precipitation of Solutes by Drying Process and Its Effect on Geological Disposal
by Tsugumi Seki, Kanta Hongo, Taiji Chida and Yuichi Niibori
Minerals 2024, 14(4), 428; https://doi.org/10.3390/min14040428 - 20 Apr 2024
Viewed by 1202
Abstract
Disposal tunnels in geological repositories are ventilated continuously for over 50 years until their closure. Under these conditions, an unsaturated zone of mixed liquid and gas phases forms around the tunnels. Moreover, drying is assumed to progress from the host rock to the [...] Read more.
Disposal tunnels in geological repositories are ventilated continuously for over 50 years until their closure. Under these conditions, an unsaturated zone of mixed liquid and gas phases forms around the tunnels. Moreover, drying is assumed to progress from the host rock to the tunnels. To understand these drying processes, this study investigated the migration and precipitation of solutes via capillary forces during drying in packed columns using silica sand or glass beads as packed layers and X-ray CT analysis. In addition, the apparent permeability of a column packed with silica sand containing precipitation was examined using a flow experiment. The results indicate that the precipitation and accumulation of solutes were significant near the drying surfaces of the columns. The apparent mass transfer coefficient at a relatively early stage of the drying process indicates that the migration rate of solutes depends strongly on the capillary forces during the drying process. Furthermore, the apparent permeability of the columns with precipitation decreased significantly. These indicate that the precipitation and accumulation of solutes with drying in the groundwater reduce the porosity and permeability, and the advection of groundwater around the repository may be suppressed. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Graphical abstract

15 pages, 1949 KB  
Article
Forecast of 241Am Migration from a System of Deep Horizontal Boreholes
by Victor Malkovsky, Sergey Yudintsev and Michael Ojovan
Sustainability 2023, 15(20), 15134; https://doi.org/10.3390/su152015134 - 22 Oct 2023
Cited by 3 | Viewed by 1593
Abstract
Highly radioactive materials classified as high-level nuclear waste (HLW) of atomic power engineering should be disposed of deeply underground in special geological disposal facilities (GDFs), which can be of either shaft or borehole type. The advantages of borehole-type GDFs result from smaller volumes [...] Read more.
Highly radioactive materials classified as high-level nuclear waste (HLW) of atomic power engineering should be disposed of deeply underground in special geological disposal facilities (GDFs), which can be of either shaft or borehole type. The advantages of borehole-type GDFs result from smaller volumes of mining operations, a simpler construction technology, shorter construction time and cost. This allows us to consider them as an alternative to shaft-type GDFs. The parts of the boreholes in which waste containers should be placed can be both vertical and horizontal. Computer simulation of the migration of radionuclides from a group of parallel horizontal boreholes into the biosphere made it possible to conclude that horizontal GDF boreholes have significant advantages over vertical ones. We determined a forecast of 241Am migration by a method of mathematical modelling of 241Am release from vitrified HLW disposed of in several horizontal drillholes. The maximum concentrations of americium in the near-surface groundwater above the repository are calculated depending on the number of boreholes, the depth of their location and the distance between them, the permeability of rocks and the time of waste storage prior to disposal. Influence of different conditions on the safety of a GDF of borehole type is estimated. Calculations show that the heat generated by HLW causes a weaker groundwater convection near horizontal boreholes compared to vertical boreholes of the same capacity. In addition to that, at an equal thickness of the rock layer separating the HLW from the surface, the geothermal temperature of the host rocks in the near field of a horizontal borehole will be lower than the average geothermal temperature near a vertical borehole. As a result, the rate of radionuclides leaching from the waste forms by groundwaters will also be lower in the case of horizontal boreholes. Full article
Show Figures

