Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = native chickens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1170 KiB  
Article
Egg Quality and Nutritional Profile of Three Sicilian Autochthonous Chicken Breeds: Siciliana, Cornuta di Caltanissetta, and Valplatani
by Vittorio Lo Presti, Francesca Accetta, Maria Elena Furfaro, Antonino Nazareno Virga and Ambra Rita Di Rosa
Foods 2025, 14(15), 2571; https://doi.org/10.3390/foods14152571 - 22 Jul 2025
Viewed by 260
Abstract
The conservation of poultry biodiversity is a growing global priority, yet it necessarily relies on the scientific valorization of specific local breeds. This study aimed to characterize the lipid composition and cholesterol content of eggs from three native Sicilian chicken breeds (Cornuta, Valplatani, [...] Read more.
The conservation of poultry biodiversity is a growing global priority, yet it necessarily relies on the scientific valorization of specific local breeds. This study aimed to characterize the lipid composition and cholesterol content of eggs from three native Sicilian chicken breeds (Cornuta, Valplatani, and Siciliana) reared under semi-extensive conditions, in order to evaluate their nutritional potential and support biodiversity preservation strategies. A total of 170 eggs from 11 farms were analyzed. Fatty acid composition and nutritional indices (atherogenic index, thrombogenic index, n-6/n-3 ratio, HH index) were determined according to ISO and AOAC standards. Results showed that Cornuta eggs exhibited the most favorable lipid profile, with the lowest saturated fatty acid (SFA) content (38.55%), the lowest n-6/n-3 ratio (7.35), and the best values for AI (0.52), TI (1.22), and HH (2.02), compared to Valplatani and Siciliana. Conversely, the lowest cholesterol content was found in Siciliana eggs (1463.58 mg/kg), significantly lower than Cornuta (1789 mg/kg; p < 0.05). Although no commercial hybrids were included, the literature data were used for contextual comparison. These findings suggest that native breeds may produce eggs with functional nutritional properties, supporting both healthier food choices and local genetic conservation. Moreover, this study provides a replicable framework for the nutritional valorization of underutilized poultry breeds, reinforcing the role of biodiversity in sustainable food systems. Full article
(This article belongs to the Special Issue Eggs and Egg Products: Production, Processing, and Safety)
Show Figures

Figure 1

17 pages, 1145 KiB  
Article
Long-Term Heat Stress and Genetic Responses in Growth Traits of Thai Native Synthetic Chicken Lines
by Wuttigrai Boonkum, Supawan Wiangnak and Vibuntita Chankitisakul
Animals 2025, 15(14), 2130; https://doi.org/10.3390/ani15142130 - 18 Jul 2025
Viewed by 260
Abstract
In this study, we evaluated genetic parameters and progress in growth traits and heat tolerance across four Thai native synthetic chicken lines—Kaimook e-san, Soi Pet, Soi Nin, and Kaen Thong—over seven generations. Growth traits, including body weight (BW), average daily gain (ADG), and [...] Read more.
In this study, we evaluated genetic parameters and progress in growth traits and heat tolerance across four Thai native synthetic chicken lines—Kaimook e-san, Soi Pet, Soi Nin, and Kaen Thong—over seven generations. Growth traits, including body weight (BW), average daily gain (ADG), and breast circumference (BrC), were recorded and analyzed from hatching to 14 weeks of age, with heat stress assessed based on the temperature–humidity index (THI). Genetic parameters were estimated using a multi-trait animal model incorporating THI thresholds. Significant differences in growth traits were observed among the lines (p < 0.05). Kaimook e-san consistently exhibited superior performance, with males outperforming females, while Kaen Thong showed the lowest performance across all traits. Heritability estimates declined with age, with higher values observed in early growth stages, indicating stronger genetic influence during early development. Strong negative genetic correlations between heat tolerance and growth traits were observed in Kaimook e-san, while Kaen Thong showed weaker correlations, suggesting greater potential for simultaneous improvement in growth and heat tolerance. All lines demonstrated genetic progress in growth traits across generations, with Kaimook e-san achieving the highest gains, although these were accompanied by a decline in heat tolerance. The findings highlight the trade-offs between growth and thermal resilience and underscore the importance of multi-trait selection strategies for sustainable poultry breeding in tropical environments. Full article
Show Figures

