Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = natural edible coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Viewed by 489
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

16 pages, 2047 KiB  
Article
Caseinate–Carboxymethyl Chitosan Composite Edible Coating with Soybean Oil for Extending the Shelf Life of Blueberry Fruit
by Amal M. A. Mohamed and Hosahalli S. Ramaswamy
Foods 2025, 14(15), 2598; https://doi.org/10.3390/foods14152598 - 24 Jul 2025
Viewed by 373
Abstract
Utilizing edible films/coatings promises to extend the shelf life of fruits by controlling various physiological parameters (e.g., respiration and transpiration rates), maintaining firmness, and delaying fruit senescence. The influence of composite-based edible coatings made from sodium or calcium caseinate: carboxymethyl chitosan (75:25) on [...] Read more.
Utilizing edible films/coatings promises to extend the shelf life of fruits by controlling various physiological parameters (e.g., respiration and transpiration rates), maintaining firmness, and delaying fruit senescence. The influence of composite-based edible coatings made from sodium or calcium caseinate: carboxymethyl chitosan (75:25) on the postharvest quality of fresh blueberries was assessed over a 28-day storage period, on the basis of weight loss and changes in pH, firmness, color, titratable acidity, soluble solids content, mold and yeast count, and respiration rate. The pH of the blueberries increased over the period of storage, with significant differences observed between uncoated and coated (e.g., pH was 3.89, 3.17, and 3.62 at the end of the storage time for uncoated, Ca 75-1% SO, and Na 75-1% SO, respectively. Desirable lower pH values at the end of storage were obtained with the calcium caseinate formulations. Over the duration of storage, other quality parameters (e.g., firmness) were better retained in coated fruits compared to the uncoated (control) one. At the last storage day, the firmness of the uncoated sample was 0.67 N·mm−1 while the sodium and calcium caseinate was 0.63 and 0.81 N.mm−1, respectively. Moreover, the microbial growth was reduced in coated fruits, indicating the effectiveness of coatings in preserving fruit quality. The mold /yeast count was 1.4 and 2.3 log CFU/g for CaCa 75-1% SO and NaCa 75-1% SO compared with uncoated with 4.2 log CFU/g. Adding soybean oil to the caseinate–carboxymethyl chitosan composite edible coating has the potential to positively influence retention of various quality parameters of blueberries, thereby extending their shelf life and maintaining overall quality. Further research could explore the optimization of coating formulations and application methods to enhance their effectiveness in preserving fruit quality during storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 723
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

18 pages, 1467 KiB  
Article
Effect of a Protein–Polysaccharide Coating on the Physicochemical Properties of Banana (Musa paradisiaca) During Storage
by Maritza D. Ruiz Medina, Yadira Quimbita Yupangui and Jenny Ruales
Coatings 2025, 15(7), 812; https://doi.org/10.3390/coatings15070812 - 11 Jul 2025
Cited by 2 | Viewed by 662
Abstract
Banana (Musa paradisiaca) is a climacteric fruit with high postharvest perishability, limiting its export potential. This study evaluated the effectiveness of a natural protein–polysaccharide edible coating—comprising whey, agar, cassava starch, and glycerol—on maintaining the physicochemical quality of green bananas during 28 [...] Read more.
Banana (Musa paradisiaca) is a climacteric fruit with high postharvest perishability, limiting its export potential. This study evaluated the effectiveness of a natural protein–polysaccharide edible coating—comprising whey, agar, cassava starch, and glycerol—on maintaining the physicochemical quality of green bananas during 28 days of refrigerated storage (13 °C, 95% RH). Seven formulations were tested, including an uncoated control. Physicochemical parameters such as weight loss, firmness, fruit dimensions, peel color, titratable acidity, pH, and soluble solids (°Brix) were systematically monitored. Significant differences were observed among treatments (ANOVA, p < 0.001). The most effective coating (T5), composed of 16.7% whey, 16.7% agar, 33.3% cassava starch, and 33.3% glycerol (based on 30 g/L solids), reduced weight loss by 58.8%, improved firmness retention by 48.4%, and limited sugar accumulation by 17.0% compared to the control. It also stabilized pH and acidity, preserved peel thickness and color parameters (L*, a*, b*), and delayed ripening. These findings confirm the coating’s capacity to form a cohesive semipermeable barrier that modulates moisture loss and respiration, making it a functional and sustainable alternative for extending banana shelf life in tropical supply chains. Full article
Show Figures