Figure 1

22 pages, 11014 KB  
Article
Corrosion Current Density of API 5L X65 Carbon Steel in Contact with Natural Callovian-Oxfordian Clay Pore Water, Assessed by Various Electrochemical Methods over 180 Days
by Yendoube Charles Sano Moyeme, Stephanie Betelu, Johan Bertrand, Karine Groenen Serrano and Ioannis Ignatiadis
Metals 2023, 13(5), 966; https://doi.org/10.3390/met13050966 - 17 May 2023
Cited by 5 | Viewed by 2344
Abstract
Near-neutral pH and a low redox potential are considered favorable conditions for immobilizing radionuclides in deep repository systems within clay formations. Cigeo is the future French Industrial Center for Geological Disposal for high- and intermediate-level long-lived radioactive waste, to be built at a [...] Read more.
Near-neutral pH and a low redox potential are considered favorable conditions for immobilizing radionuclides in deep repository systems within clay formations. Cigeo is the future French Industrial Center for Geological Disposal for high- and intermediate-level long-lived radioactive waste, to be built at a depth of 500 m within the Callovian–Oxfordian clay. In-depth knowledge of the mechanisms and kinetics of corrosion occurring on the surface of API 5L X65 (X65) carbon steel tubing is essential for the reversible nuclear waste management of the Cigeo site. By using all-solid and robust handmade electrodes in addition to electrochemical and gravimetric techniques, we determined the corrosion phenomenology and kinetics of X65 in contact with natural Cox pore water in equilibrium with its rock gases, flowing continuously through a multi-parameter probe device and placed at a depth of 500 m at the Bure Underground Research Laboratory, for over 180 days. Two iron oxidants were encountered, namely, depleted dioxygen (O2) and proton H(I), accompanied by hydrogen sulfide. Corrosion mechanisms and kinetics were well established for the two X65 electrodes, whether electrochemically perturbed or not. The corrosion thickness loss rates, determined by both electrochemical and gravimetric techniques, were between 0.016 and 0.032 mm/year. This study demonstrates, on site, the reliability of a developed methodology for continuous monitoring of the corrosion kinetics of the API 5L X65 carbon steel at the same time as the temporal variation of the key geochemical parameters of the fluid was assessed. Full article
(This article belongs to the Special Issue Electrochemical Corrosion and Protection of Alloys and Steels)
Show Figures

Figure 1

16 pages, 2056 KB  
Article
Mechanisms Governing 90Sr Removal and Remobilisation in a VLLW Surface Disposal Concept
by Mallory S. Ho, Gianni F. Vettese, Paula H. Keto, Suvi P. Lamminmäki, Minna Vikman, Emmi Myllykylä, Kathy Dardenne and Gareth T. W. Law
Minerals 2023, 13(3), 436; https://doi.org/10.3390/min13030436 - 18 Mar 2023
Cited by 3 | Viewed by 2583
Abstract
Flow-through columns were used to assess potential long-term trends in 90Sr biogeochemistry and transport in a Finnish near-surface very low-level waste (VLLW) repository concept. Experiments simulated the effects of water intrusion and flow through the repository barrier and backfill materials, examining impacts [...] Read more.
Flow-through columns were used to assess potential long-term trends in 90Sr biogeochemistry and transport in a Finnish near-surface very low-level waste (VLLW) repository concept. Experiments simulated the effects of water intrusion and flow through the repository barrier and backfill materials, examining impacts on 90Sr migration. Artificial rainwater containing 2.0 mg/L stable Sr (as a proxy for 90Sr) was pumped through column systems that had varying compositions from a matrix of rock flour (backfill material), bentonite (backfill/sealing material), and carbon steel (waste encapsulation material), for 295 days. Effluent geochemistry was monitored throughout. Sr retention behaviour in all column systems was broadly similar. Sr removal from influent rainwater was marked (~95% removed) at the beginning of the experiments, and this degree of removal was maintained for 20 days. Thereafter, Sr concentrations in the effluents began to rise, reaching ~2 mg/L by 295 days. Further, 56%–67% of added Sr was retained in the repository materials over the 295-day reaction period. Analysis of the effluents indicated that colloids did not form; as such, Sr output was likely to be aqueous Sr2+. Upon completion of the experiment, solid-associated Sr distribution and speciation in the columns were assessed through column sectioning and post-mortem analyses, which encompassed the following: total acid digests, sequential extractions, and XAS analysis. The total acid digests and sequential extractions showed that Sr was evenly distributed throughout the columns and that the majority (68%–87%) of solid-associated Sr was in the exchangeable fraction (MgCl2). This suggested that a major part of the solid-phase Sr was weakly bound to the column materials via outer-sphere sorption. Interestingly, a smaller amount of Sr (7%–23%) could only be extracted by aqua regia, suggesting that a proportion of Sr may bind more strongly to the barrier materials. XAS analysis of select samples confirmed that the dominant Sr phase was sorbed to the rock flour and bentonite, but not corroded carbon steel. Columns were also subject to remobilisation experiments using artificial rain- and seawater without added Sr. While rainwater remobilised Sr slowly, high-ionic strength seawater remobilised Sr at much higher rates in the systems containing bentonite. Interestingly, Sr was well retained in the rock flour-only system following rain and seawater intrusion. Overall, the results indicate that the column materials provide reactive surfaces for Sr removal should it be released from waste packages; however, the backfill and barrier materials have limited retention capacity, and the dominant sorption interaction is relatively weak. The safety case for the shallow disposal of radioactive waste should consider the possibility of seawater intrusion and that the bentonite-bound Sr was significantly more susceptible to remobilisation following seawater, despite retaining slightly more Sr during sorption experiments. Full article
Show Figures

