Quantifying the Impact of Climate Change on Household Water Use in Mega Cities: A Case Study of Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Data
2.2.1. Social Survey and Questionnaire Design
2.2.2. Water Use Accounting Method
2.2.3. CanESM5 Model and Weather Station Data in Household Water Use Prediction
2.3. Data Analysis and Processing
3. Results
3.1. Household Water Use Under Varying Climatic Conditions
3.2. Correlation Analysis of Meteorological Factors and Water Use Behavior
3.3. Impact of Meteorological Factors on Household Water Use
3.4. Future Trends in Household Water Use Under CMIP6 Scenarios
4. Discussion
4.1. Influence of Meteorological Factors on Personal Water Use Trends
4.2. Uncertainties in the Research
4.3. Policy Impact and Suggestions for Water Supply Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
loT | Internet of Things |
TAS | Near-surface air temperature |
TASMAX | Maximum near-surface air temperature |
TASMIN | Minimum near-surface air temperature |
GT | Ground temperature |
HURS | Relative humidity |
P | Surface pressure |
WIND | Surface wind speed |
UAS | Eastward near-surface wind |
VAS | Northward near-surface wind |
EVS | Surface evaporation |
PR | Precipitation |
References
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water Futures and Solution-Fast Track Initiative; IIASA: Laxenburg, Austria, 2016. [Google Scholar]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Meehan, K.; Jurjevich, J.R.; Everitt, L.; Chun, N.M.J.W.; Sherrill, J. Urban inequality, the housing crisis and deteriorating water access in US cities. Nat. Cities 2025, 2, 93–103. [Google Scholar] [CrossRef]
- Duerr, I.; Merrill, H.R.; Wang, C.; Bai, R.; Boyer, M.; Dukes, M.D.; Bliznyuk, N. Forecasting urban household water demand with statistical and machine learning methods using large space-time data: A Comparative study. Environ. Modell. Softw. 2018, 102, 29–38. [Google Scholar] [CrossRef]
- Qin, P.; Chen, S.; Tan-Soo, J.; Zhang, X. Urban household water usage in adaptation to climate change: Evidence from China. Environ. Sci. Policy 2022, 136, 486–496. [Google Scholar] [CrossRef]
- Pozzer, A.; Steffens, B.; Proestos, Y.; Sciare, J.; Akritidis, D.; Chowdhury, S.; Burkart, K.; Bacer, S. Atmospheric health burden across the century and the accelerating impact of temperature compared to pollution. Nat. Commun. 2024, 15, 9379. [Google Scholar] [CrossRef]
- Ito, Y.; Kobayashi, Y.; Yokomichi, H.; Malla, S.S.; Kiem, A.S.; Nishida, K. Physical and non-physical factors associated with water consumption at the household level in a region using multiple water sources. Hydrol. Reg. Stud. 2021, 37, 100928. [Google Scholar] [CrossRef]
- Nicolaidis Lindqvist, A.; Fornell, R.; Prade, T.; Khalil, S.; Tufvesson, L.; Kopainsky, B. Impacts of future climate on local water supply and demand—A socio-hydrological case study in the Nordic region. Hydrol. Reg. Stud. 2022, 41, 101066. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Ward, M.B.; To, H.; Kompas, T. Determinants of residential water consumption: Evidence and analysis from a 10-country household survey. Water Resour. Res. 2011, 47, W08537. [Google Scholar] [CrossRef]
- Schleich, J.; Hillenbrand, T. Determinants of residential water demand in Germany. Ecol. Econ. 2009, 68, 1756–1769. [Google Scholar] [CrossRef]
