The Role of Black Soldier Fly Larvae in Optimizing Performance and Amino Acid Composition in Thai Native Chicken
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Samle Preparation
2.3. Animals and Experimental Design
2.4. Data Collection
2.4.1. Growth Performance
2.4.2. Economic Aspects
2.4.3. Carcass Quality
2.4.4. Meat Quality
2.4.5. Amino Acid Profile of Breast Meat
2.4.6. Purine Contents of Breast Meat
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Economic Aspects
3.3. Carcass Quality
3.4. Quality of Meat
3.5. Amino Acid Profile of Breast Meat
3.6. Purine Content of Breast Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional Food. Product Development, Marketing and Consumer Acceptance—A Review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Supachaturat, S.; Pichyangkura, R.; Chandrachai, A.; Pentrakoon, D. Perspective on Functional Food Commercialization in Thailand. Int. Food Res. J. 2017, 24, 1374–1382. [Google Scholar]
- Charoensin, S.; Laopaiboon, B.; Boonkum, W.; Phetcharaburanin, J.; Villareal, M.O.; Isoda, H.; Duangjinda, M. Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances. Animals 2021, 11, 902. [Google Scholar] [CrossRef]
- Srikha, T.; Pootthachaya, P.; Puangsap, W.; Pintaphrom, N.; Somparn, N.; Boonkum, W.; Cherdthong, A.; Tengjaroenkul, B.; Wongtangtintharn, S. Effects of Black Soldier Fly Larvae Oil on Growth Performance, Blood Biochemical Parameters, Carcass Quality, and Metabolomics Profile of Breast Muscle of Thai Native Chickens. Animals 2024, 14, 3098. [Google Scholar] [CrossRef] [PubMed]
- El-Deek, A.A.; Abdel-Wareth, A.A.; Osman, M.; El-Shafey, M.; Khalifah, A.M.; Elkomy, A.E.; Lohakare, J. Alternative Feed Ingredients in the Finisher Diets for Sustainable Broiler Production. Sci. Rep. 2020, 10, 17743. [Google Scholar] [CrossRef] [PubMed]
- Stories, Agricultural News. Thai Imported Soybean Prices in 2022–2023 Remain High…Pressure on Soybean Use. Available online: https://www.agrinewsthai.com/industrial-drop/38216 (accessed on 30 March 2025).
- Khalifah, A.; Abdalla, S.; Rageb, M.; Maruccio, L.; Ciani, F.; El-Sabrout, K. Could Insect Products Provide a Safe and Sustainable Feed Alternative for the Poultry Industry? A Comprehensive Review. Animals 2023, 13, 1534. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Q.; Zhang, J.; Yu, Z. Double the Biodiesel Yield: Rearing Black Soldier Fly Larvae, Hermetia Illucens, on Solid Residual Fraction of Restaurant Waste after Grease Extraction for Biodiesel Production. Renew. Energy 2012, 41, 75–79. [Google Scholar] [CrossRef]
- Li, S.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of Black Soldier Fly (Hermetia illucens) Larvae Oil on Growth Performance, Body Composition, Tissue Fatty Acid Composition and Lipid Deposition in Juvenile Jian Carp (Cyprinus carpio Var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Loponte, R.; Nizza, S.; Bovera, F.; De Riu, N.; Fliegerova, K.; Lombardi, P.; Vassalotti, G.; Mastellone, V.; Nizza, A.; Moniello, G. Growth Performance, Blood Profiles and Carcass Traits of Barbary Partridge (Alectoris barbara) Fed Two Different Insect Larvae Meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Marono, S.; Piccolo, G.; Parisi, G.; Iaconisi, V.; Gasco, L.; Nizza, A. Use of Tenebrio Molitor Larvae Meal as Protein Source in Broiler Diet: Effect on Growth Performance, Nutrient Digestibility, and Carcass and Meat Traits. J. Anim. Sci. 2016, 94, 639–647. [Google Scholar] [CrossRef]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an Insect Meal of the Black Soldier Fly (Hermetia illucens) as Soybean Substitute: Intestinal Morphometry, Enzymatic and Microbial Activity in Laying Hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-Art on Use of Insects as Animal Feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef]
- Ahmed, I.; İnal, F.; Riaz, R.; Ahsan, U.; Kuter, E.; Usman, A. A Review of Black Soldier Fly (Hermetia illucens) as a Potential Alternative Protein Source in Broiler Diets. Ann. Anim. Sci. 2023, 23, 939–949. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Acuti, G.; Marangon, A.; Zotte, A.D. Black Soldier Fly as Dietary Protein Source for Broiler Quails: Meat Proximate Composition, Fatty Acid and Amino Acid Profile, Oxidative Status and Sensory Traits. Animal 2018, 12, 640–647. [Google Scholar] [CrossRef]
- Ji, S.Y. Effects of Black Soldier Fly (Hermetia illucens) Larvae Oil and Meal on Growth Performance, Cecal Microflora, and Meat Quality in Broiler. Ph.D. Thesis, Seoul Nationnal University, Seoul, South Korea; p. 2021.
