Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,160)

Search Parameters:
Keywords = navigational maps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1314 KB  
Review
A Comprehensive Review of Improved A* Path Planning Algorithms and Their Hybrid Integrations
by Doan Thanh Xuan, Nguyen Thanh Hung and Vu Toan Thang
Automation 2025, 6(4), 52; https://doi.org/10.3390/automation6040052 - 7 Oct 2025
Abstract
The A* algorithm is a cornerstone in mobile robot navigation. However, the traditional A* suffers from key limitations such as poor path smoothness, lack of adaptability to dynamic environments, and high computational costs in large-scale maps. This review presents a comprehensive analysis of [...] Read more.
The A* algorithm is a cornerstone in mobile robot navigation. However, the traditional A* suffers from key limitations such as poor path smoothness, lack of adaptability to dynamic environments, and high computational costs in large-scale maps. This review presents a comprehensive analysis of 20 recent studies (2020–2025) on improved A* variants and their hybrid integrations with complementary algorithms. The improvements are categorized into two core strategies: (i) geometric and structural optimization, heuristic weighting and adaptive search schemes in A* algorithm, and (ii) hybrid models combining A* with local planners such as Dynamic Window Approach (DWA), Artificial Potential Field (APF), and Particle Swarm Optimization (PSO). For each group, the mathematical formulations of evaluation functions, smoothing techniques, and constraint handling mechanisms are detailed. Notably, hybrid frameworks demonstrate improved robustness in dynamic or partially known environments by leveraging A* for global optimality and local planners for real-time adaptability. Case studies with simulated grid maps and benchmark scenarios show that even marginal improvements in path length can coincide with substantial gains in safety and directional stability. This review not only synthesizes the state of the art in A*-based planning but also outlines design principles for building intelligent, adaptive, and computationally efficient navigation systems. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
23 pages, 1556 KB  
Article
Harnessing Digital Marketing Analytics for Knowledge-Driven Digital Transformation in the Hospitality Industry
by Dimitrios P. Reklitis, Marina C. Terzi, Damianos P. Sakas and Panagiotis Reklitis
Information 2025, 16(10), 868; https://doi.org/10.3390/info16100868 - 7 Oct 2025
Abstract
In the digitally saturated hospitality environment, research on digital transformation remains dominated by macro-level adoption trends and user-generated content, while the potential of micro-level web-behavioural data remains largely untapped. Recent systematic reviews highlight a fragmented body of literature and note that hospitality studies [...] Read more.
In the digitally saturated hospitality environment, research on digital transformation remains dominated by macro-level adoption trends and user-generated content, while the potential of micro-level web-behavioural data remains largely untapped. Recent systematic reviews highlight a fragmented body of literature and note that hospitality studies seldom address first-party behavioural data or big-data analytics capabilities. To address this gap, we collected clickstream, navigation and booking-funnel data from five luxury hotels in the Mediterranean and employed big-data analytics integrated with simulation modelling—specifically fuzzy cognitive mapping (FCM)—to model causal relationships among digital touchpoints, managerial actions and customer outcomes. FCM is a robust simulation tool that captures stakeholder knowledge and causal influences across complex systems. Using a case-study methodology, we show that first-party behavioural data enable real-time insights, support knowledge-based decision-making and drive digital service innovation. Across a 12-month panel, visitor volume was strongly associated with search traffic and social traffic, with the total-visitors model explaining 99.8% of variance. Our findings extend digital-transformation models by embedding micro-level behavioural data flows and simulation modelling. Practically, this study offers a replicable framework that helps managers integrate web-analytics into decision-making and customer-centric innovation. Overall, embedding micro-level web-behavioural analytics within an FCM framework yields a decision-ready, replicable pipeline that translates behavioural evidence into high-leverage managerial interventions. Full article
(This article belongs to the Special Issue Emerging Research in Knowledge Management and Innovation)
24 pages, 38672 KB  
Article
RMTDepth: Retentive Vision Transformer for Enhanced Self-Supervised Monocular Depth Estimation from Oblique UAV Videos
by Xinrui Zeng, Bin Luo, Shuo Zhang, Wei Wang, Jun Liu and Xin Su
Remote Sens. 2025, 17(19), 3372; https://doi.org/10.3390/rs17193372 - 6 Oct 2025
Abstract
Self-supervised monocular depth estimation from oblique UAV videos is crucial for enabling autonomous navigation and large-scale mapping. However, existing self-supervised monocular depth estimation methods face key challenges in UAV oblique video scenarios: depth discontinuity from geometric distortion under complex viewing angles, and spatial [...] Read more.
Self-supervised monocular depth estimation from oblique UAV videos is crucial for enabling autonomous navigation and large-scale mapping. However, existing self-supervised monocular depth estimation methods face key challenges in UAV oblique video scenarios: depth discontinuity from geometric distortion under complex viewing angles, and spatial ambiguity in weakly textured regions. These challenges highlight the need for models that combine global reasoning with geometric awareness. Accordingly, we propose RMTDepth, a self-supervised monocular depth estimation framework for UAV imagery. RMTDepth integrates an enhanced Retentive Vision Transformer (RMT) backbone, introducing explicit spatial priors via a Manhattan distance-driven spatial decay matrix for efficient long-range geometric modeling, and embeds a neural window fully-connected CRF (NeW CRFs) module in the decoder to refine depth edges by optimizing pairwise relationships within local windows. To mitigate noise in COLMAP-generated depth for real-world UAV datasets, we constructed a high-fidelity UE4/AirSim simulation environment, which generated a large-scale precise depth dataset (UAV SIM Dataset) to validate robustness. Comprehensive experiments against seven state-of-the-art methods across UAVID Germany, UAVID China, and UAV SIM datasets demonstrate that our model achieves SOTA performance in most scenarios. Full article
Show Figures

