Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (453)

Search Parameters:
Keywords = near surface air temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2122 KiB  
Article
Climate Change of Near-Surface Temperature in South Africa Based on Weather Station Data, ERA5 Reanalysis, and CMIP6 Models
by Ilya Serykh, Svetlana Krasheninnikova, Tatiana Gorbunova, Roman Gorbunov, Joseph Akpan, Oluyomi Ajayi, Maliga Reddy, Paul Musonge, Felix Mora-Camino and Oludolapo Akanni Olanrewaju
Climate 2025, 13(8), 161; https://doi.org/10.3390/cli13080161 - 1 Aug 2025
Viewed by 249
Abstract
This study investigates changes in Near-Surface Air Temperature (NSAT) over the South African region using weather station data, reanalysis products, and Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. It is shown that, based on ERA5 reanalysis, the average NSAT increase in [...] Read more.
This study investigates changes in Near-Surface Air Temperature (NSAT) over the South African region using weather station data, reanalysis products, and Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. It is shown that, based on ERA5 reanalysis, the average NSAT increase in the region (45–10° S, 0–50° E) for the period 1940–2023 was 0.11 ± 0.04 °C. Weak multi-decadal changes in NSAT were observed from 1940 to the mid-1970s, followed by a rapid warming trend starting in the mid-1970s. Weather station data generally confirm these results, although they exhibit considerable inter-station variability. An ensemble of 33 CMIP6 models also reproduces these multi-decadal NSAT change characteristics. Specifically, the average model-simulated NSAT values for the region increased by 0.63 ± 0.12 °C between the periods 1940–1969 and 1994–2023. Based on the results of the comparison between weather station observations, reanalysis, and models, we utilize projections of NSAT changes from the analyzed ensemble of 33 CMIP6 models until the end of the 21st century under various Shared Socioeconomic Pathway (SSP) scenarios. These projections indicate that the average NSAT of the South African region will increase between 1994–2023 and 2070–2099 by 0.92 ± 0.36 °C under the SSP1-2.6 scenario, by 1.73 ± 0.44 °C under SSP2-4.5, by 2.52 ± 0.50 °C under SSP3-7.0, and by 3.17 ± 0.68 °C under SSP5-8.5. Between 1994–2023 and 2025–2054, the increase in average NSAT for the studied region, considering inter-model spread, will be 0.49–1.15 °C, depending on the SSP scenario. Furthermore, climate warming in South Africa, both in the next 30 years and by the end of the 21st century, is projected to occur according to all 33 CMIP6 models under all considered SSP scenarios. The main spatial feature of this warming is a more significant increase in NSAT over the landmass of the studied region compared to its surrounding waters, due to the stabilizing role of the ocean. Full article
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 236
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

32 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Viewed by 247
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

14 pages, 3236 KiB  
Article
Climate Change for Lakes in the Coterminous United States in Relation to Lake Warming from 1981 to 2023
by Roger W. Bachmann
Water 2025, 17(14), 2138; https://doi.org/10.3390/w17142138 - 18 Jul 2025
Viewed by 264
Abstract
The goal of this study was to look at changes in mean air temperatures, minimum air temperatures, maximum air temperatures, dew points, and precipitation over each of 1033 lakes in the coterminous United States over the summer months in the years 1981–2024. Near-surface [...] Read more.
The goal of this study was to look at changes in mean air temperatures, minimum air temperatures, maximum air temperatures, dew points, and precipitation over each of 1033 lakes in the coterminous United States over the summer months in the years 1981–2024. Near-surface water temperatures in the same lakes were calculated with equations using 8-day mean daily air temperatures, latitude, elevation, and the year of sampling. Over the past 43 years, there have been changes in air temperatures over many lakes of the United States with generally increasing trends for minimum air temperatures and mean air temperatures during the months of June through September. The greatest increases have been in daily minimum air temperatures followed by the mean daily air temperatures. Maximum daily air temperatures did not show a statistically significant increase for the summer season but did show a significant increase for the month of September. Along with the changes in the climate, the near-surface water temperatures of the lakes of the United States on average showed increases of 0.33 °C decade−1 for the four summer months and increases for each of the summer months. Full article
Show Figures