- Zeitz, J.O.; Fennhoff, J.; Kluge, H.; Stangl, G.I.; Eder, K. Effects of Dietary Fats Rich in Lauric and Myristic Acid on Performance, Intestinal Morphology, Gut Microbes, and Meat Quality in Broilers. Poult. Sci. 2015, 94, 2404–2413. [Google Scholar] [CrossRef]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F. Nutritional Value of a Partially Defatted and a Highly Defatted Black Soldier Fly Larvae (Hermetia illucens L.) Meal for Broiler Chickens: Apparent Nutrient Digestibility, Apparent Metabolizable Energy and Apparent Ileal Amino Acid Digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef]
- Pornsuwan, R.; Pootthachaya, P.; Bunchalee, P.; Hanboonsong, Y.; Cherdthong, A.; Tengjaroenkul, B.; Boonkum, W.; Wongtangtintharn, S. Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly (Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed. Animals 2023, 13, 2244. [Google Scholar] [CrossRef]
- Tantiyasawasdikul, V.; Chomchuen, K.; Loengbudnark, W.; Chankitisakul, V.; Boonkum, W. Comparative Study and Relationship Analysis between Purine Content, Uric Acid, Superoxide Dismutase, and Growth Traits in Purebred and Crossbred Thai Native Chickens. Front. Vet. Sci. 2023, 10, 1263829. [Google Scholar] [CrossRef]
- SAS. SAS/STAT User’s Guide; Version 9.4; SAS Inst. Inc.: Cary, NC, USA, 2019. [Google Scholar]
- Wang, H.; Rehman, K.U.; Feng, W.; Yang, D.; Rehman, R.U.; Cai, M.; Zhang, J.; Yu, Z.; Zheng, L. Physicochemical Structure of Chitin in the Developing Stages of Black Soldier Fly. Int. J. Biol. Macromol. 2020, 149, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cheng, G.; Li, Q.; Jiao, S.; Feng, C.; Zhao, X.; Yin, H.; Du, Y.; Liu, H. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice. Mar. Drugs 2018, 16, 66. [Google Scholar] [CrossRef]
- Al Anas, M.; Aprianto, M.A.; Akit, H.; Kurniawati, A.; Hanim, C. Black Soldier Fly Larvae Oil (Hermetia illucens L.) Calcium Salt Enhances Intestinal Morphology and Barrier Function in Laying Hens. Poult. Sci. 2024, 103, 103777. [Google Scholar] [CrossRef]
- Kim, S.A.; Rhee, M.S. Highly Enhanced Bactericidal Effects of Medium Chain Fatty Acids (Caprylic, Capric, and Lauric Acid) Combined with Edible Plant Essential Oils (Carvacrol, Eugenol, Β-Resorcylic Acid, Trans-Cinnamaldehyde, Thymol, and Vanillin) against Escherichia Coli O157: H7. Food Control 2016, 60, 447–454. [Google Scholar]
- Aprianto, M.A.; Kurniawati, A.; Hanim, C.; Ariyadi, B.; Al Anas, M. Effect Supplementation of Black Soldier Fly Larvae Oil (Hermetia illucens L.) Calcium Salt on Performance, Blood Biochemical Profile, Carcass Characteristic, Meat Quality, and Gene Expression in Fat Metabolism Broilers. Poult. Sci. 2023, 102, 102984. [Google Scholar] [CrossRef] [PubMed]