Figure 1

11 pages, 1728 KB  
Article
Advection–Dispersion Behavior for Simulation of H-3 and Pu-238 Transport in Undisturbed Argillaceous Shale of a Near-Surface Repository
by Yunfeng Shi, Song Yang, Enhui Wu, Longjiang Wang, Wenjie Chen, Weijia Xiong, Yanna Zhang, Aiming Zhang and Bing Lian
Toxics 2023, 11(2), 124; https://doi.org/10.3390/toxics11020124 - 27 Jan 2023
Cited by 3 | Viewed by 1656
Abstract
In this study, a column experiment was employed to evaluate the nuclide migration behavior in the surrounding rock medium of a near-surface disposal site in China and to investigate the advection–dispersion behavior of tritium (H-3) and plutonium-238 (Pu-238) in highly weathered argillaceous shale. [...] Read more.
In this study, a column experiment was employed to evaluate the nuclide migration behavior in the surrounding rock medium of a near-surface disposal site in China and to investigate the advection–dispersion behavior of tritium (H-3) and plutonium-238 (Pu-238) in highly weathered argillaceous shale. A reasonable numerical model was selected to fit the experimental breakthrough curves (BTCs) and to obtain the relevant migration parameters. The results show the following: (1) the internal structure of the highly weathered argillaceous shale exhibited heterogeneity, and the nuclide migration BTC showed characteristics of a “curve peak moving forward” and a “tail curve trailing”; (2) compared with other models, the stream tube mode could better fit the BTCs and obtain the average dispersion coefficient <D>, average distribution coefficient <Kd>, and other parameters; (3) compared to the results of the batch experiment, the distribution coefficient Kd obtained from the column experiment was smaller than that obtained from the batch experiment, which is speculated to be due to the influence of contact time and the contact area between the nuclide and the medium. Full article
(This article belongs to the Special Issue Novel Adsorbents and Adsorption Methods for Pollutants Removal)
Show Figures