Figure 1

19 pages, 4349 KiB  
Article
Assessment of Glacier Transformation in China over the Past 40 Years Using a China-Specific Glacier Classification System
by Tianya Li, Yuzhe Wang, Baojuan Huai, Hongmin An, Lei Wang and Weijun Sun
Remote Sens. 2025, 17(13), 2289; https://doi.org/10.3390/rs17132289 - 3 Jul 2025
Viewed by 345
Abstract
Glacier classification offers a structured framework for assessing glacier characteristics and understanding their responses to climate change. In this study, we apply the Shi–Xie glacier classification system, proposed by Chinese glaciologists Shi and Xie, to evaluate the transformation of extremely continental, subcontinental, and [...] Read more.
Glacier classification offers a structured framework for assessing glacier characteristics and understanding their responses to climate change. In this study, we apply the Shi–Xie glacier classification system, proposed by Chinese glaciologists Shi and Xie, to evaluate the transformation of extremely continental, subcontinental, and maritime glaciers across China over the past four decades. Our results show a widespread rise in equilibrium line altitudes (ELAs), alongside complex changes in climatic and glaciological parameters. Notably, despite ongoing warming trends, nearly half of the glaciers experienced cooling at the ELA, and over two-thirds showed a decline in summer mean temperatures. This apparent contradiction is explained by elevation-induced cooling; as ELAs rise to higher altitudes, the corresponding summer air temperatures decline due to the lapse rate effect. Near-surface ice temperatures (20 m depth) were strongly consistent with changes in annual air temperature. Precipitation trends were spatially heterogeneous, yet around 70% of glaciers experienced stable or slightly increasing annual precipitation. In contrast, maritime glaciers, particularly those in the southeastern glacierized regions, exhibited marked decreases. Glacier surface velocities generally declined, with 90% of glaciers flowing at speeds below 50 m a−1. Threshold-based analysis reveals that glaciers in transitional zones frequently exhibit multi-indicator deviations. Extremely continental glaciers near classification boundaries showed a shift toward warmer, wetter subcontinental conditions, while maritime glaciers tended toward drier, colder subcontinental characteristics. These findings offer new insights into the differentiated responses and ongoing transformation of glacier types in China under climate change. Full article
(This article belongs to the Special Issue ERA5 Climate Application in Cold and Arid Regions)
Show Figures

Graphical abstract

18 pages, 1861 KiB  
Article
Nonparametric and Innovative Hydroclimatic Trend Detection over the South African Sugar Belt
by Thulebona W. Mbhamali and Hector Chikoore
Water 2025, 17(13), 1983; https://doi.org/10.3390/w17131983 - 1 Jul 2025
Viewed by 311
Abstract
Detection and analysis of hydroclimatic trends are crucial for quantifying climate change, global warming, and their potential impacts. This study investigates hydroclimatic trends over the South African Sugar Belt (SASB) under a changing climate using nonparametric and innovative trend detection techniques for the [...] Read more.
Detection and analysis of hydroclimatic trends are crucial for quantifying climate change, global warming, and their potential impacts. This study investigates hydroclimatic trends over the South African Sugar Belt (SASB) under a changing climate using nonparametric and innovative trend detection techniques for the periods 1980–2022, 2025–2050, and 2050–2080. Statistical tests, including the original and modified Mann–Kendall test, sequential Mann–Kendall test, and Innovative Trend Analysis were performed to detect trends and changes in hydroclimatic variables over the SASB’s dryland and irrigated regions. An 18-month low-pass filter was applied to 19 GCMs of the CMIP6, which were downscaled to a local setting. The results indicate contrasting rainfall trends: a positive trend in the dryland region and a negative trend in the irrigated region from 1980 to 2022. Under low- (SSP2–4.5) and high-emission (SSP5–8.5) scenarios, both regions exhibited a significant drying trend from 1980 to 2080, with the irrigated region drying and warming faster than the dryland region. Mann–Kendall tests and Innovative Trend Analysis revealed robust positive trends in surface air temperatures across the SASB, with even stronger trends projected for the future, potentially promoting water loss in the area. Compound dry–hot events were also projected to cause significant socioeconomic impacts in the near and distant future. Future studies can explore nonparametric and monotonic trend detection and analysis for water quality parameters in the SASB under a changing climate. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