- Graymore, M.L.M.; And Wallis, A.M. Water savings or water efficiency? Water-use attitudes and behaviour in rural and regional areas. Int. J. Sustain. Dev. World Ecol. 2010, 17, 84–93. [Google Scholar] [CrossRef]
- Stoker, P.; Rothfeder, R. Drivers of urban water use. Sustain. Cities Soc. 2014, 12, 1–8. [Google Scholar] [CrossRef]
- Campbell, H.E.; Johnson, R.M.; Larson, E.H. Prices, Devices, People, or Rules: The Relative Effectiveness of Policy Instruments in Water Conservation. Rev. Policy Res. 2004, 21, 637–662. [Google Scholar] [CrossRef]
- Syme, G.J.; Shao, Q.; Po, M.; Campbell, E. Predicting and understanding home garden water use. Landsc. Urban Plan. 2004, 68, 121–128. [Google Scholar] [CrossRef]
- Gilg, A.; Barr, S.; Ford, N. Green consumption or sustainable lifestyles? Identifying the sustainable consumer. Futures 2005, 37, 481–504. [Google Scholar] [CrossRef]
- Corral-Verdugo, V.; Frias-Armenta, M.; Pérez-Urias, F.; Orduña-Cabrera, V.; Espinoza-Gallego, N. Residential Water Consumption, Motivation for Conserving Water and the Continuing Tragedy of the Commons. Environ. Manag. 2002, 30, 527–535. [Google Scholar] [CrossRef]
- Berk, R.A.; Cooley, T.F.; LaCivita, C.J.; Parker, S.; Sredl, K.; Brewer, M. Reducing consumption in periods of acute scarcity: The case of water. Soc. Sci. Res. 1980, 9, 99–120. [Google Scholar] [CrossRef]
- Yu, M.; Wang, C.; Liu, Y.; Olsson, G.; Bai, H. Water and related electrical energy use in urban households—Influence of individual attributes in Beijing, China. Resour. Conserv. Recycl. 2018, 130, 190–199. [Google Scholar] [CrossRef]
- Rasifaghihi, N.; Li, S.S.; Haghighat, F. Forecast of urban water consumption under the impact of climate change. Sustain. Cities Soc. 2020, 52, 101848. [Google Scholar] [CrossRef]
- Lee, D.; Derrible, S. Predicting Residential Water Demand with Machine-Based Statistical Learning. J. Water Resour. Plan. Manag. 2020, 146, 4019067. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Ortega-Martorell, S.; Kot, P.; Alkhaddar, R.M.; Abdellatif, M.; Gharghan, S.K.; Ahmed, M.S.; Hashim, K. A Method for Predicting Long-Term Municipal Water Demands Under Climate Change. Water Resour. Manag. 2020, 34, 1265–1279. [Google Scholar] [CrossRef]
- Mei, Y.; Chen, Q.; Lensen, A.; Xue, B.; Zhang, M. Explainable Artificial Intelligence by Genetic Programming: A Survey. IEEE Trans. Evol. Comput. 2022, 27, 621–641. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Yan, X. Applying Genetic Programming Approaches to Short-Term Water Demand Forecast for District Water System. In Proceedings of the 12th Annual Conference on Water Distribution Systems Analysis (WDSA), Tucson, AZ, USA, 12–15 September 2011; pp. 1498–1506. [Google Scholar]
- Hakimzadeh, H.; Nourani, V.; Amini, A.B. Genetic Programming Simulation of Dam Breach Hydrograph and Peak Outflow Discharge. J. Hydrol. Eng. 2014, 19, 757–768. [Google Scholar] [CrossRef]
- Heřmanovský, M.; Havlíček, V.; Hanel, M.; Pech, P. Regionalization of runoff models derived by genetic programming. J. Hydrol. 2017, 547, 544–556. [Google Scholar] [CrossRef]
- Slavíková, L.; Malý, V.; Rost, M.; Petružela, L.; Vojáček, O. Impacts of Climate Variables on Residential Water Consumption in the Czech Republic. Water Resour. Manag. 2013, 27, 365–379. [Google Scholar] [CrossRef]
- Esper, J.; Torbenson, M.; Büntgen, U. 2023 summer warmth unparalleled over the past 2,000 years. Nature 2024, 631, 94–97. [Google Scholar] [CrossRef]
