Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,314)

Search Parameters:
Keywords = natural culture conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

7 pages, 1334 KiB  
Technical Note
An Optimized Protocol for SBEM-Based Ultrastructural Analysis of Cultured Human Cells
by Natalia Diak, Łukasz Chajec, Agnieszka Fus-Kujawa and Karolina Bajdak-Rusinek
Methods Protoc. 2025, 8(4), 90; https://doi.org/10.3390/mps8040090 - 6 Aug 2025
Abstract
Serial block-face scanning electron microscopy (SBEM) is a powerful technique for three-dimensional ultrastructural analysis of biological samples, though its application to in vitro cultured human cells remains underutilized. In this study, we present an optimized SBEM sample preparation protocol using human dermal fibroblasts [...] Read more.
Serial block-face scanning electron microscopy (SBEM) is a powerful technique for three-dimensional ultrastructural analysis of biological samples, though its application to in vitro cultured human cells remains underutilized. In this study, we present an optimized SBEM sample preparation protocol using human dermal fibroblasts and induced pluripotent stem cells (iPSCs). The method includes key modifications to the original protocol, such as using only glutaraldehyde for fixation and substituting the toxic cacodylate buffer with a less hazardous phosphate buffer. These adaptations result in excellent preservation of cellular ultrastructure, with high contrast and clarity, as validated by transmission electron microscopy (TEM). The loss of natural cell morphology resulted from fixation during passage, when cells formed a precipitate, rather than from fixation directly within the culture medium. The protocol is time-efficient, safe, and broadly applicable to both stem cells and differentiated cells cultured under 2D conditions, providing a valuable tool for ultrastructural analysis in diverse biomedical research settings. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 - 2 Aug 2025
Viewed by 216
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
8 pages, 890 KiB  
Communication
Single-Cell Protein Using an Indigenously Isolated Methanotroph Methylomagnum ishizawai, Using Biogas
by Jyoti A. Mohite, Kajal Pardhi and Monali C. Rahalkar
Microbiol. Res. 2025, 16(8), 171; https://doi.org/10.3390/microbiolres16080171 - 1 Aug 2025
Viewed by 219
Abstract
The use of methane as a carbon source for producing bacterial single-cell protein (SCP) has been one of the most interesting developments in recent years. Most of these upcoming industries are using a methanotroph, Methylococcus capsulatus Bath, for SCP production using natural gas [...] Read more.
The use of methane as a carbon source for producing bacterial single-cell protein (SCP) has been one of the most interesting developments in recent years. Most of these upcoming industries are using a methanotroph, Methylococcus capsulatus Bath, for SCP production using natural gas as the substrate. In the present study, we have explored the possibility of using an indigenously isolated methanotroph from a rice field in India, Methylomagnum ishizawai strain KRF4, for producing SCP from biogas [derived from cow dung]. The process was eco-friendly, required minimal instruments and chemicals, and was carried out under semi-sterile conditions in a tabletop fish tank. As the name suggests, Methylomagnum is a genus of large methanotrophs, and the strain KRF4 had elliptical to rectangular size and dimensions of ~4–5 µm × 1–2 µm. In static cultures, when biogas and air were supplied in the upper part of the growing tank, the culture grew as a thick pellicle/biofilm that could be easily scooped. The grown culture was mostly pure, from the microscopic observations where the large size of the cells, with rectangular-shaped cells and dark granules, could easily help identify any smaller contaminants. Additionally, the large cell size could be advantageous for separating biomass during downstream processing. The amino acid composition of the lyophilized biomass was analyzed using HPLC, and it was seen that the amino acid composition was comparable to commercial fish meal, soymeal, Pruteen, and the methanotroph-derived SCP-UniProtein®. The only difference was that a slightly lower percentage of lysine, tryptophan, and methionine was observed in Methylomagnum-derived SCP. Methylomagnum ishizawai could be looked at as an alternative for SCP derived from methane or biogas due to the comparable SCP produced, on the qualitative level. Further intensive research is needed to develop a continuous, sustainable, and economical process to maximize biomass production and downstream processing. Full article
Show Figures