Figure 1

12 pages, 2409 KB  
Article
Impact of Concrete Degradation on the Long-Term Safety of a Near-Surface Radioactive Waste Disposal Facility in Korea
by Agnes Mutoni and Juyoul Kim
Appl. Sci. 2022, 12(18), 9009; https://doi.org/10.3390/app12189009 - 8 Sep 2022
Cited by 1 | Viewed by 3551
Abstract
The migration of radionuclides from radioactive waste into the environment poses a public safety concern. Thus, the long-term safety assessment for near-surface disposal sites for radioactive waste in South Korea entails providing reasonable assurance that the annual radiation dose exposure from radionuclide release [...] Read more.
The migration of radionuclides from radioactive waste into the environment poses a public safety concern. Thus, the long-term safety assessment for near-surface disposal sites for radioactive waste in South Korea entails providing reasonable assurance that the annual radiation dose exposure from radionuclide release from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv/yr. At the first near-surface disposal site in Gyeongju, concrete was a crucial component of the engineered barriers designed to contain radionuclides within the disposal site. The ability of concrete to retain radioactive waste within the disposal site is attributed to its high sorption capacity for radionuclides. However, research has shown that the degradation of concrete can affect its radionuclide retention capabilities, which are defined by sorption properties of distribution (Kd) and diffusion (Ds) coefficient parameters. As a result, changes in sorption properties may lead to radionuclides migrating out of the disposal vault. In light of the geochemical deterioration of engineered concrete barriers, this study assesses the long-term safety of near-surface disposal sites. To simulate the impact of concrete degradation on radionuclide migration, we employed RESRAD-OFFSITE’s extended source-term features, which can model the release of radionuclides from radioactive waste shielded by concrete barriers. Using carefully screened published sorption data of four radionuclides (14C, 137Cs, 90Sr and 99Tc) in different stages of concrete degradation, the results indicated that released radioactivity during the most degraded state of concrete will result in a maximum radiation exposure dose of 1.4 × 10−8 mSv/yr from 99Tc which is below the permissible limit of 0.1 mSv per year, thus demonstrating that concrete is a reliable component of the engineered designed barriers for near-surface disposal facilities. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

18 pages, 8285 KB  
Article
Spatiotemporal Analysis of Urban Heat Islands in Relation to Urban Development, in the Vicinity of the Atacama Desert
by Jorge Espinoza-Molina, Karina Acosta-Caipa, Esther Chambe-Vega, Germán Huayna, Edwin Pino-Vargas and Jorge Abad
Climate 2022, 10(6), 87; https://doi.org/10.3390/cli10060087 - 16 Jun 2022
Cited by 22 | Viewed by 5560
Abstract
Near the Atacama Desert, Tacna city in Peru is among the largest arid cities with constant urban development, thus understanding of the urban surface thermal pattern is needed. We propose a comprehensive study of the urban heat island phenomenon, with the objective of [...] Read more.
Near the Atacama Desert, Tacna city in Peru is among the largest arid cities with constant urban development, thus understanding of the urban surface thermal pattern is needed. We propose a comprehensive study of the urban heat island phenomenon, with the objective of (1) determining the spatial and temporal variations of the urban heat islands (UHIs), in the period 1985 to 2020; (2) analyzing the relationship between the UHI and influencing factors such as vegetation, urban area, and population, using indices calculated with satellite images. The Google Earth Engine repository was used to evaluate the corrected images from the years 1985 to 2020. The coincidence between the normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) was good, negative between NDVI and the land surface temperature (LST), attributable to dense vegetation, and negative and very high (−0.81) between NDBI and NDVI, as massive urbanization leads to the reduction in the vegetal surface. The NDBI has a high impact on the LST; a coefficient of connections is recorded as 0.46. Tacna is a very arid region, and an increase in the time of the LST occurred with the increase in industrialization and urbanization. The land use/cover change (LUCC) evidences change in the climate in the city of Tacna; temperatures of 24.2 °C to 44.2 °C are observed in the built-up areas. In vegetated areas, the temperature remains below 24 °C, which is associated with a high rate of potential evapotranspiration. Thus, this study shows that variations in urban form and growth have produced the development of intraurban surface thermal patterns. Full article
Show Figures

