Usefulness of Compiled Geophysical Prospecting Surveys in Groundwater Research in the Metropolitan District of Quito in Northern Ecuador
Abstract
:1. Introduction
2. Study Area
2.1. Location and Climate
2.2. Geology and Hydrogeology
2.3. Urban Water Demand
3. Data Compilation
4. Results
4.1. Near-Surface Electrical Surveys
4.2. Near-Surface Seismic Surveys
4.3. Electromagnetic Surveys
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Bradley, R.S.; Vuille, M.; Diaz, H.F.; Vergara, W. Threats to water supplies in the Tropical Andes. Science 2006, 312, 1755–1756. [Google Scholar] [CrossRef] [PubMed]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschning, G.; Litaor, M.L.; López-Moreno, J.L.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on the hydrology of the Andean páramos. Earth-Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Buytaert, W.; Vuille, M.; Dewulf, A.; Urrutia, R.; Karmalkar, A.; Célleri, R. Uncertainties in climate change projections and regional downscaling in the tropical Andes: Implications for water resources management. Hydrol. Earth Syst. Sci. 2010, 14, 1247–1258. [Google Scholar] [CrossRef] [Green Version]
- López, S.; Wright, C.; Costanza, P. Environmental change in the equatorial Andes: Linking climate, land use, and land cover transformations. Remote Sens. 2017, 8, 291–303. [Google Scholar] [CrossRef]
- Flores-López, F.; Galaitsi, S.E.; Escobar, M.; Purkey, D. Modeling of Andean Páramo ecosystems hydrological response to environmental change. Water 2016, 8, 94–111. [Google Scholar] [CrossRef]
- Gonzales-Zeas, D.; Erazo, B.; Lloret, P.; De Biѐvre, D.; Steinchneider, S.; Dangles, O. Linking global climate change to local water availability: Limitations and prospects for a tropical mountain watershed. Sci. Total Environ. 2019, 650, 2577–2586. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Toapanta, J.; Peñafiel, L.; Barragán, E.; Yánez, W.; Buenaño, M.; Larrea, O. First data on atmospheric chloride mass balance components in the Andean páramo in central Ecuador: Implications to project climate scenarios of net aquifer recharge and potential groundwater chemical baseline. In 43rd IAH Congress: Groundwater and Society; IAH: Montpellier, France, 2016; pp. 851–852. [Google Scholar]
- Minga-Leon, S.; Gómez-Albores, M.A.; Bâ, K.M.; Balcázar, L.; Manzano-Solis, L.R.; Cuervo-Robayo, A.P.; Mastachi-Loza, C.A. Estimation of water yield in the hydrographic basin of southern Ecuador. Hydrol. Earth Syst. Sci. Discuss. 2018, Preprint. [Google Scholar] [CrossRef] [Green Version]
- Peñafiel, L.; Alcalá, F.J.; Barragán, E.; Larrea, O. Evaluación del balance hídrico en un área vulcano-sedimentaria de alta montaña poco monitorizada en la Cordillera de los Andes: Acuífero del río Pita, norte de Ecuador. Rev. Lat. Hidrogeol. 2016, 10, 502–508. [Google Scholar]
- Peñafiel, L.; Alcalá, F.J.; Barragán, E.; Toro-Espitia, L.; Larrea, O. Uso de trazadores químicos e isotópicos para deducir el funcionamiento del acuífero del río Pita, Cordillera de los Andes, norte de Ecuador. Rev. Lat. Hidrogeol. 2016, 10, 495–501. [Google Scholar]