Figure 1

24 pages, 11280 KiB  
Article
Identifying Landscape Character in Multi-Ethnic Areas in Southwest China: The Case of the Miao Frontier Corridor
by Yanjun Liu, Xiaomei Li, Shangjun Lu, Liyun Xie and Zongsheng Huang
Land 2025, 14(8), 1571; https://doi.org/10.3390/land14081571 - 31 Jul 2025
Viewed by 353
Abstract
The landscapes of China’s multi-ethnic areas are rich in natural and cultural value, but they are threatened by homogenization and urbanization. This study aims to establish a method for identifying and classifying the landscape characters in China’s multi-ethnic areas to support the protection [...] Read more.
The landscapes of China’s multi-ethnic areas are rich in natural and cultural value, but they are threatened by homogenization and urbanization. This study aims to establish a method for identifying and classifying the landscape characters in China’s multi-ethnic areas to support the protection and sustainable development of the landscape in these areas. Taking the Miao Frontier Corridor as an example, the study optimized a parameterization method of landscape character assessment (LCA), integrated relevant cultural and natural elements, and used the K-means clustering algorithm to determine the landscape character types and regions of the Miao Frontier Corridor. The results show that (1) the natural conditions, ethnic exchanges, and historical institutions of the Miao Frontier Corridor have had a significant impact on its overall landscape; and (2) using ethnic group culture as a cultural element in LCA helps to reveal the unique cultural value of areas with different landscape characters. This study expands the LCA framework and applies it to multi-ethnic areas in China, thereby establishing a database that can serve as the basis for cross-regional landscape protection, management, and development planning in these areas. The research methods can be widely used in other multi-ethnic areas in China. Full article
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 338
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

26 pages, 9475 KiB  
Article
Microalgae-Derived Vesicles: Natural Nanocarriers of Exogenous and Endogenous Proteins
by Luiza Garaeva, Eugene Tolstyko, Elena Putevich, Yury Kil, Anastasiia Spitsyna, Svetlana Emelianova, Anastasia Solianik, Eugeny Yastremsky, Yuri Garmay, Elena Komarova, Elena Varfolomeeva, Anton Ershov, Irina Sizova, Evgeny Pichkur, Ilya A. Vinnikov, Varvara Kvanchiani, Alina Kilasoniya Marfina, Andrey L. Konevega and Tatiana Shtam
Plants 2025, 14(15), 2354; https://doi.org/10.3390/plants14152354 - 31 Jul 2025
Viewed by 330
Abstract
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs [...] Read more.
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs for biomedical applications. In this study, the extracellular vesicles isolated from the culture medium of two unicellular microalgae, Chlamydomonas reinhardtii (Chlamy-EVs) and Parachlorella kessleri (Chlore-EVs), were characterized by atomic force microscopy (AFM), cryo-electronic microscopy (cryo-EM), and nanoparticle tracking analysis (NTA). The biocompatibility with human cells in vitro (HEK-293T, DF-2 and A172) and biodistribution in mouse organs and tissues in vivo were tested for both microalgal EVs. An exogenous therapeutic protein, human heat shock protein 70 (HSP70), was successfully loaded to Chlamy- and Chlore-EVs, and its efficient delivery to human glioma and colon carcinoma cell lines has been confirmed. Additionally, in order to search for potential therapeutic biomolecules within the EVs, their proteomes have been characterized. A total of 105 proteins were identified for Chlamy-EVs and 33 for Chlore-EVs. The presence of superoxide dismutase and catalase in the Chlamy-EV constituents allows for considering them as antioxidant agents. The effective delivery of exogenous cargo to human cells and the possibility of the particle yield optimization by varying the microalgae growth conditions make them favorable producers of EVs for biotechnology and biomedical application. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