- Mitchell, J.F.B.; Lowe, J.; Wood, R.A.; Vellinga, M. Extreme events due to human-induced climate change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2117–2133. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Fang, X.; Yin, Z.; Hu, R. Warming-induced hydrothermal anomaly over the Earth’s three Poles amplifies concurrent extremes in 2022. Npj Clim. Atmos. Sci. 2024, 7, 8. [Google Scholar] [CrossRef]
- Balling, R.C.; Gober, P. Climate Variability and Residential Water Use in the City of Phoenix, Arizona. J. Appl. Meteorol. Clim. 2007, 46, 1130–1137. [Google Scholar] [CrossRef]
- Aydamo, A.A.; Robele Gari, S.; Mereta, S.T. Seasonal Variations in Household Water Use, Microbiological Water Quality, and Challenges to the Provision of Adequate Drinking Water: A Case of Peri-Urban and Informal Settlements of Hosanna Town, Southern Ethiopia. Environ. Health Insights 2024, 18, 11786302241238940. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Memon, F.A.; Butler, D. Seasonal Variation of Rainy and Dry Season per Capita Water Consumption in Freetown City Sierra Leone. Water 2021, 13, 499. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef]
- Turner, V.K.; Middel, A.; Vanos, J.K. Shade Is an Essential Solution for Hotter Cities. Nature 2023, 619, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Otaki, Y.; Otaki, M.; Aramaki, T. Combined Methods for Quantifying End-Uses of Residential Indoor Water Consumption. Environ. Sci.-Proc. Imp. 2017, 4, 33–47. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Zou, C.; Wang, Y.; Lin, N. Water scarcity in Beijing and countermeasures to solve the problem at river basins scale. IOP Conf. Ser. Earth Environ. Sci. 2017, 94, 12132. [Google Scholar] [CrossRef]
- Wei, D. Beijing water resources and the south to north water diversion project. Can. J. Civil. Eng. 2005, 32, 159–163. [Google Scholar] [CrossRef]
- Doyle, J.K. Face-to-Face Surveys. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Song, Q.; Wang, Z.; Li, J. Exploring residents’ attitudes and willingness to pay for solid waste management in Macau. Environ. Sci. Pollut. Res. 2016, 23, 16456–16462. [Google Scholar] [CrossRef] [PubMed]
- Szolnoki, G.; Hoffmann, D. Online, face-to-face and telephone surveys—Comparing different sampling methods in wine consumer research. Wine Econ. Policy 2013, 2, 57–66. [Google Scholar] [CrossRef]
- Luo, N.; Guo, Y.; Chou, J.; Gao, Z. Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol. 2022, 42, 1148–1164. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model Version 5 (CanESM5. 0.3). Geosci. Model. Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Yu, B.; Huang, G.; Zhou, X.; Wang, S.; Li, Y.; Wu, Y.; Ren, J. A stepwise-clustered heat stress downscaling approach to analyze future variations of heat stress in East China. Theor. Appl. Climatol. 2025, 156, 112. [Google Scholar] [CrossRef]
- Sun, L.; Lan, Y.; Jiang, R. Using CNN framework to improve multi-GCM ensemble predictions of monthly precipitation at local areas: An application over China and comparison with other methods. J. Hydrol. 2023, 623, 129866. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; He, F.; Wang, Q.; Zhao, Y.; Lu, P.; Huang, Y.; Cui, H.; Deng, H.; Jia, X. Spatial–temporal variation of extreme precipitation in the Yellow–Huai–Hai–Yangtze Basin of China. Sci. Rep. 2023, 13, 9312. [Google Scholar] [CrossRef]