22 pages, 20556 KiB  
Article
Preliminary Study on Near-Surface Air Temperature Lapse Rate Estimation and Its Spatiotemporal Distribution Characteristics in Beijing–Tianjin–Hebei Mountainous Region
by Qichen Lv, Mingming Sui, Shanyou Zhu, Guixin Zhang and Yuxin Li
Remote Sens. 2025, 17(13), 2205; https://doi.org/10.3390/rs17132205 - 26 Jun 2025
Viewed by 287
Abstract
The near-surface air temperature lapse rate (SATLR) is a crucial parameter in climate, hydrology, and ecology research conducted in mountainous regions. However, existing research has difficulty characterizing its dynamic changes on an hourly scale. Obtaining data with high spatiotemporal resolution in complex terrains [...] Read more.
The near-surface air temperature lapse rate (SATLR) is a crucial parameter in climate, hydrology, and ecology research conducted in mountainous regions. However, existing research has difficulty characterizing its dynamic changes on an hourly scale. Obtaining data with high spatiotemporal resolution in complex terrains using existing methods poses challenges. This study introduces a hierarchical method for estimating SATLR at high spatiotemporal resolutions based on Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) land surface temperature (LST) data and machine learning techniques. Based on reconstructed FY-4A AGRI LST data, this study downscales the 4 km resolution data to a 1 km resolution using machine learning. It then estimates the spatial distribution of near-surface air temperature (SAT) and normalized near-surface air temperature (nSAT) by integrating station observations. Subsequently, high spatiotemporal resolution SATLRs are estimated, and their spatial and temporal distribution characteristics in the Beijing–Tianjin–Hebei mountainous region are analyzed. The results indicate that the SATLR exhibits a predominant distribution of 2~6 °C/km annually across the study area. However, in specific regions such as Taihang Mountains in the southwest, Damajun Mountain in the northwest, and certain areas of central Beijing City, the SATLR exceeds 6 °C/km in depth. Conversely, in Chengde City in the northeast and Huapiling in Damajun Mountain in the northwest, the SATLR is shallower than 2 °C/km. Seasonally, the average SATLR displays significant variation, with 3~5 °C/km being prevalent in spring, summer, and autumn, and 2~4 °C/km in winter. Moreover, the diurnal SATLR patterns from the second to fifth altitude grades exhibit consistency throughout the year and across seasons, albeit with varying overall values at different altitudes. Notably, the SATLR of the first altitude grade demonstrates stability within a day at lower elevations. Full article
Show Figures

Figure 1

22 pages, 2278 KiB  
Article
Quantifying the Impact of Climate Change on Household Water Use in Mega Cities: A Case Study of Beijing, China
by Yubo Zhang, Yongnan Zhu, Haihong Li, Lichuan Wang, Longlong Zhang, Haokai Ding and Hao Wang
Sustainability 2025, 17(12), 5628; https://doi.org/10.3390/su17125628 - 18 Jun 2025
Viewed by 434
Abstract
Amid rapid urbanization and climate change, global urban water consumption, particularly household water use, has continuously increased in recent years. However, the impact of climate change on individual and household water use behavior remains insufficiently understood. In this study, we conducted tracking surveys [...] Read more.
Amid rapid urbanization and climate change, global urban water consumption, particularly household water use, has continuously increased in recent years. However, the impact of climate change on individual and household water use behavior remains insufficiently understood. In this study, we conducted tracking surveys in Beijing, China, to determine the correlation between climatic factors (e.g., temperature, precipitation, and wind) and household water use behaviors and consumption patterns. Furthermore, we proposed a genetic programming-based algorithm to identify and quantify key meteorological factors influencing household and personal water use. The results demonstrated that water use is mainly affected by temperature, particularly the daily maximum (TASMAX) and minimum (TASMIN) near-surface air temperature. In addition, showering and personal cleaning account for the largest proportion of water use and are most affected by meteorological factors. For every 10 °C increase in TASMAX, showering water use nonlinearly increases by 3.46 L/d/person and total water use nonmonotonically increases by 1.14 L/d/person. When TASMIN varies between −10 °C and 0 °C, a significant change in personal cleaning water use is observed. We further employed shared socioeconomic pathway scenarios of the Coupled Model Intercomparison Project 6 to forecast household water use. The results showed that residential water use in Beijing will increase by 21–33% by 2035 compared with 2020. This study offers a groundbreaking perspective and transferable methodology for understanding the effects of climate change on household water use behavior, providing empirical foundations for developing sustainable water resource management strategies. Full article
(This article belongs to the Special Issue Hydrosystems Engineering and Water Resource Management)
Show Figures