30 pages, 3414 KiB  
Article
In Vitro Neuroprotective Effects of a Mixed Extract of Bilberry, Centella asiatica, Hericium erinaceus, and Palmitoylethanolamide
by Rebecca Galla, Sara Ferrari, Ivana Miletto, Simone Mulè and Francesca Uberti
Foods 2025, 14(15), 2678; https://doi.org/10.3390/foods14152678 - 30 Jul 2025
Viewed by 371
Abstract
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using [...] Read more.
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using a multi-step in vitro strategy. An initial evaluation in a 3D intestinal epithelial model demonstrated that the formulation preserves barrier integrity and may be bioaccessible, as evidenced by transepithelial electrical resistance (TEER) and the expression of tight junctions. Subsequent analysis in an integrated gut–brain axis model under oxidative stress conditions revealed that the formulation significantly reduces inflammatory markers (NF-κB, TNF-α, IL-1β, and IL-6; about 1.5-fold vs. H2O2), reactive oxygen species (about 2-fold vs. H2O2), and nitric oxide levels (about 1.2-fold vs. H2O2). Additionally, it enhances mitochondrial activity while also improving antioxidant responses. In a co-culture of neuronal and astrocytic cells, the combination upregulates neurotrophic factors such as BDNF and NGF (about 2.3-fold and 1.9-fold vs. H2O2). Crucially, the formulation also modulates key biomarkers associated with cognitive decline, reducing APP and phosphorylated tau levels (about 98% and 1.6-fold vs. H2O2) while increasing Sirtuin 1 and Nrf2 expression (about 3.6-fold and 3-fold vs. H2O2). These findings suggest that this nutraceutical combination may support the cellular pathways involved in neuronal resilience and healthy brain ageing, offering potential as a functional food ingredient or dietary supplement. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 356
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

36 pages, 25831 KiB  
Article
Identification of Cultural Landscapes and Spatial Distribution Characteristics in Traditional Villages of Three Gorges Reservoir Area
by Jia Jiang, Zhiliang Yu and Ende Yang
Buildings 2025, 15(15), 2663; https://doi.org/10.3390/buildings15152663 - 28 Jul 2025
Viewed by 335
Abstract
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and [...] Read more.
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and development under the impact of modernisation and ecological pressure. This study takes 112 traditional villages in the TGRA that have been included in the protection list as the research objects, aiming to construct a cultural landscape identification framework for the traditional villages in the TGRA. Through field surveys, landscape feature assessments, GIS spatial analysis, and multi-source data analysis, we systematically analyse their cultural landscape type systems and spatial differentiation characteristics, and then reveal their cultural landscape types and spatial differentiation patterns. (1) The results of the study show that the spatial distribution of traditional villages exhibits significant altitude gradient differentiation—the low-altitude area is dominated by traffic and trade villages, the middle-altitude area is dominated by patriarchal manor villages and mountain farming villages, and the high-altitude area is dominated by ethno-cultural and ecologically dependent villages. (2) Slope and direction analyses further reveal that the gently sloping areas are conducive to the development of commercial and agricultural settlements, while the steeply sloping areas strengthen the function of ethnic and cultural defence. The results indicate that topographic conditions drive the synergistic evolution of the human–land system in traditional villages through the mechanisms of agricultural optimisation, trade networks, cultural defence, and ecological adaptation. The study provides a paradigm of “nature–humanities” interaction analysis for the conservation and development of traditional villages in mountainous areas, which is of practical value in coordinating the construction of ecological barriers and the revitalisation of villages in the reservoir area. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

