Insights into Pyrite-Based Autotrophic Denitrification: Impacts of the Initial Addition of Organic Co-Substrates at a Low Concentration
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Experimental Procedure
2.3. Analysis
3. Results and Discussion
3.1. Pyrite-Based Denitrification Performance with the Initial Addition of Organic Co-Substrates at a Low Concentration
3.2. Microbial Community Analyses Under Different Organic Co-Substrate Additions in This Pyrite-Based Autotrophic Denitrification System
3.3. Effects of Organic Co-Substrate on Pyrite-Based Autotrophic Denitrification System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puggioni, G.; Milia, S.; Unali, V.; Ardu, R.; Tamburini, E.; Balaguer, M.D.; Pous, N.; Carucci, A.; Puig, S. Effect of hydraulic retention time on the electro-bioremediation of nitrate in saline groundwater. Sci. Total Environ. 2022, 845, 157236. [Google Scholar] [CrossRef]
- Shemer, H.; Huang, Y.; Hasson, D.; Semiat, R. Coupling donann dialysis and electro-reduction process for nitrate removal from simulated groundwater. Sep. Purif. Technol. 2022, 299, 121718. [Google Scholar] [CrossRef]
- Hansen, B.; Thorling, L.; Schullehner, J.; Termansen, M.; Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 2017, 7, 8566. [Google Scholar] [CrossRef] [PubMed]
- Bijay, S.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Pu, J.; Feng, C.; Liu, Y.; Li, R.; Kong, Z.; Chen, N.; Tong, S.; Hao, C.; Liu, Y. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater. Bioresour. Technol. 2014, 173, 117–123. [Google Scholar] [CrossRef]
- Xu, B.; Shi, L.; Zhong, H.; Wang, K. The performance of pyrite-based autotrophic denitrification column for permeable reactive barrier under natural environment. Bioresour. Technol. 2019, 290, 121763. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, J. Various electron donors for biological nitrate removal: A review. Sci. Total Environ. 2021, 794, 148699. [Google Scholar] [CrossRef]
- Torrentó, C.; Urmeneta, J.; Otero, N.; Soler, A.; Viñas, M.; Cama, J. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite. Chem. Geol. 2011, 287, 90–101. [Google Scholar] [CrossRef]
- Torrentó, C.; Cama, J.; Urmeneta, J.; Otero, N.; Soler, A. Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chem. Geol. 2010, 278, 80–91. [Google Scholar] [CrossRef]
- Yan, R.; Andreas, K.; Marie, M.E.; Klaus-Holger, K.; Horn, M.A.; Alexander, P.; Regina, L.; Peiffer, S. Effect of Reduced Sulfur Species on Chemolithoautotrophic Pyrite Oxidation with Nitrate. Geomicrobiol. J. 2019, 36, 19–29. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, J. Insight into the mechanism of chemoautotrophic denitrification using pyrite (FeS2) as electron donor. Bioresour. Technol. 2020, 318, 124105. [Google Scholar] [CrossRef]
- Guo, X.; Peng, G.; Tan, L.; Zhang, Y.; Wang, J.; Wang, W.; Zhang, S. Effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors supported by pyrite/polycaprolactone. Water Environ. Res. 2024, 96, e11040. [Google Scholar] [CrossRef]
- Zhang, R.-C.; Chen, C.; Shao, B.; Wang, W.; Xu, X.-J.; Zhou, X.; Xiang, Y.-N.; Zhao, L.; Lee, D.-J.; Ren, N.-Q. Heterotrophic sulfide-oxidizing nitrate-reducing bacteria enables the high performance of integrated autotrophic-heterotrophic denitrification (IAHD) process under high sulfide loading. Water Res. 2020, 178, 115848. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Hu, L.; Wang, J. Mixotrophic denitrification using pyrite and biodegradable polymer composite as electron donors. Bioresour. Technol. 2022, 351, 127011. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Stocks, J.L.; Rodriguez-Gonzalez, L.C.; Feng, C.; Ergas, S.J. Effect of oyster shell medium and organic substrate on the performance of a particulate pyrite autotrophic denitrification (PPAD) process. Bioresour. Technol. 2017, 244, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Ma, H.; Ma, J.; Kong, Z.; Shao, Z.; Yuan, Y.; Xu, Y.; Ni, Q.; Chai, H. Corncob-pyrite bioretention system for enhanced dissolved nutrient treatment: Carbon source release and mixotrophic denitrification. Chemosphere 2022, 306, 135534. [Google Scholar] [CrossRef]