Figure 1

14 pages, 1095 KiB  
Article
Experimental Investigation of Temperature Polarization near Membrane Surface During Air Gap Membrane Distillation Processes
by Lianqi Jing, Jiaqi Sun, Yaoling Zhang, Jiaming Chen and Fei Guo
Membranes 2025, 15(6), 185; https://doi.org/10.3390/membranes15060185 - 18 Jun 2025
Viewed by 771
Abstract
Temperature polarization is a critical factor influencing the performance of membrane distillation. The presence of temperature polarization causes the temperature of the fluid near the membrane surface to be different from that in the bulk region, reducing the effective temperature difference across the [...] Read more.
Temperature polarization is a critical factor influencing the performance of membrane distillation. The presence of temperature polarization causes the temperature of the fluid near the membrane surface to be different from that in the bulk region, reducing the effective temperature difference across the membrane and thus diminishing the transmembrane mass transfer driving force. This study investigates the monitoring of temperature polarization and its effects on the transmembrane mass transfer performance in a typical air gap membrane distillation system. A set of thermocouples within a feed module were employed to monitor and capture the development of the temperature polarization profile. The test results reveal that temperature polarization reduces the effective temperature difference across the membrane, leading to a certain difference between the theoretical estimation and experimental values of the mass transfer coefficient across the porous membrane. To address this issue, the temperature polarization factor was further analyzed as a metric to quantify the impact of temperature polarization on the transmembrane flux in membrane distillation, with a detailed discussion of its range and implications. Full article
(This article belongs to the Special Issue Near-Membrane-Surface Effects During Membrane Distillation)
Show Figures

Figure 1

15 pages, 6161 KiB  
Article
Machine Learning Indicates Stronger Future Thunderstorm Downbursts Affecting Southeast Australian Airports
by Milton Speer, Lance Leslie and Shuang Wang
Climate 2025, 13(6), 127; https://doi.org/10.3390/cli13060127 - 15 Jun 2025
Viewed by 741
Abstract
Thunderstorms downbursts can be hazardous during aircraft landing and take-off. A warming climate increases low- to mid-level troposphere water vapor, typically transported from high sea-surface temperature regions. Consequently, the future occurrence and intensity of destructive wind gusts from wet microburst thunderstorms are expected [...] Read more.
Thunderstorms downbursts can be hazardous during aircraft landing and take-off. A warming climate increases low- to mid-level troposphere water vapor, typically transported from high sea-surface temperature regions. Consequently, the future occurrence and intensity of destructive wind gusts from wet microburst thunderstorms are expected to increase. Wet microbursts are downdrafts from heavily precipitating thunderstorms and are several kilometers in diameter, often producing near-surface extreme wind gusts. Brisbane airport recorded a wet microburst wind gust of 157 km/h in November 2016. Numerous locations in eastern Australia experience warm season (October to March) wet microbursts. Here, eight machine learning techniques comprising forward and backward linear regression, radial basis forward and backward support vector regression, polynomial-based forward and backward support vector regression, and forward and backward random forest selection were employed. They identified primary attributes for increased atmospheric instability by warm moist air influx from regions of high sea-surface temperatures. The climate drivers detected here are indicative of increased future eastern Australian warm season thunderstorm downbursts, occurring as wet microbursts. They suggest a greater frequency and intensity of impacts on aircraft safety and operations affecting major east coast airports, such as Sydney and Brisbane, and smaller aircraft at inland regional airports in southeastern Australia. Full article
(This article belongs to the Special Issue Extreme Weather Detection, Attribution and Adaptation Design)
Show Figures