Figure 1

24 pages, 1096 KiB  
Review
Edible Coatings to Prolong the Shelf Life and Improve the Quality of Subtropical Fresh/Fresh-Cut Fruits: A Review
by Farid Moradinezhad, Atman Adiba, Azam Ranjbar and Maryam Dorostkar
Horticulturae 2025, 11(6), 577; https://doi.org/10.3390/horticulturae11060577 - 23 May 2025
Viewed by 2549
Abstract
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of [...] Read more.
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of fruits postharvest. Edible coatings have emerged as a sustainable solution to extending the shelf life of fruits and decreasing postharvest losses. The precise composition and application of these coatings are crucial in determining their effectiveness in preventing microbial growth and preserving the sensory attributes of fruits. Furthermore, the integration of nanotechnology into edible coatings has the potential to enhance their functionalities, including improved barrier properties, the controlled release of active substances, and increased antimicrobial capabilities. Recent advancements highlighting the impact of edible coatings are underscored in this review, showcasing how they help in prolonging shelf life, preserving quality, and minimizing postharvest losses of subtropical fresh fruits worldwide. The utilization of edible coatings presents challenges in terms of production, storage, and large-scale application, all while ensuring consumer acceptance, food safety, nutritional value, and extended shelf life. Edible coatings based on polysaccharides and proteins encounter difficulties due to inadequate water and gas barrier properties, necessitating the incorporation of plasticizers, emulsifiers, and other additives to enhance their mechanical and thermal durability. Moreover, high levels of biopolymers and active components like essential oils and plant extracts could potentially impact the taste of the produce, directly influencing consumer satisfaction. Therefore, ongoing research and innovation in this field show great potential for reducing postharvest losses and strengthening food security. This paper presents a comprehensive overview of the latest advancements in the application of edible coatings and their influence on extending the postharvest longevity of main subtropical fruits, emphasizing the importance of maintaining the quality of fresh and fresh-cut subtropical fruits, prolonging their shelf life, and protecting them from deterioration through innovative techniques. Full article
Show Figures

Figure 1

15 pages, 1752 KiB  
Review
Sodium Alginate: A Green Biopolymer Resource-Based Antimicrobial Edible Coating to Enhance Fruit Shelf-Life: A Review
by Anshika Sharma and Arun K. Singh
Colloids Interfaces 2025, 9(3), 32; https://doi.org/10.3390/colloids9030032 - 19 May 2025
Viewed by 1463
Abstract
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to [...] Read more.
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to enhance the shelf life of perishable fruits by forming a protective barrier against adverse environmental conditions and microbial infections. Sodium alginate is recognized as an excellent polysaccharide (derived from algae, seaweed, etc.) in the food industry for edible fruit coatings because of its non-allergic, biodegradable, non-toxic (safe for human health), inexpensive, and efficient gel/film-forming properties. However, the hydrophilicity of the polysaccharides is a significant concern to prevent the growth of mold and yeast. In recent years, various plant extracts (containing multiple bioactive compounds, including polyphenolic acids) and nanoparticles have been applied in sodium alginate-based edible films and fruit coatings to enhance antimicrobial activity. This review study summarized recent advancements in fabricating plant extracts incorporating sodium alginate-based films and coatings to enhance fruit shelf life. In addition, approaches to preparing edible films and the basic mechanism behind the role of coating materials in enhancing fruit shelf life are discussed. Moreover, the limitations associated with sodium alginate-based fruit coatings and films have been highlighted. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