Figure 1

18 pages, 1044 KiB  
Article
Remediation of Cd, Cu, and Zn Metals in Soil Amended with Biochar and Animal Manure Using a Hyperaccumulator
by George F. Antonious, Anjan Nepal and Basanta Neupane
Pollutants 2025, 5(3), 22; https://doi.org/10.3390/pollutants5030022 - 14 Jul 2025
Viewed by 261
Abstract
The application of animal manure and organic soil amendments as an alternative to expensive inorganic fertilizers is becoming more prevalent in the USA and worldwide. A field experiment was conducted on Bluegrass–Maury silty loam soil at the Kentucky State University Research Farm using [...] Read more.
The application of animal manure and organic soil amendments as an alternative to expensive inorganic fertilizers is becoming more prevalent in the USA and worldwide. A field experiment was conducted on Bluegrass–Maury silty loam soil at the Kentucky State University Research Farm using the Kennebec variety of white potato (Solanum tuberosum) under Kentucky climatic conditions. The study involved 12 soil treatments in a randomized complete block design. The treatments included four types of animal manures (cow manure, chicken manure, vermicompost, and sewage sludge), biochar at three application rates (5%, 10%, and 20%), and native soil as control plots. Additionally, animal manures were supplemented with 10% biochar to assess the influence of combining biochar with animal manure on the accumulation of heavy metals in potato tubers. The study aimed to (1) determine the concentration of seven heavy metals (Cd, Cr, Ni, Pb, Mn, Zn, Cu) and two essential nutrients (K and Mg) in soils treated with biochar and animal manure, and (2) assess metal mobility from soil to potato tubers at harvest by determining the bioaccumulation factor (BAF). The results revealed that Cd, Pb, Ni, Cr, and Mn concentrations in potato tubers exceeded the FAO/WHO allowable limits. Whereas the BAF values varied among the soil treatments, with Cd, Cu, and Zn having high BAF values (>1), and Pb, Ni, Cr, and Mn having low BAF values (<1). This observation demonstrates that potato tubers can remediate Cd, Cu, and Zn when grown under the soil amended with biochar and animal manure. Full article
(This article belongs to the Section Food Pollution)
Show Figures

Graphical abstract

19 pages, 147602 KiB  
Article
Image Classification of Chicken Breed and Gender Using Deep Learning
by Liuchao Zhu, Zixin Chen, Hanwen Zhang, Yanju Shan, Gaige Ji, Huanliang Xu, Jingting Shu and Junxian Huang
AgriEngineering 2025, 7(7), 211; https://doi.org/10.3390/agriengineering7070211 - 2 Jul 2025
Viewed by 367
Abstract
Identifying chicken breeds and genders accurately is essential for conserving local breeds and maintaining gender ratios on farms. This study developed a system based on the Swin Transformer that efficiently and accurately classifies chicken breeds and genders. The system incorporates a target detection [...] Read more.
Identifying chicken breeds and genders accurately is essential for conserving local breeds and maintaining gender ratios on farms. This study developed a system based on the Swin Transformer that efficiently and accurately classifies chicken breeds and genders. The system incorporates a target detection module to eliminate background noise and employs data augmentation techniques to prevent overfitting. A high-quality dataset, consisting of 10,482 locally captured images representing 13 Chinese native chicken breeds, was created for training and testing the model. The system was evaluated using a custom dataset and compared against popular image classification models, such as ResNet and ViT. Results indicate that the target detection module and data augmentation effectively improved the model’s performance. Additionally, strategies such as increasing the input size appropriately and utilizing pre-trained weights significantly enhanced the model’s accuracy. Interpretability analysis reveals that the system successfully identifies specific chicken body parts across different breeds and genders, aligning with human visual attention and highlighting its effectiveness. This work provides a robust solution for poultry management, aiding in tasks such as breed selection, gender ratio control, and genetic conservation. Furthermore, the methodology and dataset presented in this research provide a foundation for future studies in agricultural computer vision applications. Full article
Show Figures