- Paz, C.; Alcalá, F.J.; Carvalho, J.M.; Ribeiro, L. Current uses of ground penetrating radar in groundwater-dependent ecosystems research. Sci. Total Environ. 2017, 595, 868–885. [Google Scholar] [CrossRef]
- Monteiro Santos, F.A.; Sultan, S.A.; Represas, P.; El Sorady, A.L. Joint inversion of gravity and geoelectric data for groundwater and structural investigation: Application to the northwestern part of Sinai, Egypt. Geophys. J. Int. 2006, 165, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Alam, K.; Ahmad, N. Determination of aquifer geometry through geophysical methods: A case study from Quetta Valley, Pakistan. Acta Geophys. 2014, 62, 142–163. [Google Scholar] [CrossRef]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlemann, S.S.; Sorensen, J.P.R.; House, A.R.; Wilkinson, P.B.; Roberts, C.; Gooddy, D.C.; Binley, A.M.; Chambers, J.E. Integrated time-lapse geoelectrical imaging of wetland hydrological processes. Water Resour. Res. 2016, 52, 3. [Google Scholar] [CrossRef] [Green Version]
- Peñafiel, L.; Reyes, P.S.B.; Alcalá, F.J.; Ramírez, M.R.; Cabero, A. Fold-axis parallel extension along the southern ending of the Quito (Ecuadorian Andes) fault system: Implications in river network and aquifer geometry. Geotectonics 2020, 54, 256–265. [Google Scholar] [CrossRef]
- Bendix, J. Precipitation dynamics in Ecuador and northern Peru during the 1991/92 El Nino: A remote sensing perspective. Int. J. Remote Sens. 2000, 21, 533–548. [Google Scholar] [CrossRef]
- Bendix, J.; Rollenbeck, R.; Palacios, W.E. Cloud detection in the Tropics–a suitable tool for climate-ecological studies in the high mountains of Ecuador. Int. J. Remote Sens. 2004, 25, 4521–4540. [Google Scholar] [CrossRef]
- Van der Hammen, T.; Hooghiemstra, H. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat. Sci. Rev. 2000, 19, 725–742. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.; Falvey, M. The coastal winds off western subtropical South America in future climate scenarios. Int. J. Climatol. 2009, 29, 543–554. [Google Scholar] [CrossRef]
- Rollenbeck, R.; Fabian, P.; Bendix, J. Precipitation dynamics and chemical properties in the mountain forests of Ecuador. Adv. Geosci. 2006, 6, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Burbano, N.; Becerra, S.; Pasquel, E. Introduction to the Hydrogeology of Ecuador; Memory and Appendices; National Institute for Meteorology and Hydrology: Quito, Ecuador, 2015; pp. 1–121. [Google Scholar]
- PETROECUADOR. Updated Mapping of Hydrogeological Units and Hydrographic Basins of Ecuador Referenced to the Hydrocarbon Sector Infrastructures (scale 1:1,000,000); Memory and Appendices; Government of Ecuador: Quito, Ecuador, 2005. [Google Scholar]
- EPMAPS. Hydrogeological Map of the Metropolitan District of Quito (scale 1:250,000); International Association of Hydrogeologists-Ecuadorian Group: Quito, Ecuador, 2012; Volume 2, pp. 25–30. [Google Scholar]
- Trenkamp, R.; Kellogg, J.N.; Freymueller, J.T.; Mora, P. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. South Am. Earth Sci. 2002, 15, 157–171. [Google Scholar] [CrossRef]