33 pages, 1262 KiB  
Systematic Review
Antimicrobial Activity of Clove (Syzygium aromaticum) Essential Oil in Meat and Meat Products: A Systematic Review
by Eduardo Valarezo, Guicela Ledesma-Monteros, Ximena Jaramillo-Fierro, Matteo Radice and Miguel Angel Meneses
Antibiotics 2025, 14(5), 494; https://doi.org/10.3390/antibiotics14050494 - 11 May 2025
Viewed by 1396
Abstract
Background: Clove (Syzygium aromaticum) essential oil is widely recognized for its potent antimicrobial properties, making it a valuable natural preservative in food products, particularly in meat and meat derivatives, where it helps extend shelf life and enhance food safety. Methods: This [...] Read more.
Background: Clove (Syzygium aromaticum) essential oil is widely recognized for its potent antimicrobial properties, making it a valuable natural preservative in food products, particularly in meat and meat derivatives, where it helps extend shelf life and enhance food safety. Methods: This systematic review aims to evaluate the application of clove essential oil in meat and meat products, following the PRISMA 2020 methodology, to analyze its antimicrobial efficacy and its impact on the preservation of these products. The information search was carried out in the PubMed, ScienceDirect, SCOPUS, and Web of Science databases and included research articles in English published between 1999 and 2024, and 37 studies were confirmed as eligible. Results: Due to the heterogeneity of methodologies and concentrations evaluated, a narrative analysis was chosen, organizing the studies into three categories according to the application of the essential oil: direct addition, use in edible films and coatings, and encapsulation. The analysis included the main components of the essential oil, the activity analysis method, a concentration evaluation, storage conditions, the activities obtained, and a sensory evaluation. However, variability in methodologies and concentrations made direct comparison between studies difficult. Conclusions: Overall, this review confirms the effectiveness of clove essential oil in preserving meat and meat products but highlights the need to standardize its concentration and application conditions to optimize its use in the food industry. Full article
Show Figures

Figure 1

18 pages, 1548 KiB  
Article
The Effect of Muicle–Chitosan Edible Coatings on the Physical, Chemical, and Microbiological Quality of Cazon Fish (Mustelus lunulatus) Fillets Stored in Ice
by José Alberto Cruz-Guzmán, Alba Mery Garzón-García, Saúl Ruíz-Cruz, Enrique Márquez-Ríos, Santiago Valdez-Hurtado, Gerardo Trinidad Paredes-Quijada, José Carlos Rodríguez-Figueroa, María Irene Silvas-García, Nathaly Montoya-Camacho, Victor Manuel Ocaño-Higuera, Dalila Fernanda Canizales-Rodríguez and Edgar Iván Jiménez-Ruíz
Foods 2025, 14(9), 1619; https://doi.org/10.3390/foods14091619 - 3 May 2025
Cited by 1 | Viewed by 648
Abstract
Fishery products are highly perishable; therefore, effective preservation strategies are essential to maintain their freshness, quality, and shelf life. One promising approach involves the use of edible coatings formulated with natural extracts, such as muicle (Justicia spicigera). This study evaluated the [...] Read more.
Fishery products are highly perishable; therefore, effective preservation strategies are essential to maintain their freshness, quality, and shelf life. One promising approach involves the use of edible coatings formulated with natural extracts, such as muicle (Justicia spicigera). This study evaluated the effect of a muicle–chitosan edible coating on the physical, chemical, and microbiological quality of cazon fish (Mustelus lunulatus) fillets stored in ice for 18 days. The muicle extract was obtained by macerating dried leaves for 48 h, and its antibacterial activity was subsequently assessed. A control group (C) and three treatments—muicle extract (ME), chitosan (CH), and a combined muicle–chitosan coating (MECH)—were applied and monitored throughout the storage period. Quality parameters, including pH, colour, water-holding capacity (WHC), texture, total volatile basic nitrogen (TVB-N), and mesophilic microbial counts, were evaluated. The muicle extract exhibited antibacterial activity, with MIC and IC50 values of 3.01 ± 0.73 and 204.56 ± 20.23 µg/mL against Shewanella putrefaciens, and 0.10 ± 0.07 and 118.09 ± 14.51 µg/mL against Listeria monocytogenes, respectively. Treatments of ME, CH, and MECH significantly improved (p < 0.05) the quality of fillets by reducing TVB-N, pH, and microbial load compared to the control. In conclusion, the muicle extract demonstrated antibacterial potential and, either alone or in combination with chitosan, effectively preserved the physical, chemical, and microbiological quality of cazon fillets during ice storage. Full article
(This article belongs to the Special Issue Application of Edible Coating in Food Preservation)
Show Figures

