Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = natural pyrite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 7932 KiB  
Article
Element Mobility in a Metasomatic System with IOCG Mineralization Metamorphosed at Granulite Facies: The Bondy Gneiss Complex, Grenville Province, Canada
by Olivier Blein and Louise Corriveau
Minerals 2025, 15(8), 803; https://doi.org/10.3390/min15080803 - 30 Jul 2025
Viewed by 165
Abstract
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the [...] Read more.
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the southwestern Grenville Province of Canada which consists of 1.39–1.35 Ga volcanic and plutonic rocks metamorphosed under granulite facies conditions at 1.19 Ga. Iron oxide–apatite and Cu-Ag-Au mineral occurrences occur among gneisses rich in biotite, cordierite, garnet, K-feldspar, orthopyroxene and/or sillimanite-rich gneisses, plagioclase-cordierite-orthopyroxene white gneisses, magnetite-garnet-rich gneisses, garnetites, hyperaluminous sillimanite-pyrite-quartz gneisses, phlogopite-sillimanite gneisses, and tourmalinites. Petrological and geochemical studies indicate that the precursors of these gneisses are altered volcanic and volcaniclastic rocks with attributes of pre-metamorphic Na, Ca-Fe, K-Fe, K, chloritic, argillic, phyllic, advanced argillic and skarn alteration. The nature of these hydrothermal rocks and the ore deposit model that best represents them are further investigated herein through lithogeochemistry. The lithofacies mineralized in Cu (±Au, Ag, Zn) are distinguished by the presence of garnet, magnetite and zircon, and exhibit pronounced enrichment in Fe, Mg, HREE and Zr relative to the least-altered rocks. In discrimination diagrams, the metamorphosed mineral system is demonstrated to exhibit the diagnostic attributes of, and is interpreted as, a metasomatic iron and alkali-calcic (MIAC) mineral system with iron oxide–apatite (IOA) and iron oxide copper–gold (IOCG) mineralization that evolves toward an epithermal cap. This contribution demonstrates that alteration facies diagnostic of MIAC systems and their IOCG and IOA mineralization remain diagnostic even after high-grade metamorphism. Exploration strategies can thus use the lithogeochemical footprint and the distribution and types of alteration facies observed as pathfinders for the facies-specific deposit types of MIAC systems. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

25 pages, 4401 KiB  
Article
Impact of High Energy Milling and Mineral Additives on a Carbonate–Quartz–Apatite System for Ecological Applications
by Vilma Petkova, Katerina Mihaylova, Ekaterina Serafimova, Rositsa Titorenkova, Liliya Tsvetanova and Andres Trikkel
Materials 2025, 18(15), 3508; https://doi.org/10.3390/ma18153508 - 26 Jul 2025
Viewed by 343
Abstract
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of [...] Read more.
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of conventional acid methods, namely the release of gaseous and solid technogenic products. The aim of the study is to determine the changes in the structure to follow the solid-state transitions and the isomorphic substitutions in the anionic sub-lattice in the structure of the main mineral apatite in the samples from Estonia, under the influence of HEM activation. It is also interesting to investigate the influence of HEM on structural-phase transformations on the structure of impurity minerals-free calcite/dolomite, pyrite, quartz, as well as to assess their influence on the thermal behavior of the main mineral apatite. The effect of HEM is monitored by using a complex of analytical methods, such as chemical analysis, powder X-ray diffraction (PXRD), wavelength-dispersive X-ray fluorescence (WD-XRF) analysis, and Fourier-transformed infrared (FTIR) analysis. The obtained results prove the correlation in the behavior of the studied samples with regard to their quartz content and bonded or non-bonded carbonate ions. After HEM activation of the raw samples, the following is established: (i) anionic isomorphism with formation of A and A-B type carbonate-apatites and hydroxyl-fluorapatite; (ii) solid-phase synthesis of calcium orthophosphate-CaHPO4 (monetite) and dicalcium diphosphate-β-Ca2P2O7; (iii) enhanced chemical reactivity by approximately three times by increasing the solubility via HEM activation. The dry milling method used is a suitable approach for solving technological projects to improve the composition and structure of soils, increasing soil fertility by introducing soluble forms of calcium phosphates. It provides a variety of application purposes depending on the composition, impurities, and processing as a soil improver, natural mineral fertilizer, or activator. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Figure 1