- Tamay, J.; Galindo-Zaldívar, J.; Ruano, P.; Soto, J.; Lamas, F.; Azañón, J.M. New insight on the recent tectonic evolution and uplift of the southern Ecuadorian Andes from gravity and structural analysis of the Neogene-Quaternary intramontane basins. J. S. Am. Earth Sci. 2016, 70, 340–352. [Google Scholar] [CrossRef]
- Hughes, R.A.; Pilatasig, L.F. Cretaceous and Tertiary terrane accretion in the Cordillera Occidental of the Ecuadorian Andes. Tectonophysics 2002, 345, 29–48. [Google Scholar] [CrossRef]
- Litherland, M.; Aspden, J.; Jemielita, R.A. The Metamorphic Belts of Ecuador. Nottingham; British Geological Survey: Keyworth, UK, 1994; pp. 1–147. [Google Scholar]
- Feininger, T.; Seguin, M.K. Simple Bouguer gravity anomaly field and the inferred crustal structure of continental Ecuador. Geology 1983, 11, 40–44. [Google Scholar] [CrossRef]
- Villagómez, D. Evolución Geológica Plio-Cuaternaria del Valle Interandino Central en Ecuador (Zona de Quito–Guayllabamba–San Antonio). Master’s Thesis, National Polytechnic School, Quito, Ecuador, 2003. [Google Scholar]
- EPMAPS. CAP-1 Borehole Drilling Report: The Pita Aquifer; EPMAPS Repository: Quito, Ecuador, 2016. [Google Scholar]
- EPMAPS. CAP-2 Borehole Drilling Report: The Pita Aquifer; EPMAPS Repository: Quito, Ecuador, 2016. [Google Scholar]
- Muñoz, T. Contributions of Glacier Melting to the Upper Watershed of the Pita River, Ecuador. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2016. [Google Scholar]
- Peñafiel, L. Geology and Analysis of the Groundwater Resource in the Southern Quito Subbasin. Master’s Thesis, National Polytechnic School, Quito, Ecuador, 2009. [Google Scholar]
- Larrea, O. Los Acuíferos de Quito, Una Reserva Estratégica; EPMAPS Repository: Quito, Ecuador, 2016. [Google Scholar]
- Vaca, W.; Molano, M.; Heredia, G. Estudio Geológico, Geofísico e Hidráulico en la Zona Industrial de Itulcachi; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2012. [Google Scholar]
- Rios-Sanchez, M. A Remote Sensing Approach to Characterize the Hydrogeology of Mountainous Areas: Application to the Quito Aquifer System (QAS), Ecuador. Ph.D. Thesis, Michigan Technological University, Houghton, MI, USA, 2012. [Google Scholar]
- Guachamín, A.; Vaca, W.; Naranjo, F.; Guzmán, G. Elaboración de un Estudio de Tomografías Eléctricas en el Distrito Metropolitano de Quito (DMQ) y Análisis de Conductividades en Pozos; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2012. [Google Scholar]
- Guerrero, M. Informe Técnico Agencia Sur del Registro Civil; Secretaría Nacional de Gestión de Riesgos: Quito, Ecuador, 2013; pp. 1–43. [Google Scholar]
- Espinosa, V. Investigaciones de Resistividad Eléctrica en la Exploración de Aguas Subterráneas: Pusuquí-San Antonio y Valle de Los Chillos; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2005. [Google Scholar]
- Heredia, H. Investigaciones Hidrogeológicas en el Acuífero de Quito, Sector El Condado; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2011. [Google Scholar]
- Cataldi, A. Estudio de Caracterización de Ruta con Métodos Geofísicos no Invasivos: Primera Línea del Metro de Quito; Consorcio GRIFFMETAL–TRX Consulting: Quito, Ecuador, 2011; pp. 1–46. [Google Scholar]