Graphical abstract

19 pages, 4455 KiB  
Article
Chemical Composition, Chemometric Analysis, and Sensory Profile of Santolina chamaecyparissus L. (Asteraceae) Essential Oil: Insights from a Case Study in Serbia and Literature-Based Review
by Biljana Lončar, Mirjana Cvetković, Milica Rat, Jovana Stanković Jeremić, Jelena Filipović, Lato Pezo and Milica Aćimović
Separations 2025, 12(5), 115; https://doi.org/10.3390/separations12050115 - 2 May 2025
Cited by 1 | Viewed by 719
Abstract
The flowers of Santolina chamaecyparissus have a distinct aroma and taste, with a wide range of applications in medicine, food, and packaging. Its essential oil offers numerous health benefits, including antioxidant, hepatoprotective, anticancer, antidiabetic, spasmolytic, anti-inflammatory, immunomodulatory, antimicrobial, and antiparasitic properties. Additionally, it [...] Read more.
The flowers of Santolina chamaecyparissus have a distinct aroma and taste, with a wide range of applications in medicine, food, and packaging. Its essential oil offers numerous health benefits, including antioxidant, hepatoprotective, anticancer, antidiabetic, spasmolytic, anti-inflammatory, immunomodulatory, antimicrobial, and antiparasitic properties. Additionally, it is used as a flavoring agent in food and beverages and as a natural preservative in edible coatings for food packaging. This study investigates the chemical composition and sensory properties of the S. chamaecyparissus essential oil from Serbia, obtained via hydrodistillation, and includes a literature-based analysis of the existing profiles. Gas Chromatography–Mass Spectrometry (GC–MS) was employed for identifying the essential oil composition, while chemometric techniques like the genetic algorithm (GA), quantitative structure–retention relationship (QSRR) analysis, artificial neural network (ANN), and molecular descriptors were applied to ensure accurate and reliable results for authenticating the oil. Among the 47 identified compounds, oxygenated monoterpenes, especially artemisia ketone (36.11%), and oxygenated sesquiterpenes, notably vulgarone B (22.13%), were the primary constituents. Chemometric analysis proved effective in predicting the oil’s composition, and sensory evaluation revealed a herbal aroma with earthy, woody, and camphoraceous notes. A literature review highlighted the variability in oil composition due to geographical, environmental, and extraction factors, underscoring its chemical diversity, bioactivity, and potential applications. Full article
Show Figures