- Xu, B.; Yang, X.; Li, Y.; Yang, K.; Xiong, Y.; Yuan, N. Pyrite-Based Autotrophic Denitrifying Microorganisms Derived from Paddy Soils: Effects of Organic Co-Substrate Addition. Int. J. Environ. Res. Public Health 2022, 19, 11763. [Google Scholar] [CrossRef]
- Xu, B.; Shi, L.; Zhong, H.; Wang, K. Investigation of Fe(II) and Mn(II) involved anoxic denitrification in agricultural soils with high manganese and iron contents. J. Soils Sediments 2021, 21, 452–468. [Google Scholar] [CrossRef]
- Jamieson, J.; Prommer, H.; Kaksonen, A.H.; Sun, J.; Siade, A.J.; Yusov, A.; Bostick, B. Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation. Environ. Sci. Technol. 2018, 52, 5771–5781. [Google Scholar] [CrossRef]
- Christianson, L.; Bhandari, A.; Helmers, M.; Kult, K.; Sutphin, T.; Wolf, R. Performance Evaluation of Four Field-Scale Agricultural Drainage Denitrification Bioreactors in Iowa. Trans. ASABE 2012, 55, 2163–2174. [Google Scholar] [CrossRef]
- Gibert, O.; Pomierny, S.; Rowe, I.; Kalin, R.M. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresour. Technol. 2008, 99, 7587–7596. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Peng, J.; Feng, C.; Fang, F.; Chen, S.; Xu, Y.; Wang, X. Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis. Appl. Microbiol. Biotechnol. 2015, 99, 6527–6536. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, H.; Yang, K.; Ma, F. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature. Chemosphere 2018, 193, 337–342. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Hu, C.; Liu, H.; Qu, J. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: Performance and bacterial community structure. Appl. Microbiol. Biotechnol. 2015, 99, 2815–2827. [Google Scholar] [CrossRef]
- Sun, X.; Yang, J.; Jiang, H.; Wang, B.; Xiao, H.; Xie, Z.; Han, J.; Zhang, X.; Xu, J.; Gong, D.; et al. Nitrite- and N2O-reducing bacteria respond differently to ecological factors in saline lakes. FEMS Microbiol. Ecol. 2022, 98, fiac007. [Google Scholar] [CrossRef]
- Zhang, P.; Peng, Y.; Lu, J.; Li, J.; Chen, H.; Xiao, L. Microbial communities and functional genes of nitrogen cycling in an electrolysis augmented constructed wetland treating wastewater treatment plant effluent. Chemosphere 2018, 211, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Li, Y.; Wu, J. Myriophyllum elatinoides growth and rhizosphere bacterial community structure under different nitrogen concentrations in swine wastewater. Bioresour. Technol. 2020, 301, 122776. [Google Scholar] [CrossRef]
- Cremona, F.; Öglü, B.; McCarthy, M.J.; Newell, S.E.; Nõges, P.; Nõges, T. Nitrate as a predictor of cyanobacteria biomass in eutrophic lakes in a climate change context. Sci. Total Environ. 2022, 818, 151807. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wan, D.; Li, B.; Zhang, P.; Wang, H. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresour. Technol. 2020, 300, 122682. [Google Scholar] [CrossRef]
- Huang, X.; Liu, L.; Wen, T.; Zhang, J.; Wang, F.; Cai, Z. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl. Microbiol. Biotechnol. 2016, 100, 5581–5593. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, Y.; Ma, Z.; Dong, W.; Su, X.; Shen, X.; Yi, X.; Chen, Y. Effects of magnetite on microbially driven nitrate reduction processes in groundwater. Sci. Total Environ. 2023, 855, 158956. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Qi, G.; Ma, G.; Zhao, X. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community. Microbiol. Res. 2020, 231, 126373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ali, A.; Su, J.; Wang, Z.; Huang, T.; Zhang, R.; Liu, Y. Microencapsulated reactor for simultaneous removal of calcium, fluoride and phenol using microbially induced calcium precipitation: Mechanism and functional characterization. J. Hazard. Mater. 2023, 446, 130704. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Xu, B.; Ma, L.; Jiao, H.; Tian, B.; Li, K.; Liang, J. Study on denitrification of hydroponic wastewater reverse osmosis concentrate using sulfur-autotrophic denitrification. J. Environ. Chem. Eng. 2023, 11, 111195. [Google Scholar] [CrossRef]