- Miao, C.; Su, L.; Sun, Q.; Duan, Q. A nonstationary bias-correction technique to remove bias in GCM simulations. J. Geophys. Res. Atmos. 2016, 121, 5718–5735. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Lee, D.; Park, N.; Jeong, W. End-use analysis of household water by metering: The case study in Korea. Water Environ. J. 2012, 26, 455–464. [Google Scholar] [CrossRef]
- Sivakumaran, S.; Aramaki, T. Estimation of Household Water End Use in Trincomalee, Sri Lanka. Water Int. 2010, 35, 94–99. [Google Scholar] [CrossRef]
- Eyring, V.; Collins, W.D.; Gentine, P.; Barnes, E.A.; Barreiro, M.; Beucler, T.; Bocquet, M.; Bretherton, C.S.; Christensen, H.M.; Dagon, K.; et al. Pushing the frontiers in climate modelling and analysis with machine learning. Nat. Clim. Change 2024, 14, 916–928. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; The MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Yang, Y.-C.E.; Cai, X.; Herricks, E.E. Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resour. Res. 2008, 44, W04412. [Google Scholar] [CrossRef]
- Abdul, S.; Sharma, R. Water Consumption Patterns in Domestic Households in Major Cities. Econ. Political Wkly. 2007, 42, 2190–2197. [Google Scholar]
- Zabihi, O.; Ahmadi, A.; Haghighi, A.T. A framework for assessing uncertainties in drought projections under climate change: Insights from CMIP6 models. Sci. Total Environ. 2025, 982, 179679. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Chen, J.; Jiang, C.; Xu, S.; He, F.; Wu, Z. Prediction of Solitary Wave Attenuation by Emergent Vegetation Using Genetic Programming and Artificial Neural Networks. Ocean Eng. 2021, 234, 109250. [Google Scholar] [CrossRef]
- Londhe, S.N.; Kulkarni, P.S.; Dixit, P.R.; Silva, A.; Neves, R.; Brito, J. de Predicting Carbonation Coefficient Using Artificial Neural Networks and Genetic Programming. J. Build. Eng. 2021, 39, 102258. [Google Scholar] [CrossRef]
- Shi, T.; Meng, L.; Deng, L.; Li, J. Explainable Models for Predicting Crab Weight Based on Genetic Programming. Ecol. Inform. 2025, 88, 103131. [Google Scholar] [CrossRef]
- Yu, B.; Zhao, H.; Tian, J.; Liu, C.; Song, Z.; Liu, Y.; Li, M. Modeling Study of Sandstone Permeability under True Triaxial Stress Based on Backpropagation Neural Network, Genetic Programming, and Multiple Regression Analysis. J. Nat. Gas. Sci. Eng. 2021, 86, 103742. [Google Scholar] [CrossRef]
- Kotseva-Tikova, M.; Dvorak, J. Climate Policy and Plans for Recovery in Bulgaria and Lithuania. Rom. J. Eur. Aff. 2022, 22, 79–99. [Google Scholar] [CrossRef]
- Xian, B.; Xu, Y.; Chen, W.; Wang, Y.; Qiu, L. Co-Benefits of Policies to Reduce Air Pollution and Carbon Emissions in China. Environ. Impact Assess. Rev. 2024, 104, 107301. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Bai, J.; Wu, J.; Chang, I.-S. Practice of the Integration of Climate Change Considerations into Environmental Impact Assessment for Policy in China. Environ. Impact Assess. Rev. 2025, 115, 108011. [Google Scholar] [CrossRef]
- Abrahamse, W.; Shwom, R. Domestic Energy Consumption and Climate Change Mitigation. WIREs Clim. Change 2018, 9, e525. [Google Scholar] [CrossRef]