Figure 1

22 pages, 6517 KiB  
Article
Study on the Impact of Cooling Air Parameter Changes on the Thermal Fatigue Life of Film Cooling Turbine Blades
by Huayang Sun, Xinlong Yang, Yingtao Chen, Yanting Ai and Wanlin Zhang
Aerospace 2025, 12(6), 512; https://doi.org/10.3390/aerospace12060512 - 6 Jun 2025
Viewed by 442
Abstract
Film cooling has been increasingly applied in turbine blade cooling design due to its excellent cooling performance. Although film-cooled blades demonstrate superior cooling effectiveness, the perforation design on blade surfaces compromises structural integrity, making fatigue failure prone to occur at cooling holes. Previous [...] Read more.
Film cooling has been increasingly applied in turbine blade cooling design due to its excellent cooling performance. Although film-cooled blades demonstrate superior cooling effectiveness, the perforation design on blade surfaces compromises structural integrity, making fatigue failure prone to occur at cooling holes. Previous studies by domestic and international scholars have extensively investigated factors influencing film cooling effectiveness, including blowing ratio and hole geometry configurations. However, most research has overlooked the investigation of fatigue life in film-cooled blades. This paper systematically investigates blade fatigue life under various cooling air parameters by analyzing the relationships among cooling effectiveness, stress distribution, and fatigue life. Results indicate that maximum stress concentrations occur at cooling hole locations and near the blade root at trailing edge regions. While cooling holes effectively reduce blade surface temperature, they simultaneously create stress concentration zones around the apertures. Both excessive and insufficient cooling air pressure and temperature reduce thermal fatigue life, with optimal parameters identified as 600 K cooling temperature and 0.75 MPa pressure, achieving a maximum thermal fatigue life of 3400 cycles for this blade configuration. A thermal shock test platform was established to conduct fatigue experiments under selected cooling conditions. Initial fatigue damage traces emerged at cooling holes after 1000 cycles, with progressive damage expansion observed. By 3000 cycles, cooling holes near blade tip regions exhibited the most severe failure, demonstrating near-complete functional degradation. These findings provide critical references for cooling parameter selection in practical aeroengine applications of film-cooled blades. Full article
Show Figures

Figure 1

19 pages, 3892 KiB  
Article
Impact of Fengyun-4A Atmospheric Motion Vector Data Assimilation on PM2.5 Simulation
by Kaiqiang Gu, Jinyan Wang, Shixiang Su, Jiangtao Zhu, Yu Zhang, Feifan Bian and Yi Yang
Remote Sens. 2025, 17(11), 1952; https://doi.org/10.3390/rs17111952 - 5 Jun 2025
Viewed by 373
Abstract
PM2.5 pollution poses significant risks to human health and the environment, underscoring the importance of accurate PM2.5 simulation. This study simulated a representative PM2.5 pollution event using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), incorporating the assimilation [...] Read more.
PM2.5 pollution poses significant risks to human health and the environment, underscoring the importance of accurate PM2.5 simulation. This study simulated a representative PM2.5 pollution event using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), incorporating the assimilation of infrared atmospheric motion vector (AMV) data from the Fengyun-4A (FY-4A) satellite. A comprehensive analysis was conducted to examine the meteorological characteristics of the event and their influence on PM2.5 concentration simulations. The results demonstrate that the assimilation of FY-4A infrared AMV data significantly enhanced the simulation performance of meteorological variables, particularly improving the wind field and capturing local and small-scale wind variations. Moreover, PM2.5 concentrations simulated with AMV assimilation showed improved spatial and temporal agreement with ground-based observations, reducing the root mean square error (RMSE) by 8.2% and the mean bias (MB) by 15.2 µg/m3 relative to the control (CTL) experiment. In addition to regional improvements, the assimilation notably enhanced PM2.5 simulation accuracy in severely polluted cities, such as Tangshan and Tianjin. Mechanistic analysis revealed that low wind speeds and weak atmospheric divergence restricted pollutant dispersion, resulting in higher near-surface concentrations. This was exacerbated by cooler nighttime temperatures and a lower planetary boundary layer height (PBLH). These findings underscore the utility of assimilating satellite-derived wind products to enhance regional air quality modeling and forecasting accuracy. This study highlights the potential of FY-4A infrared AMV data in improving regional pollution simulations, offering scientific support for the application of next-generation Chinese geostationary satellite data in numerical air quality forecasting. Full article
Show Figures