26 pages, 1300 KiB  
Review
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease
by Laura Carrillo-Serradell, Jade Liu-Tindall, Violeta Planells-Romeo, Lucía Aragón-Serrano, Marcos Isamat, Toni Gabaldón, Francisco Lozano and María Velasco-de Andrés
Int. J. Mol. Sci. 2025, 26(15), 7281; https://doi.org/10.3390/ijms26157281 - 28 Jul 2025
Viewed by 724
Abstract
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat [...] Read more.
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat elusive due to its sparsity, variability, susceptibility to environmental factors (e.g., early life colonization, diet, or pharmacological treatments), and the specific in vitro culture challenges. Functionally, the mycobiome is known to play a role in modulating innate and adaptive immune responses by interacting with microorganisms and immune cells. The latter elicits anti-fungal responses via the recognition of specific fungal cell-wall components (e.g., β-1,3-glucan, mannan, and chitin) by immune system receptors. These receptors then regulate the activation and differentiation of many innate and adaptive immune cells including mucocutaneous cell barriers, macrophages, neutrophils, dendritic cells, natural killer cells, innate-like lymphoid cells, and T and B lymphocytes. Mycobiome disruptions have been correlated with various diseases affecting mostly the brain, lungs, liver and pancreas. This work reviews our current knowledge on the mycobiome, focusing on its composition, research challenges, conditioning factors, interactions with the bacteriome and the immune system, and the known mycobiome alterations associated with disease. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 2749 KiB  
Article
Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities?
by Anastasia Aliesa Hermosaningtyas, Anna Budzianowska, Dariusz Kruszka, Monika Derda, Jolanta Długaszewska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8292; https://doi.org/10.3390/app15158292 - 25 Jul 2025
Viewed by 223
Abstract
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial [...] Read more.
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial and anti-Acanthamoeba properties. Callus cultures were established under optimized and controlled conditions, and metabolomic profiling was completed using UPLC-HRMS/MS. In silico analysis, using a molecular docking approach, was applied to understand the interaction between target compounds and Acanthamoeba profilin and identify possible targets for antimicrobial properties. Untargeted metabolomic analysis confirmed the presence of valuable compounds in the callus cultures of the studied species. Biological activity was assessed through anti-Acanthamoeba and antimicrobial assays. Lychnis flos-cuculi and Kickxia elatine callus extracts showed significant inhibitory effects on Acanthamoeba trophozoites, with 87.5% and 80.1% inhibition at 10 mg/mL, respectively. In contrast, E. planum extract stimulated amoebic growth. The anti-Acanthamoeba activity correlated with the presence of ferulic acid and p-coumaric acid in L. flos-cuculi extract, and acteoside in K. elatine extract. Antibacterial testing revealed moderate activity of E. planum and K. elatine extracts against Staphylococcus spp., while Gram-negative bacteria and fungi were largely resistant. These findings highlight the potential of in vitro cultures—particularly those from L. flos-cuculi and K. elatine—as promising, sustainable sources of anti-Acanthamoeba and antimicrobial agents, warranting further investigation into their pharmacologically active constituents. Full article
Show Figures

Figure 1

16 pages, 1319 KiB  
Article
Key Factors Influencing Bacillus cereus Contamination in Hot Ready-to-Eat Meal Delivery
by Tomáš Komprda, Olga Cwiková, Vojtěch Kumbár, Gabriela Franke, Petr Kouřil, Ondřej Patloka, Josef Kameník, Marta Dušková and Alena Zouharová
Foods 2025, 14(15), 2605; https://doi.org/10.3390/foods14152605 - 24 Jul 2025
Viewed by 361
Abstract
With increasing popularity of food delivery services, the microbial safety of transported meals should be ensured. An effect of the type of a meal (cooked rice; mashed potatoes; mushroom sauce), inner primary packaging (sugarcane bagasse [SB] tray; polypropylene [PP] tray), secondary container (polyester/polyethylene [...] Read more.
With increasing popularity of food delivery services, the microbial safety of transported meals should be ensured. An effect of the type of a meal (cooked rice; mashed potatoes; mushroom sauce), inner primary packaging (sugarcane bagasse [SB] tray; polypropylene [PP] tray), secondary container (polyester/polyethylene foam/aluminum foil [PPA] bag; PP box) on the time interval of the internal hot ready-to-eat (RTE) meal temperature decrease to the value critical for Bacillus cereus growth (40 °C) was tested during a simulated delivery; in aliquot samples of the same meals, B. cereus growth was quantified presuming a natural contamination of the meals. Type of a meal had no effect on the tested time interval (p > 0.05). Packaging a meal in the PP tray as compared to the SB tray and inserting primary trays into the PP box instead of PPA bag delayed (p < 0.05) the internal meal temperature decrease by 50 and 15 min, respectively. Average B. cereus counts in the naturally contaminated meals after the four-hour culturing at 40 °C was 2.99 log CFU·g−1. It was concluded that a hot RTE meal delivered up to four hours under the tested conditions is not likely to facilitate B. cereus growth above unacceptable levels. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