- Beate, B. Estudio de Prefactibilidad Para Elaborar el Modelo Geotérmico Conceptual del Proyecto Chacana; Memory and Appendices; Servicios y Remediación Serviremediación: Quito, Ecuador, 2012; pp. 1–183. [Google Scholar]
- Espinosa, V. Investigaciones Geofísicas de Resistividad Eléctrica en la Exploración de Aguas Subterráneas en el Proyecto El Quinche-Guayllabamba; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2007. [Google Scholar]
- Hidalgo, J. Proyecto de Agua Potable Ríos Orientales Portal de Salida del Túnel Papallacta–El Conde: Investigaciones Geofísicas; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2005. [Google Scholar]
- Torres, A. Actualización de Los Diseños del Proyecto de Agua Potable Tesalia; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2005. [Google Scholar]
- Yautibug, G.; Herrera, F. Investigaciones Mediante Métodos Geofísicos en la Avenida Córdova Galarza; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2016. [Google Scholar]
- Vendramini, M.; Bermúdez, R.; Nionelli, P.; Erazo, M. Diseño Definitivo Línea de Transmisión Paluguillo -Bellavista; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2017. [Google Scholar]
- Beltrán, E. Estudios de Prospección Geofísica Mediante Sondeos Eléctricos Verticales Realizados en la Cuenca Alta del Río Pita, Provincia de Pichincha; Memory and Appendices; EPMAPS Repository: Quito, Ecuador, 2006. [Google Scholar]
- Reyes, P.S.B.; Ramírez, M.R.; Cajas, M.I. Detecting a master thrust system by magnetotelluric sounding along the western Andean Piedmont of Quito, Ecuador. Terra Nova 2020, 32, 458–467. [Google Scholar] [CrossRef]
- Hayley, K.; Bentley, L.R.; Gharibi, M.; Nightingale, M. Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring. Geophys. Res. Lett. 2007, 34, L18402. [Google Scholar] [CrossRef]
- Steelman, C.M.; Kennedy, C.S.; Capes, D.C.; Parker, B.L. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange. Hydrol. Earth Syst. Sci. 2017, 21, 3105–3123. [Google Scholar] [CrossRef] [Green Version]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics, 2nd ed.; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
- Ward, S.H. Resistivity and Induced Polarization Methods. In Geotechnical and Environmental Geophysics, 2nd ed.; Ward, S.H., Ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 1990; pp. 147–190. [Google Scholar]
- Xia, J.; Miller, R.D.; Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave. Geophysics 1999, 64, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dyn. Earthq. Eng. 2002, 22, 181–190. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multi-channel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J. Multichannel analysis of surface waves (MASW)—Active and passive methods. Lead Edge 2007, 26, 60–64. [Google Scholar] [CrossRef]
- Louie, J. Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull Seismol. Soc. Am. 2001, 91, 347–364. [Google Scholar] [CrossRef]
- Raines, M.G.; Gunn, D.A.; Morgan, D.J.R.; Williams, G.; Williams, J.D.O.; Caunt, S. Refraction microtremor (ReMi) to determine the shear-wave velocity structure of the near surface and its application to aid detection of a backfilled mineshaft. Q. J. Eng. Geol. Hydrogeol. 2011, 44, 211–220. [Google Scholar] [CrossRef]