Figure 1

15 pages, 1323 KB  
Article
A Hybrid Ant Colony Optimization and Dynamic Window Method for Real-Time Navigation of USVs
by Yuquan Xue, Liming Wang, Bi He, Shuo Yang, Yonghui Zhao, Xing Xu, Jiaxin Hou and Longmei Li
Sensors 2025, 25(19), 6181; https://doi.org/10.3390/s25196181 - 6 Oct 2025
Abstract
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness [...] Read more.
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness in cluttered waters, while the dynamic window approach (DWA) without global guidance can become trapped in local obstacle configurations. This paper presents a sensor-oriented hybrid method that couples an improved ACO for global route planning with an enhanced DWA for local, real-time obstacle avoidance. In the global stage, the ACO state–transition rule integrates path length, obstacle clearance, and trajectory smoothness heuristics, while a cosine-annealed schedule adaptively balances exploration and exploitation. Pheromone updating combines local and global mechanisms under bounded limits, with a stagnation detector to restore diversity. In the local stage, the DWA cost function is redesigned under USV kinematics to integrate velocity adaptability, trajectory smoothness, and goal-deviation, using obstacle data that would typically originate from onboard sensors. Simulation studies, where obstacle maps emulate sensor-detected environments, show that the proposed method achieves shorter paths, faster convergence, smoother trajectories, larger safety margins, and higher success rates against dynamic obstacles compared with standalone ACO or DWA. These results demonstrate the method’s potential for sensor-based, real-time USV navigation and collision avoidance in complex maritime scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

20 pages, 7975 KB  
Article
Trunk Detection in Complex Forest Environments Using a Lightweight YOLOv11-TrunkLight Algorithm
by Siqi Zhang, Yubi Zheng, Rengui Bi, Yu Chen, Cong Chen, Xiaowen Tian and Bolin Liao
Sensors 2025, 25(19), 6170; https://doi.org/10.3390/s25196170 - 5 Oct 2025
Abstract
The autonomous navigation of inspection robots in complex forest environments heavily relies on accurate trunk detection. However, existing detection models struggle to achieve both high accuracy and real-time performance on resource-constrained edge devices. To address this challenge, this study proposes a lightweight algorithm [...] Read more.
The autonomous navigation of inspection robots in complex forest environments heavily relies on accurate trunk detection. However, existing detection models struggle to achieve both high accuracy and real-time performance on resource-constrained edge devices. To address this challenge, this study proposes a lightweight algorithm named YOLOv11-TrunkLight. The core innovations of the algorithm include (1) a novel StarNet_Trunk backbone network, which replaces traditional residual connections with element-wise multiplication and incorporates depthwise separable convolutions, significantly reducing computational complexity while maintaining a large receptive field; (2) the C2DA deformable attention module, which effectively handles the geometric deformation of tree trunks through dynamic relative position bias encoding; and (3) the EffiDet detection head, which improves detection speed and reduces the number of parameters through dual-path feature decoupling and a dynamic anchor mechanism. Experimental results demonstrate that compared to the baseline YOLOv11 model, our method improves detection speed by 13.5%, reduces the number of parameters by 34.6%, and decreases computational load (FLOPs) by 39.7%, while the average precision (mAP) is only marginally reduced by 0.1%. These advancements make the algorithm particularly suitable for deployment on resource-constrained edge devices of inspection robots, providing reliable technical support for intelligent forestry management. Full article
Show Figures