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 233
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

21 pages, 8512 KiB  
Article
Geogenic and Anthropogenic Origins of Mercury and Other Potentially Toxic Elements in the Ponce Enriquez Artisanal and Small-Scale Gold Mining District, Southern Ecuador
by Silvia Fornasaro, Paolo Fulignati, Anna Gioncada, Daniel Garces and Maurizio Mulas
Minerals 2025, 15(7), 725; https://doi.org/10.3390/min15070725 - 11 Jul 2025
Viewed by 558
Abstract
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic [...] Read more.
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic elements (PTEs) in the Ponce Enriquez Mining District (PEMD), a region characterized by hydrothermally altered basaltic bedrock and Au-mineralized quartz veins. To assess local baseline values and identify PTE-bearing minerals, a comprehensive geochemical, mineralogical, and petrographic analysis was conducted on bedrock and mineralized veins. These findings reveal distinct origins for the studied PTEs, which include Hg, As, Cu, Ni, Cr, Co, Sb, Zn, and V. Specifically, Hg concentrations in stream sediments downstream (up to 50 ppm) far exceed natural bedrock levels (0.03–0.707 ppm), unequivocally indicating significant anthropogenic input from gold amalgamation. Furthermore, copper shows elevated concentration primarily linked to gold extraction. Conversely, other elements like As, Ni, Cr, Co, Sb, Zn, and V are primarily exhibited to be naturally abundant in basalts due to the presence of primary mafic minerals and to hydrothermal alterations, with elevated concentrations particularly seen in sulfides like pyrite and arsenopyrite. To distinguish natural geochemical anomalies from mining-related contamination, especially in volcanic terrains, this study utilizes Upper Continental Crust (UCC) normalization and local bedrock baselines. This multi-faceted approach effectively helped to differentiate basalt subgroups and assess natural concentrations, thereby avoiding misinterpretations of naturally elevated element concentrations as mining-related pollution. Crucially, this work establishes a robust local geochemical baseline for the PEMD area, providing a critical framework for accurate environmental risk assessments and sustainable mineral resource management, and informing national environmental quality standards and remediation efforts in Ecuador. It underscores the necessity of evaluating local geology, including inherent mineralization, when defining environmental baselines and understanding the fate of PTEs in mining-impacted environments. Full article
Show Figures

Figure 1

22 pages, 5737 KiB  
Article
Geophysical Log Responses and Predictive Modeling of Coal Quality in the Shanxi Formation, Northern Jiangsu, China
by Xuejuan Song, Meng Wu, Nong Zhang, Yong Qin, Yang Yu, Yaqun Ren and Hao Ma
Appl. Sci. 2025, 15(13), 7338; https://doi.org/10.3390/app15137338 - 30 Jun 2025
Viewed by 294
Abstract
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal [...] Read more.
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal quality prediction. By integrating scanning electron microscopy (SEM), X-ray analysis, and optical microscopy with interdisciplinary methodologies spanning mathematics, mineralogy, and applied geophysics, this research analyzes the coal quality and mineral composition of the Shanxi Formation coal seams in northern Jiangsu, China. A predictive model linking geophysical logging responses to coal quality parameters was established to delineate relationships between subsurface geophysical data and material properties. The results demonstrate that the Shanxi Formation coals are gas coal (a medium-metamorphic bituminous subclass) characterized by low sulfur content, low ash yield, low fixed carbon, high volatile matter, and high calorific value. Mineralogical analysis identifies calcite, pyrite, and clay minerals as the dominant constituents. Pyrite occurs in diverse microscopic forms, including euhedral and semi-euhedral fine grains, fissure-filling aggregates, irregular blocky structures, framboidal clusters, and disseminated particles. Systematic relationships were observed between logging parameters and coal quality: moisture, ash content, and volatile matter exhibit an initial decrease, followed by an increase with rising apparent resistivity (LLD) and bulk density (DEN). Conversely, fixed carbon and calorific value display an inverse trend, peaking at intermediate LLD/DEN values before declining. Total sulfur increases with density up to a threshold before decreasing, while showing a concave upward relationship with resistivity. Negative correlations exist between moisture, fixed carbon, calorific value lateral resistivity (LLS), natural gamma (GR), short-spaced gamma-gamma (SSGG), and acoustic transit time (AC). In contrast, ash yield, volatile matter, and total sulfur correlate positively with these logging parameters. These trends are governed by coalification processes, lithotype composition, reservoir physical properties, and the types and mass fractions of minerals. Validation through independent two-sample t-tests confirms the feasibility of the neural network model for predicting coal quality parameters from geophysical logging data. The predictive model provides technical and theoretical support for advancing intelligent coal mining practices and optimizing efficiency in coal chemical industries, enabling real-time subsurface characterization to facilitate precision resource extraction. Full article
Show Figures