Figure 1

14 pages, 1243 KiB  
Article
The Textural Properties of Extra Virgin Olive Oil (EVOO)-Hydrocolloid Beads and the Quality Parameters of Bosana EVOO as a Preservation Liquid During Bead Shelf Life
by Maria Grazia Farbo, Elisabetta Avitabile, Costantino Fadda and Roberto Cabizza
Foods 2025, 14(9), 1472; https://doi.org/10.3390/foods14091472 - 23 Apr 2025
Viewed by 384
Abstract
The use of edible food packaging by hydrocolloid encapsulation has gained interest as an approach to preserve the physicochemical and sensory properties of food. In this study, pectin (PE) and xanthan gum (XG), naturally occurring hydrocolloids, were utilized with calcium chloride (CaCl2 [...] Read more.
The use of edible food packaging by hydrocolloid encapsulation has gained interest as an approach to preserve the physicochemical and sensory properties of food. In this study, pectin (PE) and xanthan gum (XG), naturally occurring hydrocolloids, were utilized with calcium chloride (CaCl2) as a bead-forming agent to develop an extra virgin olive oil-hydrocolloid emulsion encapsulating Bosana extra virgin olive oil (EVOO), a Sardinian monovarietal oil rich in polyphenols and sensory properties. This study investigated the textural evolution of EVOO-beads immersed in Bosana EVOO as a preservative liquid (PL) during 180 days of storage at 20 °C (room temperature) and 40 °C (accelerated shelf-life test). The bead texture was assessed at 30-day intervals along with selected oil quality parameters. Its hardness remained stable, while its springiness, cohesiveness and chewiness significantly decreased with time. Temperature and the interaction time x temperature were significant for cohesiveness. PL showed the expected degradation of polyphenols and α-tocopherol influenced by storage time and temperature. At 20 °C, free acidity and peroxide levels remained within EVOO quality standards, confirming the protective role of encapsulation. Between the PL and oil controls, no effect of the beads was observed. These results highlight the potential of hydrocolloid-based encapsulation to produce EVOO-beads, offering innovative applications as functional food coatings and in preservation technologies. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

17 pages, 8488 KiB  
Article
Edible Micro-Sized Composite Coating Applications on Post-Harvest Quality of Sweet Cherry Fruits
by Ercan Yıldız, Fatih Hancı, Mehmet Yaman, Gheorghe Cristian Popescu, Monica Popescu and Ahmet Sümbül
Horticulturae 2025, 11(3), 303; https://doi.org/10.3390/horticulturae11030303 - 11 Mar 2025
Viewed by 967
Abstract
Active packaging using an edible coating could be an essential and sustainable alternative solution to preserve the properties of fruits and to prevent food loss and food waste. Fruits generate significant food wastes and losses. Reducing food waste is a global priority. For [...] Read more.
Active packaging using an edible coating could be an essential and sustainable alternative solution to preserve the properties of fruits and to prevent food loss and food waste. Fruits generate significant food wastes and losses. Reducing food waste is a global priority. For this research, nature-based solutions (NBSs) were applied, using micro-sized chitosan (CsMPs) and selenium microparticles (SeMPs), which are green-synthesized from black tea leaf extracts, and thyme essential oil. In this study, the effects of the new generation active food preservative coating agents formed from combinations of micro-sized chitosan (CsMPs) and selenium (SeMPs), and thyme essential oil (Oil) on the quality of “0900 Ziraat” sweet cherry fruits after harvest were investigated. After the fruits were coated with edible colloid solution, they were stored at 4 °C and 21 °C for 20 days, and quality parameter analyses were performed on days 0, 5, 10, 15, and 20. As a result of this study, it was determined that the application of CsMPs + SeMPs and the subsequent application of CsMPs + SeMPs + Oil from colloid solution coatings reduced weight loss, respiration, and decay rates. Also, it was determined that these applications were the most effective in preserving color values (L*, chroma, and hue), fruit firmness, total soluble solid (TSS) amount, acidity content and total phenolics, anthocyanin, and antioxidant capacity. These results show that CsMPs + SeMPs and CsMPs + SeMPs + Oil applications can be used as edible coatings to preserve the quality of sweet cherry fruits and extend their shelf life after harvest. This study’s results will contribute to obtaining micro-sized composite coating agents/agents produced with new technology to extend the shelf life. Full article
Show Figures