- Nilugonda, A.; Sankaralingam, S.; Anitha, P.; Mathew, D.D.; Aswathi, P.B. Influence of Black Soldier Fly (Hermetia illucens) Larvae Feeding on Carcass Characteristics of Gramasree Hens. J. Vet. Anim. Sci. 2022, 53, 429–434. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Li, J.; Chen, Y.; Yang, W.; Zhang, L. Effects of Dietary Coconut Oil as a Medium-Chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers. Asian-Australas. J. Anim. Sci. 2015, 28, 223. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, S.; Özkan, S.; Acar, M.C. Partial Replacement of Soybean with Alternative Protein Sources: Effects on Meat Quality, Sensory Attributes, and Fatty Acids and Amino Acids Content of Breast Meat of a Local Chicken Strain. J. Anim. Physiol. Anim. Nutr. 2025, 109, 51–63. [Google Scholar] [CrossRef]
- Morris, S.M., Jr. Arginine Metabolism: Boundaries of Our Knowledge. J. Nutr. 2007, 137, 1602S–1609S. [Google Scholar] [CrossRef]
- Matthews, D.E. Review of Lysine Metabolism with a Focus on Humans. J. Nutr. 2020, 150, 2548S–2555S. [Google Scholar] [CrossRef]
- Radhakrishnan, G.; Silva, M.S.; Liland, N.S.; Secci, R.; Araujo, P.; Philip, A.J.P.; Belghit, I. Does the Processing of Black Soldier Fly Larvae Meal Affect the Amino Acid Solubility in Atlantic Salmon (Salmo Salar)? J. Insects Food Feed 2024, 1, 1–16. [Google Scholar] [CrossRef]
- Dutta, S.; Ray, S.; Nagarajan, K. Glutamic Acid as Anticancer Agent: An Overview. Saudi Pharm. J. 2013, 21, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Liu, S.; Curhan, G. Intake of Purine-Rich Foods, Protein, and Dairy Products and Relationship to Serum Levels of Uric Acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2005, 52, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Zgaga, L.; Theodoratou, E.; Kyle, J.; Farrington, S.M.; Agakov, F.; Tenesa, A.; Walker, M.; McNeill, G.; Wright, A.F.; Rudan, I. The Association of Dietary Intake of Purine-Rich Vegetables, Sugar-Sweetened Beverages and Dairy with Plasma Urate, in a Cross-Sectional Study. PLoS ONE 2012, 7, e38123. [Google Scholar] [CrossRef]
- He, Z.; Zhao, M.; Wang, C.Y.; Sun, L.; Jiang, Y.Y.; Feng, Y. Purine and Uric Acid Contents of Common Edible Insects in Southwest China. J. Insects Food Feed 2019, 5, 293–300. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Yuan, M.; Xu, Y.; Xu, H. Gout and Diet: A Comprehensive Review of Mechanisms and Management. Nutrients 2022, 14, 3525. [Google Scholar] [CrossRef]
Ingredients (%) | Before the Experiment (1–9 Days) | Period 1 (10–28 Days) | Period 3 (43–70 Days) | Period 3 (43–70 Days) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | BSFL | Control | BSFL | Control | BSFL | ||||||
10% | 12% | 10% | 10% | T2 | T3 | ||||||
Corn meal | 46.10 | 46.10 | 49.15 | 49.70 | 50.42 | 53.05 | 53.55 | 55.90 | 57.95 | 58.35 | |
Soybean meal | 29.20 | 29.20 | 26.28 | 25.70 | 25.20 | 22.68 | 22.18 | 20.00 | 18.00 | 17.60 | |