Graphical abstract

41 pages, 3917 KiB  
Article
Dust Aerosol Radiative Effects During a Dust Event and Heatwave in Summer 2019 Simulated with a Regional Climate Atmospheric Model over the Iberian Peninsula
by Cristina Gil-Díaz, Michäel Sicard, Pierre Nabat, Marc Mallet, Constantino Muñoz-Porcar, Adolfo Comerón, Alejandro Rodríguez-Gómez and Daniel Camilo Fortunato dos Santos Oliveira
Remote Sens. 2025, 17(11), 1817; https://doi.org/10.3390/rs17111817 - 22 May 2025
Viewed by 460
Abstract
Mineral dust particles significantly influence the Earth’s climate through direct and semi-direct radiative effects. This study investigates these effects and their meteorological impacts during a dust intrusion and heatwave over the Iberian Peninsula in summer 2019 using a regional climate model. Three simulations [...] Read more.
Mineral dust particles significantly influence the Earth’s climate through direct and semi-direct radiative effects. This study investigates these effects and their meteorological impacts during a dust intrusion and heatwave over the Iberian Peninsula in summer 2019 using a regional climate model. Three simulations with different spectral nudging configurations are evaluated. During the central period, the mean direct and semi-direct radiative effects in the shortwave spectrum at the top of the atmosphere (bottom of the atmosphere) are −0.4 ± 0.4 (−3.9 ± 2.3) Wm−2 and +0.1 ± 1.7 (−0.1 ± 1.9) Wm−2, respectively. In the longwave spectrum, these effects are +0.1 ± 0.1 (+0.3 ± 0.1) WmWm−2 and 0.0 ± 0.6 (+0.9 ± 1.1) Wm−2, respectively. The semi-direct effect mitigates 18.8% of the dust-induced warming in the full atmosphere and alters meteorological variables. The liquid water path decreases by −0.2 ± 4.5 mg m−2, the cloud fraction in the upper (lower) troposphere reduces (increases) by −0.2 ± 1.2 (+0.1 ± 1.3) %, and the near-surface air temperature drops slightly by −0.2 ± 0.2 °C. The results highlight substantial spatial variability and underscore the importance of considering semi-direct radiative effects in radiative analysis. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