Figure 1

19 pages, 2192 KiB  
Article
Transcriptome Analysis of the Hippocampus in Domestic Laying Hens with Different Fear Responses to the Tonic Immobility Test
by Jingyi Zhang, Min Li, Liying Pan, Ye Wang, Hui Yuan, Zhiwei Zhang, Chaochao Luo and Runxiang Zhang
Animals 2025, 15(13), 1889; https://doi.org/10.3390/ani15131889 - 26 Jun 2025
Viewed by 318
Abstract
Fear is a critical welfare concern in laying hens. Fearful behaviors in domestic chickens are influenced by both genetic and environmental factors, contributing to individual differences in stress responses. Tonic immobility (TI) duration is widely recognized as a reliable indicator of fear levels. [...] Read more.
Fear is a critical welfare concern in laying hens. Fearful behaviors in domestic chickens are influenced by both genetic and environmental factors, contributing to individual differences in stress responses. Tonic immobility (TI) duration is widely recognized as a reliable indicator of fear levels. The hippocampus, a critical brain region for emotional states, plays a pivotal role in associating fearful experiences with specific stimuli, enabling adaptive behavioral responses. This study investigated hippocampal histological characteristics and transcriptomic profiles in laying hens with different fear responses categorized based on TI duration. A total of 80 native Lindian hens (75 weeks old) were individually housed in modified conventional cages. At 76 weeks of age, hens exhibiting the longest and shortest TI durations were classified into the high-fear (TH) and low-fear (TL) groups, respectively. Whole hemibrains were collected for histological and immunohistochemical analyses, while hippocampal tissues underwent transcriptome sequencing. The results showed a significant reduction in Nissl body counts in hippocampal neurons of high-fear hens (p < 0.05), suggesting potential neuronal damage or functional impairment. Transcriptomic analysis revealed 365 differentially expressed genes (DEGs) between two groups, with 277 upregulated and 88 downregulated genes in TH chickens. KEGG pathway enrichment analysis identified seven significantly associated pathways (p < 0.01), including retinol metabolism, vitamin B6 metabolism, and nicotinate and nicotinamide metabolism, all of which are crucial for neuronal function and immune regulation. In addition, a significant increase in DCX protein expression (p < 0.05) and a decrease in c-Fos protein expression (p < 0.05) was noted in in high-fear hens, whereas PCNA levels remained unchanged (p > 0.05) under immunohistochemical validation. The neuronal alterations observed in high fear individuals suggest neural damage, while transcriptomic variations point to potential disruptions in neurogenesis, synaptic signaling, and stress-related pathways. Collectively, these results provide novel insights into the neurobiological basis of fear regulation in laying hens and may have implications for poultry welfare and management strategies. Full article
(This article belongs to the Special Issue Welfare and Behavior of Laying Hens)
Show Figures