BSFL 1 | 0.00 | 0.00 | 2.92 | 3.50 | 0.00 | 2.52 | 3.02 | 0.00 | 2.00 | 2.40 | |
Rice bran oil | 2.10 | 2.10 | 0.75 | 0.50 | 3.28 | 2.05 | 1.80 | 3.80 | 2.90 | 2.70 | |
FFSB 2 | 18.00 | 18.00 | 16.30 | 16.00 | 16.50 | 15.10 | 14.85 | 16.30 | 15.15 | 14.95 | |
Choline chloride 60% | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | |
Limestone | 1.60 | 1.60 | 1.60 | 1.60 | 1.60 | 1.60 | 1.60 | 1.40 | 1.40 | 1.40 | |
Dicalciumphosphate%P21 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.40 | 1.40 | 1.40 | |
Premix 3 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |
Salt | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | |
DL-Met | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | |
Lysine | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
Chemical composition by analytic | |||||||||||
CP, % | 23.56 | 23.56 | 23.29 | 23.54 | 20.35 | 21.87 | 21.43 | 20.26 | 18.91 | 19.03 | |
GE, Kcal/kg | 4.129 | 4.129 | 4.050 | 4.072 | 4.166 | 4.149 | 4.143 | 4.250 | 4.361 | 4.239 | |
Feed price (Baht/kg) | 20.74 | 20.74 | 19.63 | 19.42 | 20.82 | 19.84 | 19.65 | 20.54 | 19.80 | 19.64 |
Performance | Control | BSFL | SEM | p-Value | Linear | Quadratic | |
---|---|---|---|---|---|---|---|
10% | 12% | ||||||
Initial weight (g/b) | 33.04 | 33.08 | 33.03 | 0.06 | 0.76 | 0.90 | 0.48 |
Day 10–28 | |||||||
BW (g/b) | 395.05 | 386.78 | 386.31 | 6.41 | 0.49 | 0.30 | 0.58 |
BWG (g/b) | 361.96 | 353.69 | 353.22 | 6.41 | 0.49 | 0.30 | 0.58 |
FI 1 (g/b) | 525.02 b | 671.64 a | 672.24 a | 9.65 | <0.0001 | <0.0001 | <0.0001 |
FCR | 1.45 b | 1.90 a | 1.90 a | 0.04 | <0.0001 | <0.0001 | 0.0002 |
SR 2 (%) | 100.00 | 100.00 | 100.00 | NA | NA | NA | NA |
PI 3 | 138.68 a | 103.54 b | 103.28 b | 3.75 | <0.0001 | <0.0001 | 0.002 |
Day 29–42 | |||||||
BW (g/b) | 694.29 | 678.65 | 680.51 | 11.88 | 0.53 | 0.37 | 0.51 |
BWG (g/b) | 299.24 | 291.87 | 294.20 | 15.38 | 0.92 | 0.80 | 0.77 |
FI 1 (g/b) | 676.41 | 654.99 | 639.56 | 20.15 | 0.37 | 0.17 | 0.89 |
FCR | 2.27 | 2.25 | 2.19 | 0.12 | 0.84 | 0.59 | 0.86 |
SR 2 (%) | 100.00 | 100.00 | 100.00 | NA | NA | NA | NA |
PI 3 | 95.30 | 93.12 | 93.80 | 10.13 | 0.93 | 0.86 | 0.75 |
Day 43–70 | |||||||
BW (g/b) | 1361.68 | 1312.99 | 1350.81 | 19.37 | 0.16 | 0.68 | 0.08 |
BWG (g/b) | 667.39 | 634.33 | 665.62 | 16.36 | 0.25 | 0.94 | 0.11 |
FI 1 (g/b) | 1956.41 a | 1876.83 a | 1771.39 b | 29.93 | 0.009 | 0.003 | 0.71 |
FCR | 2.87 | 2.97 | 2.66 | 0.12 | 0.20 | 0.23 | 0.14 |
SR 2 (%) | 100.00 | 100.00 | 100.00 | NA | NA | NA | NA |
PI 3 | 86.64 | 79.87 | 92.72 | 4.65 | 0.42 | 0.38 | 0.11 |
Day 10–70 | |||||||
BWG (g/b) | 1328.59 | 1279.90 | 1317.72 | 19.37 | 0.16 | 0.68 | 0.08 |
FI 1 (g/b) | 1908.60 | 1876.83 | 1771.39 | 43.89 | 0.11 | 0.09 | 0.46 |
FCR | 1.44 | 1.47 | 1.35 | 0.04 | 0.10 | 0.10 | 0.10 |