Figure 1

16 pages, 993 KiB  
Article
Insights into Pyrite-Based Autotrophic Denitrification: Impacts of the Initial Addition of Organic Co-Substrates at a Low Concentration
by Baokun Xu, Lihong Zhang, Niannian Yuan, Yujiang Xiong and Haolong Fu
Nitrogen 2025, 6(3), 50; https://doi.org/10.3390/nitrogen6030050 - 28 Jun 2025
Viewed by 562
Abstract
Pyrite-based autotrophic denitrification is an effective method for nitrate removal. However, pyrite does not exist alone and is inevitably accompanied by the presence of organic matter in nature, and thus the influence of organic co-substrates on pyrite-based denitrification should be taken into consideration. [...] Read more.
Pyrite-based autotrophic denitrification is an effective method for nitrate removal. However, pyrite does not exist alone and is inevitably accompanied by the presence of organic matter in nature, and thus the influence of organic co-substrates on pyrite-based denitrification should be taken into consideration. Even in a circumstance where no addition of an exogenous organic carbon source is implemented, the introduction of pyrite into groundwater and sediment is capable of stimulating both autotrophic and heterotrophic denitrifying bacteria. In this study, the impact of the initial addition of organic co-substrates on the performance and dynamics of bacterial communities in pyrite-based denitrification processes was evaluated under low-concentration conditions. The findings suggest that the initial addition of organic co-substrates at low concentrations (6–48 mg L−1) could enhance the efficiency of pyrite-based autotrophic denitrification. In contrast, the competitive effects of organic co-substrates became positive with increasing additions of initial organic co-substrates. When an organic co-substrate was added at an initial concentration of 96 mg L−1, the competition between heterotrophic denitrification and pyrite-based autotrophic denitrification was found to be more pronounced than their promotion role as the majority of nitrate was consumed by heterotrophic denitrification. Thiobacillus was the most dominant bacterium in the denitrification system, where pyrite served as the sole electron donor. At the same time, the addition of organic co-substrate under low initial concentration, led to a different microorganism composition. Full article
Show Figures

Figure 1

28 pages, 2017 KiB  
Article
Valorization Diagnosis of Roasted Pyrite Ashes Wastes from the Iberian Pyrite Belt
by Juan Antonio Ramírez-Pérez, Manuel Jesús Gázquez-González and Juan Pedro Bolívar
Recycling 2025, 10(3), 112; https://doi.org/10.3390/recycling10030112 - 4 Jun 2025
Viewed by 1536
Abstract
The Iberian Pyrite Belt (IPB) contains the world’s largest massive sulfide deposit, and, due to extensive mining developed during the last 200 years, large amounts of mining waste have been abandoned in this area, with roasted pyrite ash being the focus of this [...] Read more.
The Iberian Pyrite Belt (IPB) contains the world’s largest massive sulfide deposit, and, due to extensive mining developed during the last 200 years, large amounts of mining waste have been abandoned in this area, with roasted pyrite ash being the focus of this study. Polymetallic mining is also classified as a NORM (naturally occurring radioactive material) activity, thus the main objective of this work was to develop a radiological and physicochemical characterization of this waste (mineral phases, elemental and radionuclide concentrations) in order to perform a valorization diagnosis of this material. The composition of this waste strongly depends on its origin (mine), and is mainly formed by iron oxides (hematite, Fe₂O₃) and heavy metals and metalloids such as As, Pb, Zn, and Cu, in levels 2–4 orders of magnitude higher than those of undisturbed soils, depending on each particular element. However, the average natural radionuclide levels are similar to those of unperturbed soils (around 30 Bqkg−1 of 238U-series, 50 Bqkg−1 of 232Th, and 70 Bqkg−1 for 40K), thus they are below the limits established by European Union regulations to require radiological control during their future valorization. As the main potential applications of roasted pyrite ash, the valorization diagnosis indicates that it can be used as a source of Fe (FeCl₃ or FeSO₄), or an additive in the manufacturing of cements, pigments, etc. Full article
Show Figures