Figure 1

24 pages, 12602 KiB  
Article
Effects of Different Rearing Methods on the Intestinal Morphology, Intestinal Metabolites, and Gut Microbiota of Lueyang Black-Bone Chickens
by Shuang Zeng, Linqing Shao, Mingming Zhao, Ling Wang, Jia Cheng, Tao Zhang and Hongzhao Lu
Animals 2025, 15(12), 1758; https://doi.org/10.3390/ani15121758 - 14 Jun 2025
Viewed by 676
Abstract
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The [...] Read more.
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The intestinal morphology, intestinal metabolites, and gut microbiota are critical determinants of nutrient utilization efficiency and immune health in poultry. This study investigates the impact of two distinct rearing modalities—cage-raised (CR) and cage-free (CF)—on the intestinal morphology, intestinal metabolites, and gut microbiota of the duodenum and cecum in Lueyang black-bone chickens. Additionally, we have integrated metabolomics and microbiome analyses. Morphological assessments revealed that, in comparison to the CR group, the CF group exhibited a significant increase in duodenal villi height (VH) and crypt depth (CD) (p < 0.01). Furthermore, there was a notable increase in the number of intestinal inflammatory cells within the CF group. Non-targeted metabolomics indicated an upregulation of omega-3 series polyunsaturated fatty acids and bile acid metabolites in the CR group. Conversely, the CF group demonstrated significantly elevated levels of lysophosphatidylcholine (LPC) and phosphatidylcholine (PE) in the intestine. Microbiome analysis revealed that in the duodenum, beneficial bacteria (e.g., Lactobacillus) were the dominant genera in the CF group, while the Bacteroides predominate in the CR group. Correlation analyses indicated a positive association between LPC levels and the presence of eight bacterial genera, including Ureaplasma. The omega-3 series polyunsaturated fatty acids were positively correlated with three bacterial genera, such as Flavobacterium. Notably, bile acid metabolites exhibited a significant positive correlation with Rikenellaceae_RC9_gut_group. In conclusion, this study provides novel insights into how rearing methods influence intestinal morphology, intestinal metabolites, and gut microbiota, offering a new perspective for the scientific management of poultry with the premise of ensuring animal health and welfare. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