- Paz, M.C.; Alcalá, F.J.; Medeiros, A.; Martínez-Pagán, P.; Pérez-Cuevas, J.; Ribeiro, L. Integrated MASW and ERT imaging for geological definition of an unconfined alluvial aquifer sustaining a coastal groundwater-dependent ecosystem in southwest Portugal. Appl. Sci. 2020, 10, 5905. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Martínez-Pagán, P.; Paz, M.C.; Navarro, M.; Pérez-Cuevas, J.; Domingo, F. Combining of MASW and GPR Imaging and Hydrogeological Surveys for the Groundwater Resource Evaluation in a Coastal Urban Area in Southern Spain. Appl. Sci. 2021, 11, 3154. [Google Scholar] [CrossRef]
- García-Jerez, A.; Navarro, M.; Alcalá, F.J.; Luzón, F.; Pérez-Ruiz, J.A.; Enomoto, T.; Vidal, F.; Ocaña, E. Shallow velocity structure using joint inversion of array and h/v spectral ratio of ambient noise: The case of Mula town (SE of Spain). Soil Dyn. Earthq. Eng. 2007, 27, 907–919. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behaviour, 3rd ed.; Wiley: London, UK, 2005; pp. 1–592. [Google Scholar]
- Zimmer, M.A.; Prasad, M.; Mavko, G.; Nur, A. Seismic velocities of unconsolidated sands: Part 1—Pressure trends from 0.1 to 20 MPa. Geophysics 2007, 72, E1–E13. [Google Scholar] [CrossRef]
- McGann, C.R.; Bradley, B.A.; Cubrinovski, M. Investigation of shear wave velocity depth variability, site classification, and liquefaction vulnerability identification using a near-surface Vs model of Christchurch, New Zealand. Soil Dyn. Earthq. Eng. 2017, 92, 692–705. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Espinosa, J.; Navarro, M.; Sánchez, F.J. Propuesta de división geológica de la localidad de Adra (provincia de Almería). Aplicación a la zonación sísmica. Rev. Soc. Geológica España 2002, 15, 55–66. [Google Scholar]
- Martínez-Pagán, P.; Navarro, M.; Pérez-Cuevas, J.; Alcalá, F.J.; García-Jerez, A.; Sandoval-Castaño, S. Shear-wave velocity based seismic microzonation of Lorca city (SE Spain) from MASW analysis. Near Surf. Geophys. 2014, 12, 739–749. [Google Scholar] [CrossRef]
- Martínez-Pagán, P.; Navarro, M.; Pérez-Cuevas, J.; Alcalá, F.J.; García-Jerez, A.; Vidal, F. Shear-wave velocity structure from MASW and SPAC methods. The case of Adra town, SE Spain. Near Surf. Geophys. 2018, 16, 356–371. [Google Scholar] [CrossRef]
- Vanorio, T.; Prasad, M.; Patella, D.; Nur, A. Ultrasonic velocity measurements in volcanic rocks: Correlation with microtexture. Geophys. J. Int. 2002, 149, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Unsworth, M.; Soyer, W.; Tuncer, V.; Wagner, A.; Barnes, D. Hydrogeologic assessment of the Amchitka Island nuclear test site (Alaska) with magnetotellurics. Geophysics 2007, 72, B47–B57. [Google Scholar] [CrossRef] [Green Version]
- Chave, A.D.; Jones, A.G. The Magnetotelluric Method: Theory and Practice; Cambridge University Press: New York, NY, USA, 2012; pp. 1–584. [Google Scholar]
- McPhee, D.K.; Chuchel, B.A.; Pellerin, L. Audiomagnetotelluric Data from Spring, Cave, and Coyote Spring Valleys, Nevada; No. 2006-1164; US Geological Survey: Menlo Park, CA, USA, 2006; pp. 1–43. [Google Scholar]