Figure 1

23 pages, 3459 KiB  
Article
Study on the Synchronous Removal of Nitrogen and Phosphorus by Autotrophic/Heterotrophic Denitrification in the Presence of Pyrite
by Minyi Zhu, Minhui Ma, Shuo Chen, Rongfang Yuan and Shaona Wang
Molecules 2025, 30(11), 2412; https://doi.org/10.3390/molecules30112412 - 30 May 2025
Viewed by 460
Abstract
Pollution caused by N and P is a significant contributor to water eutrophication. While traditional biological treatment processes can remove some N and P elements from water, the effluent quality often fails to meet the stringent requirements of sensitive areas. The autotrophic denitrification’s [...] Read more.
Pollution caused by N and P is a significant contributor to water eutrophication. While traditional biological treatment processes can remove some N and P elements from water, the effluent quality often fails to meet the stringent requirements of sensitive areas. The autotrophic denitrification’s simultaneous nitrogen and phosphorus removal pro-cess, known for its low operating cost and minimal sludge production, has garnered considerable attention from researchers. In this study, natural pyrite was used for the removal of nitrogen and phosphorus in a denitrification system, and the underlying mechanisms were elucidated. The results indicate that the N and P removal efficiency was influenced by empty bed contact time (EBCT) and the pH value. The highest NO3-N removal rate of 90.24% was achieved at an EBCT of 8 h, while the PO43−-P removal rate reached 81.58% at an EBCT of 12 h. The addition of a carbon source enhanced the synergistic autotrophic/heterotrophic denitrification, significantly improving phosphorus removal with an increasing C/N ratio. Microbial characteristics analysis revealed that, at the phylum level, Chlorobiota, Bacteroidota, and Chloroflexota played a crucial role in heterotrophic autotrophic denitrification. At the genus level, Thauera, Aridibacter, and Gemmatimonas were key players in heterotrophic denitrification, while Thiobacillus, Rhodoplanes, and Geobacter were associated with autotrophic denitrification. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

18 pages, 11608 KiB  
Article
Waste Natural Pyrite Activation of Peroxymonosulfate for Degradation of Artificial Sweetener Acesulfame Potassium: Efficiency, Influencing Factors, Degradation Mechanisms, and Toxicity Evaluation
by Chengchen Jiang, Zehong Zeng, Liwen Jiang, Zhi Dang and Xiaohua Shu
Water 2025, 17(11), 1558; https://doi.org/10.3390/w17111558 - 22 May 2025
Viewed by 487
Abstract
Acesulfame potassium (ACE) is an emerging pollutant with the potential to induce a range of health hazards. In this study, waste natural pyrite (with some oxides on its surface) was washed and used as an activator to activate potassium peroxomonosulfate (PMS) to degrade [...] Read more.
Acesulfame potassium (ACE) is an emerging pollutant with the potential to induce a range of health hazards. In this study, waste natural pyrite (with some oxides on its surface) was washed and used as an activator to activate potassium peroxomonosulfate (PMS) to degrade ACE in water. The experimental results demonstrate that waste natural pyrite with an oxidized layer exhibited a significant degradation effect on ACE. Under conditions of 0.7 g/L pyrite and 60 μM PMS, a degradation rate of 99.3% for ACE was achieved within 15 min, and the mineralization rate reached 15.3% within 30 min. In addition, concerning its applicability, waste natural pyrite demonstrates strong activation ability within a pH range of 3 to 7. It is important to note that while HCO3 and Ca2+ can influence the effectiveness, other common anions and cations do not significantly affect the degradation process. Mechanistic studies reveal that the primary active species in the waste natural pyrite/PMS system were sulfate radicals (SO4•−) as well as hydroxyl radicals (OH), which contributed 50.6% and 36.9%, respectively. In addition, the analysis of ACE degradation products indicates that no highly toxic intermediates were generated during the degradation process. Overall, this study underscores the outstanding performance of waste natural pyrite as an activator, providing a safe, efficient, and cost-effective approach for degrading organic pollutants like ACE. Full article
Show Figures