20 pages, 5519 KiB  
Article
Establishment of the First Orchidarium in Serbia: Strategy for Sustainable Management of Native Orchid Genetic Resources
by Jovana Ostojić, Tijana Narandžić, Milica Grubač, Lazar Pavlović and Mirjana Ljubojević
J. Zool. Bot. Gard. 2025, 6(3), 37; https://doi.org/10.3390/jzbg6030037 - 22 Jul 2025
Viewed by 419
Abstract
Botanical gardens serve as vital centers for ex situ conservation, maintaining diverse plant species under controlled conditions. Terrestrial orchids, despite their wide diversity and distribution, often occur in small and declining populations, making their conservation increasingly urgent. This study aimed to examine the [...] Read more.
Botanical gardens serve as vital centers for ex situ conservation, maintaining diverse plant species under controlled conditions. Terrestrial orchids, despite their wide diversity and distribution, often occur in small and declining populations, making their conservation increasingly urgent. This study aimed to examine the potential for establishing the first specialized orchidarium in Serbia, focusing on the native orchid species of the Fruška Gora region. A SWOT analysis, combined with site assessment data, was employed to identify key strengths, weaknesses, opportunities, and threats, informing the development of a functional zoning plan. The results indicate that such an orchidarium would offer a threefold benefit: strengthening ex situ conservation, advancing scientific research and environmental education, and promoting sustainable tourism. The proposed design consists of eight distinct zones, three of which reflect natural habitats of selected orchid species. The planned integration of a seed gene bank in the central zone, along with living plant collections and a nearby in vitro culture laboratory, establishes a comprehensive framework for the sustainable management of orchid genetic resources in the region, forming a foundation for future research and preservation. Full article
Show Figures

Figure 1

17 pages, 1310 KiB  
Article
Assessment of Suppressive Effects of Negative Air Ions on Fungal Growth, Sporulation and Airborne Viral Load
by Stefan Mijatović, Andrea Radalj, Andjelija Ilić, Marko Janković, Jelena Trajković, Stefan Djoković, Borko Gobeljić, Aleksandar Sovtić, Gordana Petrović, Miloš Kuzmanović, Jelena Antić Stanković, Predrag Kolarž and Irena Arandjelović
Atmosphere 2025, 16(8), 896; https://doi.org/10.3390/atmos16080896 - 22 Jul 2025
Viewed by 350
Abstract
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting [...] Read more.
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting both healthy individuals and the immunosuppressed alike. This study investigated the abundance and diversity of airborne fungal spores in both hospital and residential environments, using custom designed air samplers with or without the presence of negative air ions (NAIs) inside the sampler. The main purpose of investigation was the assessment of biological effects of NAIs on fungal spore viability, deposition, mycelial growth, and sporulation, as well as airborne viral load. The precise assessment of mentioned biological effects is otherwise difficult to carry out due to low concentrations of studied specimens; therefore, specially devised and designed, ion-bioaerosol interaction air samplers were used for prolonged collection of specimens of interest. The total fungal spore concentrations were quantified, and fungal isolates were identified using cultural and microscopic methods, complemented by MALDI-TOF mass spectrometry. Results indicated no significant difference in overall spore concentration between environments or treatments; however, presence of NAIs induced a delay in the sporulation process of Cladosporium herbarum, Aspergillus flavus, and Aspergillus niger within 72 h. These effects of NAIs are for the first time demonstrated in this work; most likely, they are mediated by oxidative stress mechanisms. A parallel experiment demonstrated a substantially reduced concentration of aerosolized equine herpesvirus 1 (EHV-1) DNA within 10–30 min of exposure to NAIs, with more than 98% genomic load reduction beyond natural decay. These new results on the NAIs interaction with a virus, as well as new findings regarding the fungal sporulation, resulted in part from a novel interaction setup designed for experiments with the bioaerosols. Our findings highlight the potential of NAIs as a possible approach for controlling fungal sporulation and reducing airborne viral particle quantities in indoor environments. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

Back to TopTop