- Zonge, K.L.; Hughes, L.J. Controlled source audio-frequency magnetotellurics. In Electromagnetic Methods in Applied Geophysics, Volume 2: Application, Parts A and B; Nabighian, M.N., Ed.; Society of Exploration Geophysics: McLean, VA, USA, 1991; pp. 713–810. [Google Scholar]
- Geometrics, Inc. Operation Manual for Stratagem Systems Running IMAGEM Ver. 2.19; Geometrics, Inc.: San Jose, CA, USA, 2007. [Google Scholar]
- Buytaert, W.; De Bièvre, B. Water for cities: The impacts of climate change and demographic growth in the tropical Andes. Water Resour. Res. 2012, 48, W08503. [Google Scholar] [CrossRef] [Green Version]
Lithology | Age | MDQ Sector 1 | Permeability 2 | Effective Porosity 3 | Reference | |
---|---|---|---|---|---|---|
Magnitude | Type | |||||
Metapelites | Paleozoic | EAC | 10−4–10−2 (nd) | fr,fi | nd | [25,26] |
Andesites and basalts | Cretaceous | WAC | 10−4–10−2 (nd) | fr,fi | nd | [25] |
Sandstones and siltstones | Cretaceous | WAC | 10−2–10−1 (nd) | fr,fi | nd | [25] |
Andesitic lavas | early Pleistocene | IAV | 10−2–10−1 (0.04) | fr,fi | nd | [26] |
Andesitic lavas | middle Pleistocene | IAV | 10−2–10−1 (0.04) | fr,fi | 0.02–0.08 | [26,33,34] |
Pyroclastic flows | middle Pleistocene | IAV | 0.13–0.86 (nd) | fr,fi | nd | [25,26] |
Ash | middle Pleistocene | IAV | 10−3–10−1 (0.01) | fr,fi | nd | [25,26] |
Ash | late Pleistocene | IAV | 10−3–10−1 (0.01) | fr,fi | ˂0.01 | [26,33,34] |
Fluvio-glacial deposits | late Pleistocene | IAV | 0.05–10 (1.02) | fi,ip | 0.01–0.03 | [25,26] |
Ash | Holocene | IAV | 10−3–10−1 (nd) | fr,fi | nd | [25,26] |
Avalanche flows | Holocene | IAV | 10−2–10−1 (nd) | fr,fi | nd | [25,26] |
Lahar | Holocene | IAV | 10−3–10−2 (0.01) | fr,fi | 0.01–0.06 | [26,33,34] |
Alluvial | Holocene | IAV | 0.05–0.18 (0.12) | ip | 0.05–0.12 | [25,26] |
Glacier and moraines | Holocene | IAV | 0.05–0.15 (0.09) | ip | 0.05–0.15 | [25,26] |
ID | Coordinates | Elevation, m a.s.l. | Geophysical Technique 1 | Geological Environment 2 | Research Interest 3 | Additional Technical Information 4 | Reference | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | G1 | G2 | G3 | G4 | G5 | G6 | R1 | R2 | R3 | Variable | AQF | AQT | Profiles | PL | PD | |||||
1 | 78°32′ W | 0°24′ S | 3046 | b | a,b | a,b,c | a,b,c | c | a | a,b | b | a | ER, Ω m | 10–210 | 220–8010 | 1 | 1300 | 1800 | [18] | |||
2 | 78°22′ W | 0°18′ S | 2644 | a | a,b | a,b | a,b,c | a | a | b | b | ER, Ω m | 62–170 | 10 | 400–500 | 250 | [38] | |||||
3 | 78°22′ W | 0°09′ S | 2379 | b | b | a,b,c | a,b,c | a | a | b | b | ER, Ω m | 80–150 | 7 | 504–855 | 70–160 | [39] | |||||
4 | 78°21′ W | 0°06′ S | 2350 | a | b | a,b,c | a,b,c | a | a | b | b | ER, Ω m | 15–195 | 210–280 | 13 | 160–750 | 130 | [39] | ||||
5 | 78°20′ W | 0°09′ S | 2484 | b | b | a,b,c | a,b,c | a | a | b | a,b | ER, Ω m | 30–75 | 210–250 | 2 | 880 | 137 | [40] | ||||
6 | 78°24′ W | 0°04′ N | 2064 | b | b | a,b,c | b,c | a | a,b | a | a,b | ER, Ω m | 10–50 | 2 | 303–358 | 50 | [40] | |||||
7 | 78°42′ W | 0°03′ N | 1823 | b | a,b | a,b | b,c | a | a | a | a,b | ER, Ω m | 17–198 | 210–315 | 1 | 715 | 120 | [40] | ||||