Figure 1

27 pages, 23477 KiB  
Article
The B-Zone 4611 Silver-Rich Pod—An Unusual Ag-Ge-Sb-As-Ni Assemblage Within the Irish-Type Zn-Pb Silvermines Deposit, County Tipperary, Ireland
by Colin J. Andrew and John H. Ashton
Minerals 2025, 15(5), 540; https://doi.org/10.3390/min15050540 - 19 May 2025
Viewed by 554
Abstract
The Silvermines Pb-Zn-Ag-Ba orebodies comprise vein, replacement, cross-cutting and stratiform mineralization mostly hosted in Lower Carboniferous limestones in the vicinity of a major ENE and E-W trending normal fault array and represent a classic example of Irish-Type Zn-Pb mineralization. Historically the deposits have [...] Read more.
The Silvermines Pb-Zn-Ag-Ba orebodies comprise vein, replacement, cross-cutting and stratiform mineralization mostly hosted in Lower Carboniferous limestones in the vicinity of a major ENE and E-W trending normal fault array and represent a classic example of Irish-Type Zn-Pb mineralization. Historically the deposits have been exploited at various times, but the major limestone-hosted Zn-Pb-Ba mineralization was not discovered until the 1960s. Structurally controlled crosscutting vein and breccia mineralization represent pathways of hydrothermal fluids escaping from the Silvermines fault at depth that exhaled and replaced shallowly buried Waulsortian limestones creating the larger stratiform orebodies such as the Upper G and B-Zones. The B-Zone, comprising a pre-mining resource of 4.64 Mt of 4.53% Zn, 3.58% Pb, 30 g/t Ag has a locally highly variable host mineralogy dominated by pyrite, barite, siderite, within dolomitic and limestone breccias with local silica-haematite alteration. A small, highly unusual pod of very high-grade Ag-rich mineralization in the B-Zone, the 4611 Pod, discovered in 1978, has not been previously documented. Unpublished records, field notes, and mineralogical and chemical data from consultant reports have been assimilated to document this interesting and unusual occurrence. The pod, representing an irregular lens of mineralization ca 2 m thick and representing 500 t, occurs within the B-Zone orebody and comprises high grade Zn and Pb sulfides with significant patches of proustite-pyrargyrite (ruby silvers) and a host of associated Pb, Ag, Sb, As, Cu, Ge sulfide minerals, including significant argyrodite. Although evidence of any distinct feeder below the pod is lacking, the nature of the pod, its unusual mineralogy and its paragenesis suggests that it represents a small, possibly late source of exotic hydrothermal fluid where it entered the B-Zone stratiform mineralizing system. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits: 2nd Edition)
Show Figures