14 pages, 221 KiB  
Review
Current Status and Prospects of Genetic Resources of Native Chickens of Japan
by Hideaki Takahashi
Animals 2025, 15(12), 1703; https://doi.org/10.3390/ani15121703 - 9 Jun 2025
Viewed by 652
Abstract
The Japanese government established Japan Agriculture Standards (JAS) in 1999 for the production of chicken meat using native Japanese chicken breeds, abbreviated as ‘Jidori JAS’, for the effective use of native chickens. “Jidori” means “native chickens” in Japanese. The Jidori JAS has designated [...] Read more.
The Japanese government established Japan Agriculture Standards (JAS) in 1999 for the production of chicken meat using native Japanese chicken breeds, abbreviated as ‘Jidori JAS’, for the effective use of native chickens. “Jidori” means “native chickens” in Japanese. The Jidori JAS has designated the Japanese chicken breeds that were established in Japan and/or imported before the end of the Meiji period (until 1912). According to the Jidori JAS, the percentage of native blood in chickens to be marketed as certified Jidori JAS must be 50% or more. This indicates that the Japanese government has permitted the commercial production of hybrid chickens under the Jidori JAS certification. Jidori JAS was introduced to increase the number of chicks available for fattening and improve the growth performance of Jidori JAS certified production. While farmers have to buy chicks from hatcheries each time they produce poultry, this ensures stable production, and the meat quality of the chicken remains consistent. It should be noted that Jidori JAS certification does not guarantee a specific flavor for Jidori meat products. Currently, marker-assisted selection for growth improvement has been successfully implemented in Japan for several Jidori JAS-certified chickens, enhancing their growth performance. Full article
14 pages, 2401 KiB  
Article
Identification of Novel Genetic Loci Involved in Testis Traits of the Jiangxi Local Breed Based on GWAS Analyses
by Jing-E Ma, Ke Huang, Bahareldin Ali Abdalla Gibril, Xinwei Xiong, Yanping Wu, Zhangfeng Wang and Jiguo Xu
Genes 2025, 16(6), 637; https://doi.org/10.3390/genes16060637 - 27 May 2025
Cited by 1 | Viewed by 508
Abstract
Background: The testis, a critical reproductive organ in male animals, is responsible for sperm production and androgen secretion. Testis weight often correlates with reproductive performance, yet the genetic factors influencing testicular traits in chickens remain unclear. Methods: Previous genome-wide association studies (GWAS) have [...] Read more.
Background: The testis, a critical reproductive organ in male animals, is responsible for sperm production and androgen secretion. Testis weight often correlates with reproductive performance, yet the genetic factors influencing testicular traits in chickens remain unclear. Methods: Previous genome-wide association studies (GWAS) have identified key genes affecting testicular traits in Kangle Yellow chickens, along with the associated regulatory pathways and Gene Ontology (GO) terms, through bioinformatic analyses. In this study, we utilized the existing literature, full-length transcriptome data, and proteome analyses to select key candidate genes. Results: We identified 13 associated markers for chicken testicular traits with 262 candidate genes. Nine candidate genes were found to regulate chicken testicular traits referred to integrated analysis, including CDH3, ZFPM1, CFAP52, ST6GAL1, IGF2BP2, SPG7, CDT1, NFAT5, and OPRK1. Physical interactions among these genes were also observed, implicating mechanisms such as cell adhesion molecules and neuroactive ligand–receptor interaction. Conclusions: These findings provide a genetic basis for improving testicular traits in Chinese native chicken breeds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 7046 KiB  
Article
Genetic and Evolutionary Analysis of Ake Chicken: New Insights into China’s Sole Indigenous Naked-Neck Chicken Breed
by Ronglang Cai, Shuang Gu, Boxuan Zhang, Xuemei Deng, Mostafa Galal Abdelfattah, Ning Yang, Hesham Y. A. Darwish and Congjiao Sun
Int. J. Mol. Sci. 2025, 26(9), 4399; https://doi.org/10.3390/ijms26094399 - 6 May 2025
Viewed by 614
Abstract
Heat-stress resilience is vital for poultry in tropical/subtropical regions where high temperatures impair productivity. Ake chickens, as the only naked-neck chicken breed in China, exhibit robust resistance to heat stress, but this breed lacks clarity in its genetic origins. This study utilized the [...] Read more.
Heat-stress resilience is vital for poultry in tropical/subtropical regions where high temperatures impair productivity. Ake chickens, as the only naked-neck chicken breed in China, exhibit robust resistance to heat stress, but this breed lacks clarity in its genetic origins. This study utilized the next-generation sequencing data from 22 chicken breeds to conduct phylogenetic and population analyses. Gene flow analysis revealed a gene migration event from Iranian naked-neck chickens and Indian local breeds to Ake chickens, and population separation estimates suggested that the naked-neck gene was introduced to China around 500–600 years ago. NJ-tree, PCA, and population structure analyses showed that Ake chickens cluster with Yunnan native breeds, which diverged only 100–200 years ago. A selective sweep in the candidate region on chromosome 3 (97.0–97.37 Mb) showed elevated genetic differentiation (FST) and reduced nucleotide diversity (π) compared to the genome-wide average, indicating rapid fixation of the trait under natural/artificial selection. Demographic reconstruction indicated that the current effective size of Ake chickens is stable at 2000–3000 individuals. These findings deepen our understanding of Ake chicken evolution and provide valuable insights for conservation and the development of heat-stress-resistant poultry breeds. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 233 KiB  
Article
The Role of Black Soldier Fly Larvae in Optimizing Performance and Amino Acid Composition in Thai Native Chicken
by Theeraphat Srikha, Padsakorn Pootthachaya, Warin Puangsap, Suphakon Pramotchit, Wuttigrai Boonkum, Chanon Suntara, Yupa Hanboonsong, Anusorn Cherdthong, Bundit Tengjaroensakul and Sawitree Wongtangtintharn
Animals 2025, 15(9), 1330; https://doi.org/10.3390/ani15091330 - 5 May 2025
Viewed by 953
Abstract
The objective of this study was to investigate the effects of black soldier fly larvae (BSFL) inclusion on the performance, economic return, carcass traits, meat quality, amino acid profile, and purine content in the breast meat of Thai native chickens (TNCs) (Pradu Hang [...] Read more.
The objective of this study was to investigate the effects of black soldier fly larvae (BSFL) inclusion on the performance, economic return, carcass traits, meat quality, amino acid profile, and purine content in the breast meat of Thai native chickens (TNCs) (Pradu Hang Dam Mor Kor 55: PD) from 10 to 70 days of age. A total of 216 ten-day-old PD chickens (108 males and 108 females) were randomly assigned to three dietary treatments with four replicates per treatment (18 birds per replicate, with a 1:1 male-to-female ratio). The treatments included (T1) control diet with soybean meal as the main protein source, (T2) 10% BSFL meal replacing soybean meal, and (T3) 12% BSFL meal replacing soybean meal. The results showed that BSFL inclusion had no significant effect on overall growth performance (p > 0.05), but it reduced abdominal fat and feed cost per gain while improving economic returns (p < 0.05). Additionally, BSFL increased some breast meat amino acid profiles, such as serine, glutamic acid, threonine, arginine, and lysine (p < 0.05), and increased total purine content (p < 0.05), although the values were still within the safe limit for human consumption. These results suggest that BSFL can be used as a sustainable alternative protein source in Thai native chicken diets without compromising product performance or quality. Full article
(This article belongs to the Special Issue Animal Health: Potential Benefits of Edible Insects)
25 pages, 6242 KiB  
Article
Development and Characterization of an Injectable Alginate/Chitosan Composite Hydrogel Reinforced with Cyclic-RGD Functionalized Graphene Oxide for Potential Tissue Regeneration Applications
by Mildred A. Sauce-Guevara, Sergio D. García-Schejtman, Emilio I. Alarcon, Sergio A. Bernal-Chavez and Miguel A. Mendez-Rojas
Pharmaceuticals 2025, 18(5), 616; https://doi.org/10.3390/ph18050616 - 23 Apr 2025
Cited by 1 | Viewed by 1626
Abstract
Background: In tissue engineering, developing injectable hydrogels with tailored mechanical and bioactive properties remains a challenge. This study introduces an injectable hydrogel composite for soft tissue regeneration, composed of oxidized alginate (OA) and N-succinyl chitosan (NSC) cross-linked via Schiff base reaction, reinforced with [...] Read more.
Background: In tissue engineering, developing injectable hydrogels with tailored mechanical and bioactive properties remains a challenge. This study introduces an injectable hydrogel composite for soft tissue regeneration, composed of oxidized alginate (OA) and N-succinyl chitosan (NSC) cross-linked via Schiff base reaction, reinforced with graphene oxide (GOx) and cyclic arginylglycylaspartic acid (c-RGD). The objective was to create a multifunctional platform combining injectability, bioactivity, and structural stability. Methods: The OA/NSC/GOx-cRGD hydrogel was synthesized through Schiff base cross-linking (aldehyde-amine reaction). Characterization included FTIR (C=N bond at 1650 cm⁻¹), Raman spectroscopy (D/G bands at 1338/1567 cm⁻¹), SEM (porous microstructure), and rheological analysis (shear-thinning behavior). In vitro assays assessed fibroblast viability (MTT) and macrophage TNF-α secretion (ELISA), while ex-vivo injectability and retention were evaluated using chicken cardiac tissue. Results: The hydrogel exhibited shear-thinning behavior (viscosity: 10 to <1 Pa·s) and elastic-dominated mechanics (G′ > G″), ensuring injectability. SEM revealed an interconnected porous structure mimicking native extracellular matrix. Fibroblast viability remained ≥95%, and TNF-α secretion in macrophages decreased by 80% (30 vs. 150 pg/μL in controls), demonstrating biocompatibility and anti-inflammatory effects. The hydrogel adhered stably to cardiac tissue without leakage. Conclusions: The OA/NSC/GOx-cRGD composite integrates injectability, bioactivity, and structural stability, offering a promising scaffold for tissue regeneration. Its modular design allows further functionalization with peptides or growth factors. Future work will focus on translational applications, including scalability and optimization for dynamic biological environments. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