- Hou, T.; Chen, N.; Tong, S.; Li, B.; He, Q.; Feng, C. Enhancement of rice bran as carbon and microbial sources on the nitrate removal from groundwater. Biochem. Eng. J. 2019, 148, 185–194. [Google Scholar] [CrossRef]
- Kundu, P.; Pramanik, A.; Dasgupta, A.; Mukherjee, S.; Mukherjee, J. Simultaneous Heterotrophic Nitrification and Aerobic Denitrification by Chryseobacterium sp. R31 Isolated from Abattoir Wastewater. BioMed Res. Int. 2014, 2014, 436056. [Google Scholar] [CrossRef]
- Aqeel, H.; Basuvaraj, M.; Liss, S.N. Microbial population selection in integrated fixed-film sequencing batch reactors operated with different lengths of oxic and anoxic conditions. Environ. Sci. Water Res. Technol. 2021, 7, 913–926. [Google Scholar] [CrossRef]
- Hallez, R.; Delaby, M.; Sanselicio, S.; Viollier, P.H. Hit the right spots: Cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat. Rev. Microbiol. 2017, 15, 137–148. [Google Scholar] [CrossRef]
- Yang, H.; Li, D.; Zeng, H.; Zhang, J. Autotrophic nitrogen conversion process and microbial population distribution in biofilter that simultaneously removes Fe, Mn and ammonia from groundwater. Int. Biodeterior. Biodegrad. 2018, 135, 53–61. [Google Scholar] [CrossRef]
- Munoz, R.; Rosselló-Móra, R.; Amann, R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst. Appl. Microbiol. 2016, 39, 281–296. [Google Scholar] [CrossRef]
- Zuo, X.; Zhang, H.; Yu, J. Microbial diversity for the improvement of nitrogen removal in stormwater bioretention cells with three aquatic plants. Chemosphere 2020, 244, 125626. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.-N.; Yin, Y.; An, Y.; Zhang, F.; Wang, X.; Zhao, F.; Xiao, Y.; Liu, C. Investigation of an intermittently-aerated moving bed biofilm reactor in rural wastewater treatment under low dissolved oxygen and C/N condition. Bioresour. Technol. 2022, 358, 127405. [Google Scholar] [CrossRef]
- Tian, H.-L.; Zhao, J.-Y.; Zhang, H.-Y.; Chi, C.-Q.; Li, B.-A.; Wu, X.-L. Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor. Appl. Microbiol. Biotechnol. 2015, 99, 3279–3290. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, Y.; Tan, X.; Sheng, Y.; Li, Y.; Zhang, Q.; Xu, J.; Shi, Z. Genomics and nitrogen metabolic characteristics of a novel heterotrophic nitrifying-aerobic denitrifying bacterium Acinetobacter oleivorans AHP123. Bioresour. Technol. 2023, 375, 128822. [Google Scholar] [CrossRef] [PubMed]
- Poghosyan, L.; Koch, H.; Frank, J.; van Kessel, M.A.H.J.; Cremers, G.; van Alen, T.; Jetten, M.S.M.; Op den Camp, H.J.M.; Lücker, S. Metagenomic profiling of ammonia- and methane-oxidizing microorganisms in two sequential rapid sand filters. Water Res. 2020, 185, 116288. [Google Scholar] [CrossRef]
- Wang, X.; Xie, G.-J.; Tian, N.; Dang, C.-C.; Cai, C.; Ding, J.; Liu, B.-F.; Xing, D.-F.; Ren, N.-Q.; Wang, Q. Anaerobic microbial manganese oxidation and reduction: A critical review. Sci. Total Environ. 2022, 822, 153513. [Google Scholar] [CrossRef]
- Li, Y.; Katzmann, E.; Borg, S.; Schüler, D. The Periplasmic Nitrate Reductase Nap Is Required for Anaerobic Growth and Involved in Redox Control of Magnetite Biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 2012, 194, 4847–4856. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Z.; Zhang, S.; Gao, L.; Yu, R.; Zhan, M. Mechanistic Understanding of Predatory Bacteria-Induced Biolysis for Waste Sludge Dewaterability Improvement. Water Air Soil Pollut. 2019, 230, 194. [Google Scholar] [CrossRef]
- Xu, X.; Ma, S.; Jiang, H.; Yang, F. Start-up of the anaerobic hydrolysis acidification (ANHA)- simultaneous partial nitrification, anammox and denitrification (SNAD)/enhanced biological phosphorus removal (EBPR) process for simultaneous nitrogen and phosphorus removal for domestic sewage treatment. Chemosphere 2021, 275, 130094. [Google Scholar]
- Yang, P.; Hou, R.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B.; Chen, H. Effect of intermittent operation and shunt wastewater on pollutant removal and microbial community changes in subsurface wastewater infiltration system. Process Saf. Environ. Prot. 2022, 165, 255–265. [Google Scholar] [CrossRef]