Figure 1

12 pages, 5901 KiB  
Article
Characteristics of Mineralization of Refractory Gold and Its Influence on Cyanide Gold Leaching Rates: A Case Study in Pituca II, Zamora Chinchipe, Ecuador
by Santiago Jose Navas Jaramillo and Renato Efren Gonzalez Zuñiga
Minerals 2025, 15(5), 523; https://doi.org/10.3390/min15050523 - 15 May 2025
Viewed by 513
Abstract
The recovery of gold in metallurgical processes is significantly influenced by the presence of refractory minerals. This study investigates the mineralogical characteristics of refractory gold in the Pituca II ore deposit, with a focus on identifying the sulfide minerals that encapsulate gold particles [...] Read more.
The recovery of gold in metallurgical processes is significantly influenced by the presence of refractory minerals. This study investigates the mineralogical characteristics of refractory gold in the Pituca II ore deposit, with a focus on identifying the sulfide minerals that encapsulate gold particles and understanding their impact on gold recovery rates via cyanidation leaching. To establish a theoretical basis for optimizing gold recovery, a comprehensive suite of analytical techniques including electron microprobe analysis, petrographic analysis, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and X-ray diffraction was employed to characterize the ore’s composition and mineralogical properties. The primary ore minerals identified were pyrite, galena, chalcopyrite, and sphalerite, with hessite occurring as an accessory phase. Gold was observed as fine-grained particles (<40 µm), predominantly enclosed within pyrite and galena, contributing to its refractory nature. Cyanidation tests revealed a strong correlation between particle size and leaching efficiency: material ground to D80 = 170 mesh (90 μm) achieved a recovery rate of 81.2%, compared to 72.2% for material at D80 = 100 mesh (150 μm). These findings elucidate the mineralogical constraints on gold recovery and underscore the necessity of appropriate particle size reduction to enhance leaching performance. The study provides practical insights and targeted recommendations for pretreatment strategies, thereby contributing to more efficient exploitation of refractory gold ores in similar geological settings. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 2914 KiB  
Article
Investigation of the Possibilities for the Recycling of Mixed Heterogeneous Lead Refinery Waste
by Jasmina Dedić, Jelena Đokić, Gordana Milentijević, Irma Dervišević and Maja Petrović
Processes 2025, 13(5), 1380; https://doi.org/10.3390/pr13051380 - 30 Apr 2025
Viewed by 362
Abstract
The historical industrial waste deposit Gater was used to dispose of different metallurgy wastes from lead and zinc production. The metallurgical waste deposit was situated in the open space, between the tailing waste deposit Žitkovac and river Ibar flow. Large amounts of lead-containing [...] Read more.
The historical industrial waste deposit Gater was used to dispose of different metallurgy wastes from lead and zinc production. The metallurgical waste deposit was situated in the open space, between the tailing waste deposit Žitkovac and river Ibar flow. Large amounts of lead-containing wastes are produced in the non-ferrous metallurgical industry, such as lead ash and lead slag generated in Pb smelting, lead anode slime, and lead sludge produced in the raw lead refining process. In addition to the lead concentration, numerous valuable components are found in the lead refinery waste from the group of Critical Raw Materials, such as antimony, arsenic, bismuth, copper, nickel, magnesium, scandium, as well as Rare-Earth Elements. Samples with eight characteristic points were taken to obtain relevant data indicating a possible recycling method. The chemical composition analysis was conducted using ICP; the scanning was completed using SEM-EDS. The mineralogical composition was determined by using XRD. The chemical analysis showed a wide range of valuable metal concentrations, from Ag (in the range from 14.2 to 214.6, with an average 86.25 mg/kg) to heavy metals such as Cu (in the range from 282.7 to 28,298, with an average 10,683.7 mg/kg or 1.0683% that corresponds to some active mines), Ni and Zn (in the range from 1.259 to 69,853.4, with an average 14,304.81 mg/kg), Sc (in the range from 2.4 to 75.3, with an average 33.61 mg/kg), Pb (in the range from 862.6 to 154,027.5, with an average 45,046 mg/kg), Sb (in the range from 51.7 to 18,514.7, with an average 2267.8 mg/kg), Ca (in the range from 167.5 to 63,963, with an average 19,880 mg/kg), Mg (in the range from 668.3 to 76,824.5, with an average 31,670 mg/kg), and As (in the range from 62.9 to 24,328.1, with an average 5829.53 mg/kg). The mineralogy analysis shows that all metals are in the form of oxides, but in the case of As and Fe, SEM-EDS shows some portion of elemental lead, pyrite, and silica-magnesium-calcium oxides as slag and tailing waste residues. The proposed recovery process should start with leaching, and further investigation should decide on the type of leaching procedure and agents, considering the waste’s heterogeneous nature and acidity and toxicity. Full article
(This article belongs to the Special Issue Municipal Solid Waste for Energy Production and Resource Recovery)
Show Figures