Figure 1

18 pages, 6931 KB  
Article
Research on Multi-Sensor Data Fusion Based Real-Scene 3D Reconstruction and Digital Twin Visualization Methodology for Coal Mine Tunnels
by Hongda Zhu, Jingjing Jin and Sihai Zhao
Sensors 2025, 25(19), 6153; https://doi.org/10.3390/s25196153 - 4 Oct 2025
Abstract
This paper proposes a multi-sensor data-fusion-based method for real-scene 3D reconstruction and digital twin visualization of coal mine tunnels, aiming to address issues such as low accuracy in non-photorealistic modeling and difficulties in feature object recognition during traditional coal mine digitization processes. The [...] Read more.
This paper proposes a multi-sensor data-fusion-based method for real-scene 3D reconstruction and digital twin visualization of coal mine tunnels, aiming to address issues such as low accuracy in non-photorealistic modeling and difficulties in feature object recognition during traditional coal mine digitization processes. The research employs cubemap-based mapping technology to project acquired real-time tunnel images onto six faces of a cube, combined with navigation information, pose data, and synchronously acquired point cloud data to achieve spatial alignment and data fusion. On this basis, inner/outer corner detection algorithms are utilized for precise image segmentation, and a point cloud region growing algorithm integrated with information entropy optimization is proposed to realize complete recognition and segmentation of tunnel planes (e.g., roof, floor, left/right sidewalls) and high-curvature feature objects (e.g., ventilation ducts). Furthermore, geometric dimensions extracted from segmentation results are used to construct 3D models, and real-scene images are mapped onto model surfaces via UV (U and V axes of texture coordinate) texture mapping technology, generating digital twin models with authentic texture details. Experimental validation demonstrates that the method performs excellently in both simulated and real coal mine environments, with models capable of faithfully reproducing tunnel spatial layouts and detailed features while supporting multi-view visualization (e.g., bottom view, left/right rotated views, front view). This approach provides efficient and precise technical support for digital twin construction, fine-grained structural modeling, and safety monitoring of coal mine tunnels, significantly enhancing the accuracy and practicality of photorealistic 3D modeling in intelligent mining applications. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 7348 KB  
Article
A Sketch-Based Cross-Modal Retrieval Model for Building Localization Without Satellite Signals
by Haihua Du, Jiawei Fan, Yitao Huang, Longyang Lin and Jiuchao Qian
Electronics 2025, 14(19), 3936; https://doi.org/10.3390/electronics14193936 - 4 Oct 2025
Abstract
In existing non-satellite navigation systems, visual localization is widely adopted for its high precision. However, in scenarios with highly similar building structures, traditional visual localization methods that rely on direct coordinate prediction often suffer from decreased accuracy or even failure. Moreover, as scene [...] Read more.
In existing non-satellite navigation systems, visual localization is widely adopted for its high precision. However, in scenarios with highly similar building structures, traditional visual localization methods that rely on direct coordinate prediction often suffer from decreased accuracy or even failure. Moreover, as scene complexity increases, their robustness tends to decline. To address these challenges, this paper proposes a Sketch Line Information Consistency Generation (SLIC) model for indirect building localization. Instead of regressing geographic coordinates, the model retrieves candidate building images that correspond to hand-drawn sketches, and these retrieved results serve as proxies for localization in satellite-denied environments. Within the model, the Line-Attention Block and Relation Block are designed to extract fine-grained line features and structural correlations, thereby improving retrieval accuracy. Experiments on multiple architectural datasets demonstrate that the proposed approach achieves high precision and robustness, with mAP@2 values ranging from 0.87 to 1.00, providing a practical alternative to conventional coordinate-based localization methods. Full article
(This article belongs to the Special Issue Recent Advances in Autonomous Localization and Navigation System)
24 pages, 9586 KB  
Article
Optimized Recognition Algorithm for Remotely Sensed Sea Ice in Polar Ship Path Planning
by Li Zhou, Runxin Xu, Jiayi Bian, Shifeng Ding, Sen Han and Roger Skjetne
Remote Sens. 2025, 17(19), 3359; https://doi.org/10.3390/rs17193359 - 4 Oct 2025
Abstract
Collisions between ships and sea ice pose a significant threat to maritime safety, making it essential to detect sea ice and perform safety-oriented path planning for polar navigation. This paper utilizes an optimized You Only Look Once version 5 (YOLOv5) model, designated as [...] Read more.
Collisions between ships and sea ice pose a significant threat to maritime safety, making it essential to detect sea ice and perform safety-oriented path planning for polar navigation. This paper utilizes an optimized You Only Look Once version 5 (YOLOv5) model, designated as YOLOv5-ICE, for the detection of sea ice in satellite imagery, with the resultant detection data being employed to input obstacle coordinates into a ship path planning system. The enhancements include the Squeeze-and-Excitation (SE) attention mechanism, improved spatial pyramid pooling, and the Flexible ReLU (FReLU) activation function. The improved YOLOv5-ICE shows enhanced performance, with its mAP increasing by 3.5% compared to the baseline YOLOv5 and also by 1.3% compared to YOLOv8. YOLOv5-ICE demonstrates robust performance in detecting small sea ice targets within large-scale satellite images and excels in high ice concentration regions. For path planning, the Any-Angle Path Planning on Grids algorithm is applied to simulate routes based on detected sea ice floes. The objective function incorporates the path length, number of ship turns, and sea ice risk value, enabling path planning under varying ice concentrations. By integrating detection and path planning, this work proposes a novel method to enhance navigational safety in polar regions. Full article
Show Figures