- Ding, X.; Wei, D.; Guo, W.; Wang, B.; Meng, Z.; Feng, R.; Du, B.; Wei, Q. Biological denitrification in an anoxic sequencing batch biofilm reactor: Performance evaluation, nitrous oxide emission and microbial community. Bioresour. Technol. 2019, 285, 121359. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, H.; Yang, X.; Zhang, Q.; Wang, Y. Effect of exogenous CaO addition on H2S production from waste activated sludge and its influence mechanism. Water Res. 2023, 241, 120171. [Google Scholar] [CrossRef]
- Soo, R.M.; Hemp, J.; Parks, D.H.; Fischer, W.W.; Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 2017, 355, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, W.V.; Santos, C.E.D.; Guerrero, R.d.B.S.; Sakamoto, I.K.; Amorim, E.L.C.d.; Azevedo, E.B.; Damianovic, M.H.R.Z. Establishing simultaneous nitrification and denitrification under continuous aeration for the treatment of multi-electrolytes saline wastewater. Bioresour. Technol. 2019, 288, 121529. [Google Scholar] [CrossRef]
- Sun, X.; Peng, J.; Wang, M.; Wang, J.; Tang, C.; Yang, L.; Lei, H.; Li, F.; Wang, X.; Chen, J. Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2018, 1552, 10–16. [Google Scholar] [CrossRef]
- Tsubouchi, T.; Koyama, S.; Mori, K.; Shimane, Y.; Usui, K.; Tokuda, M.; Tame, A.; Uematsu, K.; Maruyama, T.; Hatada, Y. Brevundimonas denitrificans sp. nov. a denitrifying bacterium isolated from deep subseafloor sediment. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 11, 3709–3716. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, Z.; Ye, Y.; Lv, M.; Liang, B.; Yuan, Y.; Cheng, H.-Y.; Liu, Y.; He, Z.; Wang, H.; et al. Coupled sulfur and electrode-driven autotrophic denitrification for significantly enhanced nitrate removal. Water Res. 2022, 220, 118675. [Google Scholar] [CrossRef]
- Meng, X.; Niu, G.; Yang, W.; Cao, X. Di(2-ethylhexyl) phthalate biodegradation and denitrification by a Pseudoxanthomonas sp. strain. Bioresour. Technol. 2015, 180, 356–359. [Google Scholar] [CrossRef]
Soil | Nitrate—N (mg L−1) | Acetate—C (mg L−1) | NaHCO3 (mg L−1) | Pyrite (g) | |
---|---|---|---|---|---|
Control | 0 | 140 | 0 | 840 | 30 |
A0 | 0.1% | 140 | 0 | 840 | 30 |
A6 | 0.1% | 140 | 6 | 840 | 30 |
A12 | 0.1% | 140 | 12 | 840 | 30 |
A24 | 0.1% | 140 | 24 | 840 | 30 |
A48 | 0.1% | 140 | 48 | 840 | 30 |
A96 | 0.1% | 140 | 96 | 840 | 30 |
Sample ID | Reads | OTUs 2 | Ace | Chao1 3 | Coverage | Shannon | Simpson |
---|---|---|---|---|---|---|---|
Soil 1 | 50864 | 1420 | 1437.832 | 1431.336 | 0.998919 | 5.72763 | 0.014914 |
A0 | 44441 | 501 | 685.9039 | 652.2561 | 0.996786 | 3.911035 | 0.043122 |
A6 | 49162 | 375 | 738.9145 | 594.45 | 0.997007 | 3.705737 | 0.049191 |
A12 | 48249 | 337 | 685.5576 | 538.6667 | 0.997497 | 2.994198 | 0.180355 |
A24 | 48334 | 537 | 909.8316 | 775.9583 | 0.996145 | 3.922568 | 0.043082 |
A48 | 42202 | 517 | 1084.488 | 818.6429 | 0.99649 | 3.603932 | 0.060958 |
A96 | 58688 | 263 | 528.6979 | 395.4545 | 0.997773 | 3.06579 | 0.091909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Zhang, L.; Yuan, N.; Xiong, Y.; Fu, H. Insights into Pyrite-Based Autotrophic Denitrification: Impacts of the Initial Addition of Organic Co-Substrates at a Low Concentration. Nitrogen 2025, 6, 50. https://doi.org/10.3390/nitrogen6030050
Xu B, Zhang L, Yuan N, Xiong Y, Fu H. Insights into Pyrite-Based Autotrophic Denitrification: Impacts of the Initial Addition of Organic Co-Substrates at a Low Concentration. Nitrogen. 2025; 6(3):50. https://doi.org/10.3390/nitrogen6030050
Chicago/Turabian StyleXu, Baokun, Lihong Zhang, Niannian Yuan, Yujiang Xiong, and Haolong Fu. 2025. "Insights into Pyrite-Based Autotrophic Denitrification: Impacts of the Initial Addition of Organic Co-Substrates at a Low Concentration" Nitrogen 6, no. 3: 50. https://doi.org/10.3390/nitrogen6030050
APA StyleXu, B., Zhang, L., Yuan, N., Xiong, Y., & Fu, H. (2025). Insights into Pyrite-Based Autotrophic Denitrification: Impacts of the Initial Addition of Organic Co-Substrates at a Low Concentration. Nitrogen, 6(3), 50. https://doi.org/10.3390/nitrogen6030050