42 pages, 15664 KiB  
Article
Multimethodological Approach for the Evaluation of Tropospheric Ozone’s Regional Photochemical Pollution at the WMO/GAW Station of Lamezia Terme, Italy
by Francesco D’Amico, Giorgia De Benedetto, Luana Malacaria, Salvatore Sinopoli, Arijit Dutta, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato, Mariafrancesca De Pino and Claudia Roberta Calidonna
AppliedChem 2025, 5(2), 10; https://doi.org/10.3390/appliedchem5020010 - 20 May 2025
Viewed by 2211
Abstract
The photochemical production of tropospheric ozone (O3) is very closely linked to seasonal cycles and peaks in solar radiation occurring during warm seasons. In the Mediterranean Basin, which is a hotspot for climate and air mass transport mechanisms, boreal warm seasons [...] Read more.
The photochemical production of tropospheric ozone (O3) is very closely linked to seasonal cycles and peaks in solar radiation occurring during warm seasons. In the Mediterranean Basin, which is a hotspot for climate and air mass transport mechanisms, boreal warm seasons cause a notable increase in tropospheric O3, which unlike stratospheric O3 is not beneficial for the environment. At the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) station located in Calabria, Southern Italy, peaks of tropospheric O3 were observed during boreal summer and spring seasons, and were consequently linked to specific wind patterns compatible with increased photochemical activity in the Tyrrhenian Sea. The finding resulted in the introduction of a correction factor for O3 in the O3/NOx (ozone to nitrogen oxides) ratio “Proximity” methodology for the assessment of air mass aging. However, some of the mechanisms driving O3 patterns and their correlation with other parameters at the LMT site remain unknown, despite the environmental and health hazards posed by tropospheric O3 in the area. In general, the issue of ozone photochemical pollution in the region of Calabria, Italy, is understudied. In this study, the behavior of O3 at the site is assessed with remarkable detail using nine years (2015–2023) of data and correlations with surface temperature and solar radiation. The evaluations demonstrate non-negligible correlations between environmental factors, such as temperature and solar radiation, and O3 concentrations, driven by peculiar patterns in local wind circulation. The northeastern sector of LMT, partly neglected in previous works, yielded higher statistical correlations with O3 than expected. The findings of this study also indicate, for central Calabria, the possibility of heterogeneities in O3 exposure due to local geomorphology and wind patterns. A case study of very high O3 concentrations reported during the 2015 summer season is also reported by analyzing the tendencies observed during the period with additional methodologies and highlighting drivers of photochemical pollution on larger scales, also demonstrating that near-surface concentrations result from specific combinations of multiple factors. Full article
Show Figures

Figure 1

19 pages, 8575 KiB  
Article
Comprehensive Validation of MODIS-Derived Instantaneous Air Temperature and Daily Minimum Temperature at Nighttime
by Wenjie Zhang, Jiarui Zhao, Wenbin Zhu, Yunbo Kong, Bingcheng Wan and Yilan Liao
Remote Sens. 2025, 17(10), 1732; https://doi.org/10.3390/rs17101732 - 15 May 2025
Viewed by 416
Abstract
Nighttime near-surface air temperature is a critical input for ecological, hydrological, and meteorological models and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived instantaneous nighttime near-surface air temperature (Ta) and daily minimum temperatures (Tmin) can provide spatially continuous monitoring. The MOD07 [...] Read more.
Nighttime near-surface air temperature is a critical input for ecological, hydrological, and meteorological models and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived instantaneous nighttime near-surface air temperature (Ta) and daily minimum temperatures (Tmin) can provide spatially continuous monitoring. The MOD07 Level-2 and MYD07 Level-2 atmospheric profile product provides air temperature at various altitude levels, facilitating a more direct estimation of Ta and Tmin. However, previous validations mainly focused on daytime, with a lack of validation for nighttime. Therefore, this study comprehensively evaluated the MOD07 Level-2 and MYD07 Level-2 derived Ta by 2168 hourly meteorological measurements over 5000 m altitude spanning in China. Furthermore, a detailed evaluation of their capability to estimate Tmin was also compared with MOD11 Level-2 and MYD11 Level-2 land surface temperature. Our results show that the highest available pressure method (HAP) estimated that, in instantaneous nighttime Ta, there was severe underestimation especially in high-altitude areas for both MOD07 (r = 0.95, Bias = −0.27 °C, and RMSE = 4.53 °C) and MYD07 data (r = 0.96, Bias = −0.17 °C, and RMSE = 3.73 °C). The adiabatic lapse rate (ALR) correction effectively reduced these errors, achieving optimal accuracy with MYD07 data (r = 0.97, Bias = −0.05 °C, and RMSE = 3.29 °C). However, the underestimation by the HAP method was still insufficient compared to Tmin estimation by land surface temperature (LST). The LST method offers improved accuracy (r = 0.98, Bias = −0.16 °C, RMSE = 2.89 °C). In general, MYD-based estimations consistently outperformed MOD-based estimations. However, seasonal and elevational variability was observed in all methods, with errors increasing notably in mountainous areas (RMSE rapidly increases to 5 °C and above when the altitude exceeds 2000 m). These findings can provide practical guidance for selecting appropriate inversion methods according to terrain and season and support the development of more accurate air temperature products for a range of climate- and environmental-related applications. Full article
Show Figures

Figure 1

Back to TopTop