Figure 1

33 pages, 1800 KiB  
Review
Clean Label Approaches in Cheese Production: Where Are We?
by Jaime Fernandes, Sandra Gomes, Fernando H. Reboredo, Manuela E. Pintado, Olga Amaral, João Dias and Nuno Alvarenga
Foods 2025, 14(5), 805; https://doi.org/10.3390/foods14050805 - 26 Feb 2025
Cited by 1 | Viewed by 2670
Abstract
The Clean Label concept has gained significant traction in the cheese industry due to consumer preferences for minimally processed cheeses free from synthetic additives. This review explores different approaches for applying Clean Label principles to the cheese industry while maintaining food safety, sensory [...] Read more.
The Clean Label concept has gained significant traction in the cheese industry due to consumer preferences for minimally processed cheeses free from synthetic additives. This review explores different approaches for applying Clean Label principles to the cheese industry while maintaining food safety, sensory quality, and shelf life. Non-thermal technologies, such as high-pressure processing (HPP), pulsed electric fields (PEF), ultra-violet (UV), and visible light (VL), are among the most promising methods that effectively control microbial growth while preserving the nutritional and functional properties of cheese. Protective cultures, postbiotics, and bacteriophages represent microbiological strategies that are natural alternatives to conventional preservatives. Another efficient approach involves plant extracts, which contribute to microbial control, and enhance cheese functionality and potential health benefits. Edible coatings, either alone or combined with other methods, also show promising applications. Despite these advantages, several challenges persist: higher costs of production and technical limitations, possible shorter shelf-life, and regulatory challenges, such as the absence of standardized Clean Label definitions and compliance complexities. Further research is needed to develop and refine Clean Label formulations, especially regarding bioactive peptides, sustainable packaging, and advanced microbial control techniques. Addressing these challenges will be essential for expanding Clean Label cheese availability while ensuring product quality and maintaining consumer acceptance. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

13 pages, 949 KiB  
Article
Potential of Annatto Seeds (Bixa orellana L.) Extract Together with Pectin-Edible Coatings: Application on Mulberry Fruits (Morus nigra L.)
by Igor Gabriel Silva Oliveira, Karina Sayuri Ueda Flores, Vinícius Nelson Barboza de Souza, Nathaly Calister Moretto, Maria Helena Verdan, Caroline Pereira Moura Aranha, Vitor Augusto Dos Santos Garcia, Claudia Andrea Lima Cardoso and Silvia Maria Martelli
Polymers 2025, 17(5), 562; https://doi.org/10.3390/polym17050562 - 20 Feb 2025
Viewed by 1167
Abstract
Morus nigra L., or mulberry, is a susceptible fleshy fruit due to its high respiratory rate and low storage stability, which shortens its shelf life and makes it difficult to commercialize in natura. Edible coatings, thin membranes produced directly on the desired surface, [...] Read more.
Morus nigra L., or mulberry, is a susceptible fleshy fruit due to its high respiratory rate and low storage stability, which shortens its shelf life and makes it difficult to commercialize in natura. Edible coatings, thin membranes produced directly on the desired surface, could improve food preservation, among other properties. Annatto (Bixa orellana L.) seeds are natural pigments with high antioxidant activity. This work aimed to develop a pectin-based edible coating with annatto extract to increase the shelf life of fruits, using mulberries as a study model. The mulberries were randomly separated into five groups: without coating, coated with different extract concentrations (0%, 5%, and 10%), and a layer-by-layer treatment consisting of a pectin layer under a 10% extract layer. The samples were evaluated for the following parameters: titratable acidity, maturity index, mass loss, pH, soluble solids, moisture contents, and bioactive compounds. The coated group with 10% annatto extract had the best result for the maturity index (25.52), while the group with 5% showed better mass loss and moisture (37.28% and 83.66%, respectively). Herein, it was demonstrated that pectin-based edible coatings with annatto extract delay the maturation and senescence of mulberries, preserving the bioactive compounds and increasing shelf life. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials for Edible Food Packaging)
Show Figures