17 pages, 1372 KiB  
Review
Genetic Strategies for Enhancing Rooster Fertility in Tropical and Humid Climates: Challenges and Opportunities
by Jiraporn Juiputta, Vibuntita Chankitisakul and Wuttigrai Boonkum
Animals 2025, 15(8), 1096; https://doi.org/10.3390/ani15081096 - 10 Apr 2025
Cited by 1 | Viewed by 740
Abstract
Native chickens are important both economically and for the preservation of genetic diversity, especially for optimizing the reproductive performance of male chickens, which plays an important role in genetic propagation. However, hot and humid weather affects the quality of semen and the breeding [...] Read more.
Native chickens are important both economically and for the preservation of genetic diversity, especially for optimizing the reproductive performance of male chickens, which plays an important role in genetic propagation. However, hot and humid weather affects the quality of semen and the breeding ability of male chickens. One method used to solve this problem is genetic selection using genomic technology, which improves accuracy and shortens the breed selection time. Therefore, we collected and analyzed data from relevant research to review the genetic improvement approach for male chickens using genomic technology. We compared popular genomic selection models, such as GBLUP, ssGBLUP, Bayesian approaches, RR-GBLUP, WGBLUP, and MTGBLUP, as well as genome-wide association studies (GWASs), to identify genes associated with semen quality and heat tolerance. The results of this analysis suggested that the use of genomic data can enhance genetic selection and enable breeding to occur more quickly and accurately. We addressed the trends and scientific developments in male chicken genetic selection, together with the benefits and constraints of each method. This will help breeders and researchers to create the most successful genetic selection plans for the next generation of chickens. Full article
Show Figures