Figure 1

13 pages, 3791 KiB  
Article
Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic Materials
by Beatriz A. Santos, Luís Esperto, Isabel Figueira, João Mascarenhas, Elsa B. Lopes, Rute Salgueiro, Teresa P. Silva, José B. Correia, Daniel de Oliveira, António P. Gonçalves and Filipe Neves
Materials 2025, 18(6), 1375; https://doi.org/10.3390/ma18061375 - 20 Mar 2025
Cited by 1 | Viewed by 467
Abstract
Thermoelectric materials have considerable potential in the mitigation of the global energy crisis, through their ability to convert heat into electricity. This study aims to valorize natural resources, and potentially reduce production costs, by incorporating tetrahedrite–tennantite (td) ores from the Portuguese Iberian Pyrite [...] Read more.
Thermoelectric materials have considerable potential in the mitigation of the global energy crisis, through their ability to convert heat into electricity. This study aims to valorize natural resources, and potentially reduce production costs, by incorporating tetrahedrite–tennantite (td) ores from the Portuguese Iberian Pyrite Belt into synthetic samples. The ore samples were collected in a mine waste at Barrigão and as “dirty-copper” pockets of ore from the Neves Corvo mine. Subsequently, high-energy ball milling and hot pressing were employed in the production of thermoelectric materials. These are characterized by XRD, SEM/EDS, and thermoelectrical properties. The complete dissolution of the dump material sulfides with the synthetic tetrahedrite constituents led to an increase in the amount of the tetrahedrite–tennantite phase, which was made up of a tetrahedrite–tennantite–(Fe) solid solution. The thermoelectric characterization of these materials is provided, revealing that most of the combined synthetic ore samples displayed better results than the pristine tetrahedrite, mostly due to higher Seebeck coefficient values. Furthermore, the best thermoelectric performance is achieved with 10% of ore, where a power factor of 268 µW.K−2.m−1 is reached at room temperature. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

20 pages, 4323 KiB  
Article
Treatment of Acid Mine Water from the Breiner-Băiuț Area, Romania, Using Iron Scrap
by Gheorghe Iepure and Aurica Pop
Water 2025, 17(2), 225; https://doi.org/10.3390/w17020225 - 15 Jan 2025
Cited by 1 | Viewed by 1095
Abstract
Acid mine drainage (AMD) forms in mining areas during or after mining operations cease. This is a primary cause of environmental pollution and poses risks to human health and the environment. The hydrographic system from the Maramureș mining industry (especially the Baia Mare [...] Read more.
Acid mine drainage (AMD) forms in mining areas during or after mining operations cease. This is a primary cause of environmental pollution and poses risks to human health and the environment. The hydrographic system from the Maramureș mining industry (especially the Baia Mare area) was heavily contaminated with heavy metals for many years due to mining activity, and after the closing of mining activity, it continues to be polluted due to water leaks from the abandoned galleries, the pipes, and the tailing ponds. The mineralization in the Băiuț area, predominantly represented by pyrite and marcasite associated with other sulfides, such as chalcopyrite, covelline, galena, and sphalerite, together with mine waters contribute to the formation of acid mine drainage. The Breiner-Băiuț mining gallery (copper mine) permanently discharges acidic water into the rivers. The efficiency of iron scrap (low-cost absorbent) for the treatment of mine water from this gallery was investigated. The treatment of mine water with iron shavings aimed to reduce the concentration of toxic metals and pH. Mine water from the Breiner-Baiut mine, Romania, is characterized by high acidity, pH = 2.75, and by the association of many heavy metals, whose concentration exceeds the limit values for the pollutant loading of wastewater discharged into natural receptors: Cu—71.1 mg/L; Zn—42.5 mg/L; and Fe—122.5 mg/L. Iron scrap with different weights (200 g, 400 g, and 600 g) was put in contact with 1.5 L of acid mine water. After 30 days, all three treatment variants showed a reduction in the concentrations of toxic metals. A reduction in Cu concentration was achieved below the permissible limit. In all three samples, the Cu concentrations were 0.005 for Sample 1, 0.001 for Sample 2, and <LOQ for Sample 3. The Zn concentration decreased significantly compared to the original mine water concentration from 42.5 mg/L to 1.221 mg/L, 1.091 mg/L, and 0.932 mg/L. These values are still above the permissible limit (0.5 mg/L). The Fe concentration increased compared to the original untreated water sample due to the dissolution of iron scrap. This research focuses on methods to reduce the toxic metal concentration in mine water, immobilizing (separating) certain toxic metals in sludge, and immobilizing various compounds on the surface of iron shavings in the form of insoluble crystals. Full article
(This article belongs to the Special Issue Basin Non-Point Source Pollution)
Show Figures