Figure 1

23 pages, 12546 KB  
Article
Performance Evaluation of a UAV-Based Graded Precision Spraying System: Analysis of Spray Accuracy, Response Errors, and Field Efficacy
by Yang Lyu, Seung-Hwa Yu, Chun-Gu Lee, Pingan Wang, Yeong-Ho Kang, Dae-Hyun Lee and Xiongzhe Han
Agriculture 2025, 15(19), 2070; https://doi.org/10.3390/agriculture15192070 - 2 Oct 2025
Abstract
Advances in sensor technology have significantly improved the efficiency and precision of agricultural spraying. Unmanned aerial vehicles (UAVs) are widely utilized for applying plant protection products (PPPs) and fertilizers, offering enhanced spatial control and operational flexibility. This study evaluated the performance of an [...] Read more.
Advances in sensor technology have significantly improved the efficiency and precision of agricultural spraying. Unmanned aerial vehicles (UAVs) are widely utilized for applying plant protection products (PPPs) and fertilizers, offering enhanced spatial control and operational flexibility. This study evaluated the performance of an autonomous UAV-based precision spraying system that applies variable rates based on zone levels defined in a prescription map. The system integrates real-time kinematic global navigation satellite system positioning with a proximity-triggered spray algorithm. Field experiments on a rice field were conducted to assess spray accuracy and fertilization efficacy with liquid fertilizer. Spray deposition patterns on water-sensitive paper showed that the graded strategy distinguished among zone levels, with the highest deposition in high-spray zones, moderate in medium zones, and minimal in no-spray zones. However, entry and exit deviations—used to measure system response delays—averaged 0.878 m and 0.955 m, respectively, indicating slight lags in spray activation and deactivation. Fertilization results showed that higher application levels significantly increased the grain-filling rate and thousand-grain weight (both p < 0.001), but had no significant effect on panicle number or grain count per panicle (p > 0.05). This suggests that increased fertilization primarily enhances grain development rather than overall plant structure. Overall, the system shows strong potential to optimize inputs and yields, though UAV path tracking errors and system response delays require further refinement to enhance spray uniformity and accuracy under real-world applications. Full article
(This article belongs to the Special Issue Design and Development of Smart Crop Protection Equipment)
Show Figures