SR 2 (%) | 100.00 | 100.00 | 100.00 | NA | NA | NA | NA |
PI 3 | 154.34 | 145.74 | 163.46 | 5.04 | 0.08 | 0.21 | 0.17 |
Economic Aspects | Control | BSFL | SEM | p-Value | Linear | Quadratic | |
---|---|---|---|---|---|---|---|
10% | 12% | ||||||
Average feed price (USD/kg) | 0.64 | 0.61 | 0.61 | NA | NA | NA | NA |
FCG (Baht/Bird) | 1.22 a | 1.15 ab | 1.07 b | 0.03 | 0.01 | 0.003 | 0.96 |
SBR (Baht/Bird) | 3.37 | 3.25 | 3.34 | 0.05 | 0.17 | 0.72 | 0.08 |
NPR (Baht/Bird) | 2.15 | 2.10 | 2.27 | 0.05 | 0.08 | 0.09 | 0.08 |
ROI (%) | 176.34 b | 183.79 b | 211.87 a | 6.88 | 0.01 | 0.005 | 0.21 |
Carcass | Control | BSFL | SEM | p-Value | Linear | Quadratic | |
---|---|---|---|---|---|---|---|
10% | 12% | ||||||
Dressing percentage (%) | 54.70 | 54.25 | 54.95 | 0.91 | 0.84 | 0.85 | 0.52 |
Internal organs | |||||||
Liver (%) | 1.63 | 1.77 | 1.82 | 0.09 | 0.31 | 0.16 | 0.66 |
Heart (%) | 0.46 | 0.44 | 0.43 | 0.02 | 0.48 | 0.24 | 0.97 |
Pancreas (%) | 0.18 | 0.18 | 0.16 | 0.01 | 0.56 | 0.44 | 0.43 |
Spleen (%) | 0.18 | 0.21 | 0.22 | 0.03 | 0.57 | 0.36 | 0.68 |
Gizzards (%) | 2.19 | 2.40 | 2.28 | 0.15 | 0.55 | 0.68 | 0.35 |
Abdominal fat (%) | 0.32 a | 0.19 ab | 0.12 b | 0.06 | 0.05 | 0.02 | 0.67 |
External organs | |||||||
Wing (%) | 9.96 | 10.15 | 10.24 | 0.15 | 0.34 | 0.16 | 0.12 |
Thigh (%) | 13.43 | 13.13 | 13.58 | 0.41 | 0.69 | 0.79 | 0.42 |
Inner fillet (%) | 3.72 | 3.53 | 3.71 | 0.12 | 0.38 | 0.99 | 0.18 |
Outer fillet (%) | 11.48 | 11.12 | 11.17 | 0.45 | 0.80 | 0.62 | 0.70 |
Drumstick (%) | 11.18 | 11.02 | 11.17 | 0.17 | 0.72 | 0.99 | 0.43 |
Edible meat (%) | 49.75 | 49.73 | 49.93 | 0.75 | 0.98 | 0.86 | 0.91 |
Quality of Breast Meat | Control | BSFL | SEM | p-Value | Linear | Quadratic | |
---|---|---|---|---|---|---|---|
10% | 12% | ||||||
Color | |||||||
Lightness (L*) | 44.08 | 41.37 | 44.50 | 2.25 | 0.36 | 0.62 | 0.19 |
Redness (a*) | 1.46 | 1.44 | 0.96 | 0.45 | 0.76 | 0.51 | 0.71 |
Yellowness (b*) | 7.15 | 8.51 | 8.08 | 0.53 | 0.24 | 0.19 | 0.26 |
Texture profile analysis | |||||||
Hardness (g) | 730.3 | 845.8 | 785.3 | 124.93 | 0.76 | 0.73 | 0.52 |
Springiness (g) | 0.59 | 0.60 | 0.61 | 0.03 | 0.92 | 0.69 | 0.94 |
Cohesiveness (g) | 0.65 | 0.63 | 0.64 | 0.02 | 0.55 | 0.79 | 0.30 |
Gumminess (g) | 475.10 | 535.50 | 506.10 | 87.25 | 0.85 | 0.78 | 0.64 |
Chewiness (g) | 292.51 | 325.18 | 308.03 | 55.28 | 0.89 | 0.82 | 0.68 |
Amino Acid (g/100 g of Breast Meat) | Control | BSFL | SEM | p-Value | Linear | Quadratic | |
---|---|---|---|---|---|---|---|
10% | 12% | ||||||
Non-essential amino acids | |||||||
Serine | 0.57 c | 0.79 a | 0.67 b | 0.051 | 0.025 | 0.139 | 0.0142 |
Glutamic | 3.41 b | 3.81 a | 3.61 ab | 0.008 | <0.0001 | <0.0001 | <0.0001 |
Alanine | 0.68 | 0.68 | 0.71 | 0.039 | 0.775 | 0.576 | 0.684 |
Cysteine | 1.21 | 1.20 | 1.24 | 0.019 | 0.133 | 0.227 | 0.094 |