Figure 1

12 pages, 1966 KB  
Communication
Low-Cost Resin 3-D Printing for Rapid Prototyping of Microdevices: Opportunities for Supporting Aquatic Germplasm Repositories
by Nikolas C. Zuchowicz, Jorge A. Belgodere, Yue Liu, Ignatius Semmes, William Todd Monroe and Terrence R. Tiersch
Fishes 2022, 7(1), 49; https://doi.org/10.3390/fishes7010049 - 15 Feb 2022
Cited by 20 | Viewed by 5654
Abstract
Germplasm repositories can benefit sustainable aquaculture by supporting genetic improvement, assisted reproduction, and management of valuable genetic resources. Lack of reliable quality management tools has impeded repository development in the past several decades. Microfabricated open-hardware devices have emerged as a new approach to [...] Read more.
Germplasm repositories can benefit sustainable aquaculture by supporting genetic improvement, assisted reproduction, and management of valuable genetic resources. Lack of reliable quality management tools has impeded repository development in the past several decades. Microfabricated open-hardware devices have emerged as a new approach to assist repository development by providing standardized quality assessment capabilities to enable routine quality control. However, prototyping of microfabricated devices (microdevices) traditionally relies on photolithography techniques that are costly, time intensive, and accessible only through specialized engineering laboratories. Although resin 3-D printing has been introduced into the microfabrication domain, existing publications focus on customized or high-cost (>thousands of USD) printers. The goal of this report was to identify and call attention to the emerging opportunities to support innovation in microfabrication by use of low-cost (<USD 350) resin 3-D printing for rapid prototyping. We demonstrate that low-cost mask-based stereolithography (MSLA) 3-D printers with straightforward modifications can provide fabrication quality that approaches traditional photolithography techniques. For example, reliable feature sizes of 20 µm with dimensional discrepancy of <4% for lateral dimensions and <5% for vertical dimensions were fabricated with a consumer-level MSLA printers. In addition, alterations made to pre-processing, post-processing, and printer configuration steps improved print quality as demonstrated in objects with sharper edges and smoother surfaces. The prototyping time and cost of resin 3-D printing (3 h with USD 0.5/prototype) were considerably lower than those of traditional photolithography (5 d with USD 80/prototype). With the rapid advance of consumer-grade printers, resin 3-D printing can revolutionize rapid prototyping approaches for microdevices in the near future, facilitating participation in interdisciplinary development of innovative hardware to support germplasm repository development for aquatic species. Full article
(This article belongs to the Special Issue Emerging Technologies for Sustainable Aquaculture)
Show Figures

Graphical abstract

19 pages, 5772 KB  
Article
Usefulness of Compiled Geophysical Prospecting Surveys in Groundwater Research in the Metropolitan District of Quito in Northern Ecuador
by Lilia Peñafiel, Francisco Javier Alcalá and Javier Senent-Aparicio
Appl. Sci. 2021, 11(23), 11144; https://doi.org/10.3390/app112311144 - 24 Nov 2021
Cited by 2 | Viewed by 2916
Abstract
As in other large Andean cities, the population in the Metropolitan District of Quito (MDQ) in northern Ecuador is growing, and groundwater is becoming essential to meet the increasing urban water demand. Quito’s Public Water Supply Company (EPMAPS) is promoting groundwater research for [...] Read more.
As in other large Andean cities, the population in the Metropolitan District of Quito (MDQ) in northern Ecuador is growing, and groundwater is becoming essential to meet the increasing urban water demand. Quito’s Public Water Supply Company (EPMAPS) is promoting groundwater research for sustainable water supply, and geophysical prospecting surveys are used to define aquifer geometry and certain transient groundwater features. This paper examines the usefulness of existing geophysical prospecting surveys in groundwater research in the MDQ. A database was built using 23 representative geophysical prospecting surveys compiled from EPMAPS’ public repository, official geotechnical research reports, and the scientific literature. Fifteen EPMAPS-promoted surveys used near-surface electrical techniques (seven used electrical resistivity tomography and eight used vertical electrical sounding) to explore Holocene and Pleistocene sedimentary and volcano-sedimentary formations in the 25–500-m prospecting depth range, some of which form shallow aquifers used for water supply. Four other surveys used near-surface seismic techniques (refraction microtremor) for geotechnical research in civil works. These surveys have been reinterpreted to define shallow aquifer geometry. Finally, four surveys compiled from the scientific literature used electromagnetic techniques (magnetotelluric sounding and other very low-frequency methods) to explore Holocene to late Pliocene formations, some of which form thick regional aquifers catalogued as the larger freshwater reservoirs in the MDQ. However, no geophysical prospecting surveys exploring the complete saturated thickness of the Pliocene aquifers could be compiled. Geophysical prospecting surveys with greater penetration depth are proposed to bridge this research gap, which prevents the accurate assessment of the renewable groundwater fraction of the regional aquifers in the MDQ that can be exploited sustainably. Full article
Show Figures