Figure 1

17 pages, 1525 KB  
Article
Real-Time Terrain Mapping with Responsibility-Based GMM and Adaptive Azimuth Scan Command
by Hyunju Lee and Dongwon Jung
Remote Sens. 2025, 17(19), 3342; https://doi.org/10.3390/rs17193342 - 1 Oct 2025
Abstract
This paper presents a real-time terrain mapping method for aircraft’s navigation, combining probabilistic terrain modeling with adaptive azimuth scan command adjustment. The method refines a preloaded DTED in real time using radar scan data, enabling aircraft to update and utilize terrain elevation information [...] Read more.
This paper presents a real-time terrain mapping method for aircraft’s navigation, combining probabilistic terrain modeling with adaptive azimuth scan command adjustment. The method refines a preloaded DTED in real time using radar scan data, enabling aircraft to update and utilize terrain elevation information during flight. The terrain is represented using a Gaussian Mixture Model (GMM), where radar scan data are evaluated based on their posterior responsibilities. A conditional nested GMM refinement is selectively applied in structurally ambiguous regions to capture multi-modal elevation patterns. The azimuth scan command is adaptively adjusted based on posterior responsibilities by increasing the step size in well-mapped regions and decreasing it in areas with low responsibility. This lightweight and adaptive strategy supports real-time operation with low computational cost. Simulations across diverse terrain types demonstrate accurate grid updates and adaptive scan control, with the proposed method achieving max error 29 m compared to grid-based averaging of 43 m and K-means clustering of 81 m. As the total number of updates is comparable to the existing methods, the proposed approach offers an advantage for real-time applications with enhanced grid accuracy. Full article
Show Figures

Graphical abstract

35 pages, 5864 KB  
Article
Risk-Constrained Multi-Objective Deep Reinforcement Learning for AGV Path Planning in Rail Transit
by Zihan Yang and Huiyu Xiang
Appl. Syst. Innov. 2025, 8(5), 145; https://doi.org/10.3390/asi8050145 - 30 Sep 2025
Abstract
Sensor-rich Automated Guided Vehicles (AGVs) are increasingly deployed in logistics, yet large fleets relying on fixed tracks face high maintenance costs and frequent route conflicts. This study targets rail-based material handling and proposes an end-to-end multi-AGV navigation pipeline under realistic operational constraints. A [...] Read more.
Sensor-rich Automated Guided Vehicles (AGVs) are increasingly deployed in logistics, yet large fleets relying on fixed tracks face high maintenance costs and frequent route conflicts. This study targets rail-based material handling and proposes an end-to-end multi-AGV navigation pipeline under realistic operational constraints. A conflict-aware global planner, extended from the A* algorithm, generates feasible routes, while a multi-sensor perception stack integrates LiDAR and camera data to distinguish moving AGVs, static obstacles, and task targets. Based on this perception, a Deep Q-Network (DQN) policy with a tailored reward function enables real-time dynamic obstacle avoidance in complex traffic. Simulation results demonstrate that, compared with the Artificial Potential Field (APF) baseline, the proposed GG-DRL approach reduces collisions by ~70%, lowers planning time by 25–30%, shortens paths by 10–15%, and improves smoothness by 20–25%. On the Maze Benchmark Map, GG-DRL surpasses classical planners (e.g., RRT) and deep RL baselines (e.g., DDPG) in path quality, computation, and avoidance behavior, achieving an average path length of 81.12, computation time of 11.94 s, 5.2 avoidance maneuvers, and smoothness of 0.86. Robustness is maintained as a dynamic obstacles scale up to 30. These findings confirm that combining multi-sensor fusion with deep reinforcement learning enhances AGV safety, efficiency, and reliability, with broad potential for intelligent railway logistics. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
Show Figures