Figure 1

22 pages, 40492 KiB  
Article
Sulfosalts and Sulfates in the Epithermal Au-Ag-Te Emmy Deposit (Khabarovsk Territory, Far East of Russia): Implications for the Mineralization Process
by Tamara Yu. Yakich, Panagiotis Voudouris, Darya V. Levochskaia, Alexey K. Mazurov, Mikhail V. Shaldybin, Yuriy M. Lopushnyak, Alexey S. Ruban, Evan Dasi, Prokopiy N. Maximov, Ekaterina A. Sinkina, Ksenia V. Bestemianova and Maxim A. Rudmin
Geosciences 2025, 15(1), 26; https://doi.org/10.3390/geosciences15010026 - 14 Jan 2025
Cited by 1 | Viewed by 1156
Abstract
This study considers the features of the chemical composition, internal structure, and oscillatory zoning of sulfosalts and sulfates in the epithermal high–intermediate-sulfidation-type Au-Ag-Te Emmy deposit (Khabarovsk Territory, Russia). In Emmy deposit, sulfosalts primarily represent goldfieldite, probably corresponding to a high-sulfidation (HS) mineral association [...] Read more.
This study considers the features of the chemical composition, internal structure, and oscillatory zoning of sulfosalts and sulfates in the epithermal high–intermediate-sulfidation-type Au-Ag-Te Emmy deposit (Khabarovsk Territory, Russia). In Emmy deposit, sulfosalts primarily represent goldfieldite, probably corresponding to a high-sulfidation (HS) mineral association replaced bytennantite–tetrahedrite group minerals. The latter is associated with tellurides and native tellurium, corresponding to an intermediate-sulfidation (IS)-type ore assemblage and suggesting an increasing influx of Te, Sb, and As in the system. Goldfieldite is replaced by native tellurium and tellurides along its growth zones, and is characterized by oscillatory zoning. The replacement of goldfieldite by mercury, nickel, lead, and copper tellurides indicate a new influx of native gold, native tellurium, and gold–silver tellurides into the open mineral-forming system. At deeper levels of the Emmy deposit, an advanced argillic alteration assemblage includes aluminum phosphate–sulfate (APS) minerals, represented by members of the svanbergite–woodhouseite series. Element mapping of the studied APS mineral grains indicated three distinct areas recording the evolution of the hydrothermal system in the Emmy: an oscillatory-zoned margin enriched in sulfur, lead, and barium, corresponding to the late influx of IS state fluids related to gold and tellurides; an intermediate part, which is leached and corresponds to the HS mineralization stage; and the central part of the grains, which is enriched in cerium, calcium, and strontium, resulting from a replacement of magmatic apatite in the pre-ore alteration stage. The leached zone between the core and rim of the APS grains is related to a change in crystallization conditions, possibly due to the mixing processes of the fluids with meteoric water. Barite, found in the upper level of the advanced argillic hypogene alteration assemblage, is also characterized by oscillatory zoning, associated with the enrichment of individual zones in lead. Micron gold particles associated with barite are confined to their lead-enriched zones. The study of fluid inclusions in quartz within the Emmy deposit showed the hydrothermal ore process at a temperature of 236–337 °C. Homogenization temperatures for quartz–pyrite–goldfieldite mineral association vary within 337–310 °C and salinity varies within 0–0.18 wt.%NaCl equivalent, and for gold–silver–telluride–polymetallic mineral association, they decrease and vary within 275–236 °C and salinity slightly increases from 0.18 to 0.35 wt.%NaCl equivalent. This study demonstrates that the nature of oscillatory zoning in sulfosalts and sulfates in the Emmy deposit results from an external process. Such a process is of fundamental importance from a genetic point of view. Full article
Show Figures

Figure 1

Back to TopTop