Figure 1

14 pages, 1732 KiB  
Article
Genetic Diversity and Conservation Priority of Korean Chicken Breeds Using Single-Nucleotide Polymorphism Markers
by Huimang Song, Yoonsik Kim, Seunghwan Lee, Bonghwan Choi, Seungchang Kim, Daehyeok Jin, Gaeun Kim, Seungmin Ha, Seongsil Mun, Youngchul Cho and Yoonji Chung
Animals 2025, 15(8), 1084; https://doi.org/10.3390/ani15081084 - 9 Apr 2025
Viewed by 503
Abstract
Maintaining genetic diversity is vital for biodiversity and livestock sustainability, with monitoring serving as a prerequisite for conservation strategies. As an initial step for developing future strategies, we analysed the genetic diversity and conservation priorities of 16 chicken breeds managed by a government [...] Read more.
Maintaining genetic diversity is vital for biodiversity and livestock sustainability, with monitoring serving as a prerequisite for conservation strategies. As an initial step for developing future strategies, we analysed the genetic diversity and conservation priorities of 16 chicken breeds managed by a government institute in this study. The breeds were classified as native or locally adapted per FAO definitions and grouped by origin (i.e., governmental or private farms). Genetic diversity, assessed through observed and expected heterozygosity, inbreeding coefficients, and linkage disequilibrium, was high in native breeds from government institutions, such as Chungnam White Korean Native (CNW) and Gangwon Black Korean Native (GWL). Private farm breeds, including Hoeungseong-Yakdak (HYD), exhibited lower diversity. Conservation priorities based on contributions to total genetic diversity (HT) and allelic diversity (AT) revealed that locally adapted breeds, such as Cornish (S) and White Leghorn, significantly contributed to HT. Native breeds, such as CNW and Hyuin black, had higher contributions to AT. Combined assessments indicated that S, CNW, and GWL have the highest conservation priorities. Despite lower rankings, unique breeds such as HYD require targeted conservation owing to their distinctiveness. In conclusion, Korean chicken breeds such as S, CNW, and GWL are vital for maintaining genetic diversity among government-managed breeds. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