Figure 1

26 pages, 6168 KB  
Article
Integrated Analysis of Mapping, Path Planning, and Advanced Motion Control for Autonomous Robotic Navigation
by Kishore Bingi, Abhaya Pal Singh, Rosdiazli Ibrahim, Anugula Rajamallaiah and Nagoor Basha Shaik
Fractal Fract. 2025, 9(10), 640; https://doi.org/10.3390/fractalfract9100640 - 30 Sep 2025
Abstract
Autonomous robotic navigation is essential in modern systems for revolutionising various industries that operate in both static and dynamic environments. To achieve this autonomous navigation, various conventional techniques that handle environment mapping, path planning, and motion control as individual modules often face challenges [...] Read more.
Autonomous robotic navigation is essential in modern systems for revolutionising various industries that operate in both static and dynamic environments. To achieve this autonomous navigation, various conventional techniques that handle environment mapping, path planning, and motion control as individual modules often face challenges in addressing the complexities of autonomous navigation. Therefore, this paper presents an integrated technique that combines three essential components, such as environment mapping, path planning, and motion control, to enhance autonomous navigation performance. The first component, i.e., the mapping, utilises both binary and probabilistic occupancy maps to represent the environment. The second component is path planning, which incorporates various graph- and sampling-based algorithms such as PRM, A*, Hybrid A*, RRT, RRT*, and BiRRT, which are evaluated in terms of path length, computational time, and safety margin on various maps. The final component, i.e., motion control, utilises both conventional and advanced controller strategies such as PID, FOPID, SFC, and MPC, for better sinusoidal trajectory tracking. The four case studies for path planning and one case study on trajectory tracking on various occupancy maps demonstrated that the A* algorithm and MPC outperformed all the compared techniques in terms of optimal path length, computational time, safety margin, and trajectory tracking error. Thus, the proposed integrated approach reveals that the interplay between mapping fidelity, planning efficiency, and control robustness is vital for reliable autonomous navigation. Full article
(This article belongs to the Special Issue Applications of Fractional-Order Calculus in Robotics, 2nd Edition)
Show Figures

Figure 1

21 pages, 1584 KB  
Article
Ionospheric Information-Assisted Spoofing Detection Technique and Performance Evaluation for Dual-Frequency GNSS Receiver
by Zhenyang Wu, Haixuan Fu, Xiaoxuan Xu, Yuhao Xiao, Yimin Ma, Ziheng Zhou and Hong Li
Electronics 2025, 14(19), 3865; https://doi.org/10.3390/electronics14193865 - 29 Sep 2025
Abstract
Global Navigation Satellite System (GNSS) spoofing, which manipulates PVT solutions through false measurements, increasingly threatens GNSS reliability and user safety. However, most existing simulator-based spoofers, constrained by their inability to access real-time ionospheric information (e.g., Global Ionosphere Maps, GIMs) from external sources, struggle [...] Read more.
Global Navigation Satellite System (GNSS) spoofing, which manipulates PVT solutions through false measurements, increasingly threatens GNSS reliability and user safety. However, most existing simulator-based spoofers, constrained by their inability to access real-time ionospheric information (e.g., Global Ionosphere Maps, GIMs) from external sources, struggle to replicate authentic total electron content (TEC) along each signal propagation path accurately and in a timely manner. In contrast, widespread dual-frequency (DF) receivers with access to the internet can validate local TEC measurements against external references, establishing a pivotal spoofing detection distinction. Here, we propose an Ionospheric Information-Assisted Spoofing Detection Technique (IIA-SDT), exploiting the inherent consistency between TEC values derived from DF pseudo-range measurements and external references in spoofing-free scenarios. Spoofing probably disrupts this consistency: in simulator-based full-channel spoofing where all channels are spoofed, the inaccuracies of the offline ionospheric model used by the spoofer inevitably cause TEC mismatches; in partial-channel spoofing where the spoofer fails to control all channels, an unintended PVT deviation is induced, which also causes TEC deviations due to the spatial variation of the ionosphere. Basic principles and theoretical analysis of the proposed IIA-SDT are elaborated in the paper. Simulations using ionospheric data collected from 2023 to 2024 at a typical mid-latitude location are conducted to evaluate IIA-SDT performance under various parameter configurations. With a window length of 5 s and satellite number of 8, the annual average detection probability approximates 75% at a false alarm rate of 1×103, with observable temporal variations. Field experiments across multiple scenarios further validate the spoofing detection capability of the proposed method. Full article
Show Figures