8 | 78°33′ W | 0°17′ S | 2860 | b | a,b | a,b,c | a,b | a | a | c | ER, Ω m | 3–210 | 215–300 | 9 | 250 | 40 | [41] | |||||
9 | 78°29′ W | 0°00′ N | 2736 | a | a,b | a,b | b,c | c | a | b | a | ER, Ω m | 20–40 | 9 | 600–1000 | 322 | [42] | |||||
10 | 78°25′ W | 0°21′ S | 2690 | a | a | a,b,c | a,b,c | a | a | a,b | ER, Ω m | 17–28 | 215–345 | 9 | 600–1000 | 271 | [42] | |||||
11 | 78°30′ W | 0°06′ S | 2722 | a | a,b | a,b,c | a,b,c | a,b,c | b | b | a,b | ER, Ω m | 30–98 | 11 | 400–1000 | 200–500 | [43] | |||||
12 | 78°32′ W | 0°16′ S | 2849 | a | a,b | a,b,c | a,b,c | a | a | c | VS, m s–1 | 95–680 | 95–680 | 171 | 8600 | 40–55 | [44] | |||||
13 | 78°31′ W | 0°13′ S | 2826 | a | a,b | a,b,c | c | b | b | c | VS, m s–1 | 135–1050 | 135–1050 | 15 | 3200 | 120 | [44] | |||||
14 | 78°29′ W | 0°12′ S | 2777 | a | a,b | a,b,c | a,b,c | a | b | c | VS, m s–1 | 125–710 | 125–710 | 171 | 10,330 | 40–55 | [44] | |||||
15 | 78°11′ W | 0°25′ S | 4184 | b | a,b | c | c | a | b | b | b | d | ER, Ω m | 30–215 | 230–3190 | 130 | 15,000 | 4000 | [45] | |||
16 | 78°22′ W | 0°02′ S | 2145 | a | a | a,b,c | a | a | b | a | ER, Ω m | 50–170 | 218–457 | 23 | 600–1000 | 230 | [46] | |||||
17 | 78°18′ W | 0°18′ S | 3260 | a | a | a,b | c | c | a | b | b | a | ER, Ω m | 28–56 | 3 | 600–800 | 180 | [47] | ||||
18 | 78°33′ W | 0°29′ S | 2835 | a | a,b | a,b,c | a | a,b,c | a | b | b | b | ER, Ω m | 45–150 | 255–400 | 16 | 1000 | 200 | [48] | |||
19 | 78°29′ W | 0°06′ S | 2693 | b | a,b | a,b | a,b | a | a | a,b | ER, Ω m | 40–100 | 220–320 | 3 | 715 | 60 | [49] | |||||
20 | 78°22′ W | 0°12′ S | 2280 | b | a | a,b,c | a | a | c | ER, Ω m | 20–150 | 3 | 110 | 25 | [50] | |||||||
21 | 78°22′ W | 0°12′ S | 2400 | a | a | a,b,c | a | a | c | VS, m s–1 | 720–945 | 7 | 120 | 60 | [50] | |||||||
22 | 78°25′ W | 0°35′ S | 3743 | a | a,b,c | c | a | b | a | a | ER, Ω m | 56–203 | 225–850 | 20 | 1000 | 150 | [51] | |||||
23 | 78°30′ W | 0°12′ S | 2800 | b | a | a,b,c | b,c | c | a | a | b | b | a | ER, Ω m | 22–230 | 235–27,100 | 3 | 17,000 | 1500 | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñafiel, L.; Alcalá, F.J.; Senent-Aparicio, J. Usefulness of Compiled Geophysical Prospecting Surveys in Groundwater Research in the Metropolitan District of Quito in Northern Ecuador. Appl. Sci. 2021, 11, 11144. https://doi.org/10.3390/app112311144
Peñafiel L, Alcalá FJ, Senent-Aparicio J. Usefulness of Compiled Geophysical Prospecting Surveys in Groundwater Research in the Metropolitan District of Quito in Northern Ecuador. Applied Sciences. 2021; 11(23):11144. https://doi.org/10.3390/app112311144
Chicago/Turabian StylePeñafiel, Lilia, Francisco Javier Alcalá, and Javier Senent-Aparicio. 2021. "Usefulness of Compiled Geophysical Prospecting Surveys in Groundwater Research in the Metropolitan District of Quito in Northern Ecuador" Applied Sciences 11, no. 23: 11144. https://doi.org/10.3390/app112311144
APA StylePeñafiel, L., Alcalá, F. J., & Senent-Aparicio, J. (2021). Usefulness of Compiled Geophysical Prospecting Surveys in Groundwater Research in the Metropolitan District of Quito in Northern Ecuador. Applied Sciences, 11(23), 11144. https://doi.org/10.3390/app112311144