Tyrosine | 0.81 | 0.78 | 0.83 | 0.028 | 0.542 | 0.491 | 0.400 |
Arginine | 3.58 b | 3.72 a | 3.75 a | 0.040 | 0.021 | 0.009 | 0.284 |
Total Non-essential amino acids | 10.26 b | 10.98 a | 10.81a | 0.170 | 0.023 | 0.032 | 0.036 |
Essential amino acids | |||||||
Threonine | 2.77 c | 3.03 a | 2.91 b | 0.030 | 0.0008 | 0.0075 | 0.0006 |
Valine | 0.66 | 0.73 | 0.74 | 0.035 | 0.199 | 0.101 | 0.494 |
Isoleucine | 1.88 | 1.83 | 1.94 | 0.037 | 0.085 | 0.136 | 0.073 |
Leucine | 3.75 | 3.76 | 3.81 | 0.025 | 0.189 | 0.081 | 0.797 |
Phenylalanine | 2.24 | 2.19 | 2.26 | 0.042 | 0.449 | 0.743 | 0.238 |
Lysine | 3.92 b | 4.00 a | 4.01 a | 0.008 | <0.0001 | <0.0001 | 0.005 |
Histidine | 1.78 | 1.91 | 1.79 | 0.055 | 0.310 | 0.801 | 0.145 |
Total essential amino acids | 17.00 | 17.45 | 17.46 | 0.218 | 0.181 | 0.106 | 0.360 |
Total amino acid | 27.25 | 28.42 | 28.29 | 0.388 | 0.074 | 0.061 | 0.133 |
Purine Content (g/100 g of Breast Meat) | Control | BSFL | SEM | p-Value | Linear | Quadratic | |
---|---|---|---|---|---|---|---|
10% | 12% | ||||||
Purine | 35.12 c | 107.40 a | 89.58 b | 0.315 | <0.0001 | <0.0001 | <0.0001 |
Adenine | 10.40 b | 12.09 a | 12.16 a | 0.184 | 0.0003 | 0.0002 | 0.0051 |
Guanine | 6.28 b | 9.93 a | 8.98 a | 0.489 | 0.0016 | 0.0030 | 0.0033 |
Hypoxanthine | 18.44 c | 85.12 a | 68.44 b | 0.281 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srikha, T.; Pootthachaya, P.; Puangsap, W.; Pramotchit, S.; Boonkum, W.; Suntara, C.; Hanboonsong, Y.; Cherdthong, A.; Tengjaroensakul, B.; Wongtangtintharn, S. The Role of Black Soldier Fly Larvae in Optimizing Performance and Amino Acid Composition in Thai Native Chicken. Animals 2025, 15, 1330. https://doi.org/10.3390/ani15091330
Srikha T, Pootthachaya P, Puangsap W, Pramotchit S, Boonkum W, Suntara C, Hanboonsong Y, Cherdthong A, Tengjaroensakul B, Wongtangtintharn S. The Role of Black Soldier Fly Larvae in Optimizing Performance and Amino Acid Composition in Thai Native Chicken. Animals. 2025; 15(9):1330. https://doi.org/10.3390/ani15091330
Chicago/Turabian StyleSrikha, Theeraphat, Padsakorn Pootthachaya, Warin Puangsap, Suphakon Pramotchit, Wuttigrai Boonkum, Chanon Suntara, Yupa Hanboonsong, Anusorn Cherdthong, Bundit Tengjaroensakul, and Sawitree Wongtangtintharn. 2025. "The Role of Black Soldier Fly Larvae in Optimizing Performance and Amino Acid Composition in Thai Native Chicken" Animals 15, no. 9: 1330. https://doi.org/10.3390/ani15091330
APA StyleSrikha, T., Pootthachaya, P., Puangsap, W., Pramotchit, S., Boonkum, W., Suntara, C., Hanboonsong, Y., Cherdthong, A., Tengjaroensakul, B., & Wongtangtintharn, S. (2025). The Role of Black Soldier Fly Larvae in Optimizing Performance and Amino Acid Composition in Thai Native Chicken. Animals, 15(9), 1330. https://doi.org/10.3390/ani15091330