36 pages, 4875 KiB  
Article
Sustainable Removal of Basic Fuchsine and Methylene Blue Dyes Using Chicken Bone Biomass: Thermodynamics, Kinetics, and Insights from Experimental Studies and Decision Tree with Least Squares Boosting Predictive Modeling
by Assia Ouzani, Yamina Zouambia, Hamida Maachou, Mohamed Krea, Amine Aymen Assadi, Lotfi Khezami, Yacine Benguerba, Jie Zhang, Abdeltif Amrane, Walid Elfalleh and Hichem Tahraoui
Water 2025, 17(7), 1053; https://doi.org/10.3390/w17071053 - 2 Apr 2025
Cited by 1 | Viewed by 909
Abstract
This study addresses the dual challenges of water pollution and waste management by exploring the valorization of chicken bone biomass in native (NBio) and calcined (CBio) forms as biosorbents for dye removal. Basic fuchsine (BF) and methylene blue (MB) were selected as model [...] Read more.
This study addresses the dual challenges of water pollution and waste management by exploring the valorization of chicken bone biomass in native (NBio) and calcined (CBio) forms as biosorbents for dye removal. Basic fuchsine (BF) and methylene blue (MB) were selected as model pollutants, and adsorption was assessed under varying operational conditions. Characterization using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) showed that calcination improved crystallinity, eliminated organic impurities, and increased surface area (247 m2/g for NBio vs. 370 m2/g for CBio). Adsorption tests revealed higher performance for CBio, with maximum adsorption capacities of 100 mg/g (BF) and 142.85 mg/g (MB) based on the Langmuir isotherm, while NBio with maximum adsorption capacities of 111 mg/g (BF) and 111.11 mg/g (MB) followed the Freundlich model. Adsorption kinetics indicated pseudo-second-order behavior, suggesting chemisorption. The possible interactions between dyes and the biosorbent are hydrogen bonding, electrostatic interactions, and Lewis acid–base interactions. Thermodynamic analysis highlighted exothermic behavior for NBio and endothermic, entropy-driven adsorption for CBio, with both processes being spontaneous. A decision tree with Least Squares Boosting (DT_LSBOOST) provided accurate predictions (R2 = 0.9999, RMSE < 0.003) by integrating key parameters. These findings promote chicken bone biomass as a cost-effective, sustainable biosorbent, offering promising potential in wastewater treatment and environmental remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 1042 KiB  
Article
Functional Polymorphisms in the Neuropeptide Y (NPY) Gene Associated with Egg Production in Thai Native, Black-Bone, and Commercial Laying Hens Using SNP Markers
by Doungnapa Promket, Jennarong Kammongkun, Jiranan Insee, Wootichai Kenchaiwong, Khanitta Pengmeesri, Thassawan Somchan and Wuttigrai Boonkum
Animals 2025, 15(5), 744; https://doi.org/10.3390/ani15050744 - 5 Mar 2025
Viewed by 800
Abstract
This study aimed to identify single nucleotide polymorphism (SNP) loci within the coding sequence of the neuropeptide Y (NPY) gene and evaluate their association with egg production traits in Thai native chickens. The goal was to enhance productivity through selective breeding. A total [...] Read more.
This study aimed to identify single nucleotide polymorphism (SNP) loci within the coding sequence of the neuropeptide Y (NPY) gene and evaluate their association with egg production traits in Thai native chickens. The goal was to enhance productivity through selective breeding. A total of 117 chickens, including three Thai native breeds and commercial laying hens, were analyzed. The phenotypic traits measured included age at first egg production (AFEP), first egg weight (FEW), egg weight at 9 months (EW_9M) and 12 months (EW_12M) of egg production period, number of eggs at 9 months (NE_9M) and 12 months (NE_12M) of egg production period, number of eggs per month (EperM), and egg mass (EMs). The NPY gene was sequenced to examine the association between these traits and specific genotypes. The results showed that commercial laying hens (LC) significantly outperformed native breeds in overall egg production. Among the native breeds, Pradu Hang Dum (PH) demonstrated the earliest laying age and the highest cumulative egg production. Genetic diversity analysis revealed moderate heterozygosity levels (PIC = 0.22 to 0.50, He = 0.26 to 0.50). Specific SNP loci (SNP1, SNP2, SNP3, SNP4, SNP5, and SNP6) were found to be associated with key egg production traits, such as AFEP, FEW, EW_9M, EW_12M, NE_9M, NE_12M, EperM, and EMs. These findings highlight the potential of using genetic markers for improving egg production traits in Thai native chickens. By incorporating marker-assisted selection into breeding programs, this research supports the development of more efficient and sustainable poultry farming practices, particularly for local breeds. This study also underscores the importance of preserving genetic diversity while enhancing productivity, ensuring the long-term sustainability of native chicken populations. Full article
Show Figures

Figure 1

Back to TopTop