Figure 1

25 pages, 1278 KB  
Review
Eye-Tracking Advancements in Architecture: A Review of Recent Studies
by Mário Bruno Cruz, Francisco Rebelo and Jorge Cruz Pinto
Buildings 2025, 15(19), 3496; https://doi.org/10.3390/buildings15193496 - 28 Sep 2025
Abstract
This Scoping Review (ScR) synthesizes advances in architectural eye-tracking (ET) research published between 2010 and 2024. Drawing on 75 peer-reviewed studies that met clear inclusion criteria, it monitors the field’s rapid expansion, from only 20 experiments before 2018, to more than 45 new [...] Read more.
This Scoping Review (ScR) synthesizes advances in architectural eye-tracking (ET) research published between 2010 and 2024. Drawing on 75 peer-reviewed studies that met clear inclusion criteria, it monitors the field’s rapid expansion, from only 20 experiments before 2018, to more than 45 new investigations in the three years thereafter, situating these developments within the longer historical evolution of ET hardware and analytical paradigms. The review maps 13 recurrent areas of application, focusing on design evaluation, wayfinding and spatial navigation, end-user experience, and architectural education. Across these domains, ET reliably reveals where occupants focus, for how long, and in what sequence, providing objective evidence that complements designer intuition and conventional post-occupancy surveys. Experts and novices might display distinct gaze signatures; for example, architects spend longer fixating on contextual and structural cues, whereas lay users dwell on decorative details, highlighting possible pedagogical opportunities. Despite these benefits, persistent challenges include data loss in dynamic or outdoor settings, calibration drift, single-user hardware constraints, and the need to triangulate gaze metrics with cognitive or affective measures. Future research directions emphasize integrating ET with virtual or augmented reality (VR) (AR) to validate design interactively, improving mobile tracking accuracy, and establishing shared datasets to enable replication and meta-analysis. Overall, the study demonstrates that ET is maturing into an indispensable, evidence-based lens for creating more intuitive, legible, and human-centered architecture. Full article
(This article belongs to the Special Issue Emerging Trends in Architecture, Urbanization, and Design)
Show Figures

Figure 1

31 pages, 8649 KB  
Article
Putting Urban Resilience in Geographical Context: The Case of City Regions in Hainan, China, in the Wake of COVID-19 and Beyond
by Guo Chen and Qianlin Chen
Sustainability 2025, 17(19), 8697; https://doi.org/10.3390/su17198697 - 26 Sep 2025
Abstract
Urban resilience has gained significant further attention since the COVID-19 pandemic, resulting in various assessments comparing cities’ ability to respond to, and recover from, diverse shocks. This paper responds to the call for grounding urban resilience in context by examining a case study [...] Read more.
Urban resilience has gained significant further attention since the COVID-19 pandemic, resulting in various assessments comparing cities’ ability to respond to, and recover from, diverse shocks. This paper responds to the call for grounding urban resilience in context by examining a case study of the city regions on the island of Hainan Province, China, following the onset of the COVID-19 outbreak. After content analysis to trace the lineage of urban resilience in the Chinese context, an exploratory study, including analysis and mapping of statistical data, was conducted to examine the city’s economic and social performance from 2018 to 2021 and beyond. Our study suggests a largely positive trend in the bouncing back and forward of city regions shortly after the pandemic began, as well as a rural–urban gap and growing regional disparities that need to be addressed to enhance resilience for all. This study provides a contextualized understanding of Hainan as it navigates pandemic stresses and builds capacities during state-supported structural transformations in its development as a free trade port. Furthermore, this study suggests a valuable city region analytical lens and a geographical perspective for implementing the urban resilience concept and building urban resilience efforts in China and elsewhere. Full article
(This article belongs to the Special Issue Global Social and Environmental Justice: Intersections and Dialogues)
Show Figures

Figure 1

Back to TopTop