- Kapanski, A.; Hruntovich, N.V.; Klyuev, R.V.; Brigida, V. Identification of Easily Accessible Urban Water Consumption Factors for Energy-Efficient Management of Pumping Stations. Water Conserv. Sci. Eng. 2025, 10, 46. [Google Scholar] [CrossRef]
- Stańczyk, J.; Ramm, K.; Licznar, P. Assessing the operating condition of a domestic distribution system based on the power spectra of high-frequency water consumption signals. Water Res. 2025, 278, 123320. [Google Scholar] [CrossRef] [PubMed]
Meteorological Factors | Frequency of Occurrence of Water Use Types | Comprehensive Occurrence Frequency (%) | |||||
---|---|---|---|---|---|---|---|
Personal Cleaning | Showering | Culinary Activities | Environmental Cleaning | Laundry | Flushing | ||
WIND | 100.00% | 100.00% | 100.00% | 0.00% | 100.00% | 0.00% | 66.67% |
TASMIN | 100.00% | 100.00% | 0.00% | 0.00% | 2.00% | 54.00% | 42.67% |
TAS | 100.00% | 86.00% | 2.00% | 0.00% | 4.00% | 44.00% | 39.33% |
PR | 70.00% | 46.00% | 0.00% | 0.00% | 12.00% | 92.00% | 36.67% |
HURS | 100.00% | 12.00% | 0.00% | 100.00% | 0.00% | 6.00% | 36.33% |
TASMAX | 2.00% | 34.00% | 4.00% | 0.00% | 2.00% | 92.00% | 22.33% |
GT | 14.00% | 2.00% | 0.00% | 0.00% | 2.00% | 2.00% | 3.33% |
Meteorological Factor | Variation Range | Change Trend Statistical Step Size | Changes in Daily Water Use Behavior Under Varying Meteorological Factors (L/Climate Factor Step Size) | ||||||
---|---|---|---|---|---|---|---|---|---|
Personal Cleaning | Showering | Culinary Activities | Environmental Cleaning | Laundry | Flushing | Total | |||
WIND | 0 to 5 m/s | +1 m/s | −0.19 (±0.06) | +0.08 (±0.01) | −0.05 (±0.01) | - | −0.07 (±0.01) | - | −0.23 (±0.09) |
TASMIN | −20 °C to 20 °C | +10 °C | −4.27 (±1.17) | +5.76 (±4.22) | - | - | −0.1 (±0.01) | +0.03 (±0.01) | +0.92 (±5.41) |
TAS | −10 °C to 30 °C | +10 °C | −2.95 (±4.38) | +3.46 (±5.85) | +0.68 (±0.27) | - | −0.07 (±0.01) | +0.02 (±0.01) | +1.14 (±10.52) |
PR | 0 to 40 mm/day | +10 mm/day | −1.19 (±0.67) | +0.65 (±0.15) | - | - | −0.07 (±0.01) | +0.01 (±0.01) | −0.6 (±0.84) |
HURS | 10% to 90% | +10% | +0.25 (±0.04) | +0.65 (±0.21) | - | −0.65 (±0.23) | - | - | +0.25 (±0.48) |
TASMAX | −10 °C to 40 °C | +10 °C | −0.77 (±2.26) | +1.32 (±5.49) | +0.27 (±0.25) | - | +0.05 (±0.01) | +0.33 (±0.41) | +1.2 (±8.42) |
GT | −20 °C to 40 °C | +10 °C | −0.01 (±0.01) | +0.03 (±0.03) | - | - | - | - | +0.02 (±0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, Y.; Li, H.; Wang, L.; Zhang, L.; Ding, H.; Wang, H. Quantifying the Impact of Climate Change on Household Water Use in Mega Cities: A Case Study of Beijing, China. Sustainability 2025, 17, 5628. https://doi.org/10.3390/su17125628
Zhang Y, Zhu Y, Li H, Wang L, Zhang L, Ding H, Wang H. Quantifying the Impact of Climate Change on Household Water Use in Mega Cities: A Case Study of Beijing, China. Sustainability. 2025; 17(12):5628. https://doi.org/10.3390/su17125628
Chicago/Turabian StyleZhang, Yubo, Yongnan Zhu, Haihong Li, Lichuan Wang, Longlong Zhang, Haokai Ding, and Hao Wang. 2025. "Quantifying the Impact of Climate Change on Household Water Use in Mega Cities: A Case Study of Beijing, China" Sustainability 17, no. 12: 5628. https://doi.org/10.3390/su17125628
APA StyleZhang, Y., Zhu, Y., Li, H., Wang, L., Zhang, L., Ding, H., & Wang, H. (2025). Quantifying the Impact of Climate Change on Household Water Use in Mega Cities: A Case Study of Beijing, China. Sustainability, 17(12), 5628. https://doi.org/10.3390/su17125628