Figure 1

24 pages, 3631 KB  
Article
Post-Closure Safety Analysis of Nuclear Waste Disposal in Deep Vertical Boreholes
by Stefan Finsterle, Richard A. Muller, John Grimsich, Ethan A. Bates and John Midgley
Energies 2021, 14(19), 6356; https://doi.org/10.3390/en14196356 - 5 Oct 2021
Cited by 11 | Viewed by 3460
Abstract
Isolation of spent nuclear fuel assemblies in deep vertical boreholes is analyzed. The main safety features of the borehole concept are related to the repository’s great depth, implying (a) long migration distances and correspondingly long travel times, allowing radionuclides to decay, (b) separation [...] Read more.
Isolation of spent nuclear fuel assemblies in deep vertical boreholes is analyzed. The main safety features of the borehole concept are related to the repository’s great depth, implying (a) long migration distances and correspondingly long travel times, allowing radionuclides to decay, (b) separation of the repository from the dynamic hydrological cycle near the land surface, (c) stable geological and hydrogeological conditions, and (d) a geochemically reducing environment. An integrated simulation model of the engineered and natural barrier systems has been developed to examine multiple scenarios of the release of radionuclides from the waste canisters, the transport through a fractured porous host rock, and the extraction of potentially contaminated drinking water from an aquifer. These generic simulations include thermal effects from both the natural geothermal gradient and the heat-generating waste, the influence of topography on regional groundwater flow, moderated by salinity stratification at depth, and the role of borehole sealing. The impact of these processes on the transport of select radionuclides is studied, which include long-lived, soluble, sorbing or highly mobile isotopes along with a decay chain of safety-relevant actinide metals. The generic analyses suggest that a deep vertical borehole repository has the potential to be a safe option for the disposal of certain waste streams, with the depth itself and the stable hydrogeological environment encountered in the emplacement zone providing inherent long-term isolation, which allows for reduced reliance on a complex engineered barrier system. Full article
(This article belongs to the Special Issue Storage and Disposal Options for Nuclear Waste)
Show Figures