Figure 1

13 pages, 265 KiB  
Review
Application Potential of Lactic Acid Bacteria in Horticultural Production
by Beata Kowalska and Anna Wrzodak
Sustainability 2025, 17(4), 1385; https://doi.org/10.3390/su17041385 - 8 Feb 2025
Cited by 1 | Viewed by 1841
Abstract
Lactic acid bacteria (LAB) are found on the surface of some plants, forming their natural microbiome, and are especially common in fermented plant products. They are microorganisms capable of performing lactic fermentation, during which they utilize carbohydrates and produce lactic acid. They are [...] Read more.
Lactic acid bacteria (LAB) are found on the surface of some plants, forming their natural microbiome, and are especially common in fermented plant products. They are microorganisms capable of performing lactic fermentation, during which they utilize carbohydrates and produce lactic acid. They are considered probiotic microorganisms. LAB are characterized by strong antagonistic activity against other microorganisms. The mechanism of action of these bacteria is mainly based on the production of substances with strong antimicrobial activity. Some strains of LAB also inhibit the secretion of mycotoxins by mold fungi or have the ability to eliminate them from the environment. With the changing climate and the need for plants to adapt to new, often stressful climatic conditions, the use of LAB in crops may offer a promising solution. These bacteria stimulate plant resistance to abiotic factors, i.e., drought and extreme temperatures. Research has also shown the ability of LAB to extend the storage life of fruits and vegetables. These bacteria reduce the number of unfavorable microorganisms that contaminate plant products and cause their spoilage. They also have a negative effect on human pathogenic bacteria, which can contaminate plant products and cause food poisoning in humans. When applied as an edible coating on leaves or fruits, LAB protect vegetables and fruits from microbial contamination; moreover, these vegetables and fruits can be served as carriers of probiotic bacteria that benefit human health. The presented properties of LAB predispose them to practical use, especially as components of biological plant protection products, growth biostimulants, and microbial fertilizer products. They have great potential to replace some agrochemicals and can be used as a safe component of biofertilizers and plant protection formulations for increasing plant resilience, crop productivity, and quality. The use of LAB is in line with the aims and objectives of sustainable horticulture. However, there are some limitations and gaps which should be considered before application, particularly regarding efficient and effective formulations and transfer of antibiotic resistance. Full article
34 pages, 1738 KiB  
Review
Extending the Shelf Life of Apples After Harvest Using Edible Coatings as Active Packaging—A Review
by Magdalena Mikus and Sabina Galus
Appl. Sci. 2025, 15(2), 767; https://doi.org/10.3390/app15020767 - 14 Jan 2025
Cited by 5 | Viewed by 3677
Abstract
Extending the shelf life of perishable food, such as apples, and storing them in cold conditions and/or controlled atmospheres have been of great interest in the last decades. Apples are very valuable fruits with many health benefits, but during storage at ambient conditions, [...] Read more.
Extending the shelf life of perishable food, such as apples, and storing them in cold conditions and/or controlled atmospheres have been of great interest in the last decades. Apples are very valuable fruits with many health benefits, but during storage at ambient conditions, they ripen quickly and lose moisture, causing lower crispness or other negative effects, resulting in waste problems. There has been growing attention to protective edible coatings or active packaging films based on biopolymers and natural bioactive substances. Edible coatings and films allow for combination with functional ingredients or compounds, affecting the maintenance of the postharvest quality of fruits and vegetables. They also ensure the preservation of the sensory characteristics of food, and they can have antimicrobial or antioxidant properties. All these aspects play a significant role in the storage of apples, which can also help prevent waste, which is in line with the circular economy approach. The functionality of coatings and films is closely related to the type, content, and composition of active compounds, as well as their interaction with biopolymers. Active coatings with the addition of different functional compounds, such as plant extracts, phenolic acids, and nanoparticles, can be an alternative solution affecting the postharvest quality of apples during storage, maintaining the fruit’s stability, and thus minimising their waste. The most important issues related to the latest reports on improving the postharvest quality of apples using edible coatings incorporated with various active substances were evaluated. Agricultural conditions and factors that affect the postharvest quality of apples were described. The requirements for protective coatings for apples should be focused on low-cost materials, including waste-based resources, good miscibility, and compatibility of components. Those factors combined with the storage conditions may result in shelf life extension or retention of the postharvest quality of apples, regardless of the variety or cultivation techniques. Full article
(This article belongs to the Special Issue Feature Review Papers in Section ‘Food Science and Technology')
Show Figures

Figure 1

Back to TopTop