Graphical abstract

35 pages, 5335 KB  
Article
A Review of Geochemical Modeling for the Performance Assessment of Radioactive Waste Disposal in a Subsurface System
by Suu-Yan Liang, Wen-Sheng Lin, Chan-Po Chen, Chen-Wuing Liu and Chihhao Fan
Appl. Sci. 2021, 11(13), 5879; https://doi.org/10.3390/app11135879 - 24 Jun 2021
Cited by 16 | Viewed by 5963
Abstract
Radionuclides are inorganic substances, and the solubility of inorganic substances is a major factor affecting the disposal of radioactive waste and the release of concentrations of radionuclides. The degree of solubility determines whether a nuclide source migrates to the far field of a [...] Read more.
Radionuclides are inorganic substances, and the solubility of inorganic substances is a major factor affecting the disposal of radioactive waste and the release of concentrations of radionuclides. The degree of solubility determines whether a nuclide source migrates to the far field of a radioactive waste disposal site. Therefore, the most effective method for retarding radionuclide migration is to reduce the radionuclide solubility in the aqueous geochemical environment of subsurface systems. In order to assess the performance of disposal facilities, thermodynamic data regarding nuclides in water–rock systems and minerals in geochemical environments are required; the results obtained from the analysis of these data can provide a strong scientific basis for maintaining safety performance to support nuclear waste management. The pH, Eh and time ranges in the environments of disposal sites cannot be controlled, in contrast to those under experimental conditions in laboratories. Using a hypothetical error mechanism for the safety assessment of disposal sites may engender incorrect assessment results. Studies have focused on radionuclide reactions in waste disposal, and have offered evidence suggesting that these reactions are mainly affected by the geochemical environment. However, studies have not examined the thermodynamics of chemical reactions or interactions between water and minerals, such as the surface complexation and adsorption of various nuclide-ion species. Simple coefficient models have usually been applied in order to obtain empirical formulas for deriving Kd to describe nuclide distributions in the solid or liquid phase in water–rock geochemical systems. Accordingly, this study reviewed previous research on the applications of geochemical models, including studies on the development of geochemical models, sources of thermodynamic databases (TDBs) and their applications in programs, the determination of the adequacy of TDBs in surface complexation models and case studies, and the selection and application of activity coefficient equations in geochemical models. In addition, the study conducted case studies and comparisons of the activity coefficients derived by different geochemical models. Three activity coefficient equations, namely the Davies, modified Debye–Hückel, and Pitzer equations, and four geochemical models, namely PHREEQC, MINEQL+, MINTEQA2, and EQ3/6, were used in the study. The results demonstrated that when the solution’s ionic strength was <0.5 m, the differences in the activity coefficients between the Davies and modified Debye–Hückel equations were <5%. The difference between the Pitzer and Davies equations, or between the Pitzer and modified Debye–Hückel equations in terms of the calculated activity coefficients was <8%. The effect of temperature on the activity coefficient slightly influenced the modeling outputs of the Davies and modified Debye–Hückel equations. In the future, the probability distribution and uncertainty of parameters of Kd and the equilibrium constant can be used in geochemical and reactive transport models to simulate the long-term safety of nuclear waste disposal sites. The findings of this study can provide a strong scientific basis for conducting safety assessments of nuclear waste disposal repositories and developing environmental management or remediation schemes to control sites marred by near-surface contamination. Full article
Show Figures

Figure 1

30 pages, 7780 KB  
Article
Thermo-Mechanical Regime of the Greenland Ice Sheet and Erosion Potential of the Crystalline Bedrock
by Zhenze Li and Thanh Son Nguyen
Minerals 2021, 11(2), 120; https://doi.org/10.3390/min11020120 - 26 Jan 2021
Cited by 3 | Viewed by 4050
Abstract
Past glaciation is known to have caused a substantial morphological change to high latitude regions of the northern hemisphere. In the assessment of the long-term performance of deep geological repositories for radioactive wastes, future glaciation is a critical factor to take into consideration. [...] Read more.
Past glaciation is known to have caused a substantial morphological change to high latitude regions of the northern hemisphere. In the assessment of the long-term performance of deep geological repositories for radioactive wastes, future glaciation is a critical factor to take into consideration. This study develops a thermal-mechanical model to investigate ice sheet thermal evolution and the impact on bedrock erosion. The model is based on comprehensive field data resulting from international collaborative research on the Greenland Analogue Project. The ice sheet model considers surface energy balance and basal heat flux, as well as the temperature-dependent flow of ice that follows Glen’s law. The ice-bedrock interface is treated with a mechanical contact model, which solves the relative velocity and predicts the abrasional erosion and meltwater flow erosion. The numerical model is calibrated with measured temperature profiles and surface velocities at different locations across the glacier cross-section. The erosion rate is substantially larger near the glacier edge, where channel flow erosion becomes predominant. The abrasional erosion rate is averaged at 0.006 mm/a, and peaks at regions near the ridge divide. The mean meltwater flow erosion rate in the study area is estimated to be about 0.12 mm/a for the melted base region. Full article
(This article belongs to the Special Issue The Hydro-Mechanics of Crystalline Rocks)
Show Figures

Figure 1

Back to TopTop