Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (961)

Search Parameters:
Keywords = national innovation systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 813 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 (registering DOI) - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
22 pages, 2630 KiB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

20 pages, 1083 KiB  
Article
The Risk of Global Environmental Change to Economic Sustainability and Law: Help from Digital Technology and Governance Regulation
by Zhen Cao, Zhuiwen Lai, Muhammad Bilawal Khaskheli and Lin Wang
Sustainability 2025, 17(15), 7094; https://doi.org/10.3390/su17157094 - 5 Aug 2025
Abstract
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential [...] Read more.
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential in advancing economic sustainability has been less explored. How can these technologies mitigate environmental risks while promoting sustainable and equitable development, aligning with the Sustainable Development Goals? We analyze policy global environmental data from the World Bank and the United Nations, as well as literature reviews on digital interventions, artificial intelligence, and smart databases. Global environmental change presents economic stability and rule of law threats, and innovative governance responses are needed. This study evaluates the potential for digital technology to be leveraged to enhance climate resilience and regulatory systems and address key implementation, equity, and policy coherence deficits. Policy recommendations for aligning economic development trajectories with planetary boundaries emphasize that proactive digital governance integration is indispensable for decoupling growth from environmental degradation. However, fragmented governance and unequal access to technologies undermine scalability. Successful experiences demonstrate that integrated policies, combining incentives, data transparency, and multilateral coordination, deliver maximum economic and environmental co-benefits, matching digital innovation with good governance. We provide policymakers with an action plan to leverage technology as a multiplier of sustainability, prioritizing inclusive governance structures to address implementation gaps and inform legislation. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

33 pages, 1619 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 - 1 Aug 2025
Viewed by 255
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
Show Figures

Figure 1

24 pages, 1053 KiB  
Article
Modelling the Dynamic Emergence of AI-Enabled Biomedical Innovation Systems
by Shih-Hsin Chen and Wen-Hsin Chi
Systems 2025, 13(8), 648; https://doi.org/10.3390/systems13080648 - 1 Aug 2025
Viewed by 194
Abstract
How do regulatory policies, funding structures, and cross-sector coordination shape knowledge flows and institutional transformation? Focusing on the smart medical device sector in Taiwan, this study explores how governance dynamics accelerate system transformation and foster demand for adaptive and integrative innovation systems. Building [...] Read more.
How do regulatory policies, funding structures, and cross-sector coordination shape knowledge flows and institutional transformation? Focusing on the smart medical device sector in Taiwan, this study explores how governance dynamics accelerate system transformation and foster demand for adaptive and integrative innovation systems. Building on the National Biotechnology Innovation System framework and qualitative system dynamics modeling, the study analyzes institutional interactions through 28 semi-structured interviews and 18 policy documents. Findings identify systemic bottlenecks, including translational gaps, coordination challenges, and barriers for traditional manufacturers. These gaps have enabled tech firms to emerge as system leaders by bridging these institutional gaps. This study extends innovation systems theory by conceptualizing an emergent governance function that addresses institutional gaps. At the policy level, the study highlights the importance of enabling institutional change in governance to address structural fragmentation and support system-wide transformation. Full article
(This article belongs to the Special Issue Innovative Systems Approaches to Healthcare Systems)
Show Figures

Figure 1

35 pages, 3894 KiB  
Article
Building an Adaptive AI-Powered Higher Education Class for the Future of Engineering: A Case Study from NTUA
by Maria Karoglou, Ioana Ghergulescu, Marina Stramarkou, Christos Boukouvalas and Magdalyni Krokida
Appl. Sci. 2025, 15(15), 8524; https://doi.org/10.3390/app15158524 (registering DOI) - 31 Jul 2025
Viewed by 86
Abstract
This study presents the outcomes of the Erasmus+ European project Higher Education Classroom of the Future (HECOF), with a particular focus on chemical engineering education. In the digital era, the integration and advancement of artificial intelligence (AI) in higher education, especially in engineering, [...] Read more.
This study presents the outcomes of the Erasmus+ European project Higher Education Classroom of the Future (HECOF), with a particular focus on chemical engineering education. In the digital era, the integration and advancement of artificial intelligence (AI) in higher education, especially in engineering, are increasingly important. The main goal of the HECOF project is to establish a system of new higher education teaching practices and national reforms in education. This system has been developed and tested through an innovative personalized and adaptive method of teaching that exploited digital data from students’ learning activity in immersive environments, with the aid of computational analysis techniques from data science. The unit operations—extraction process course—a fundamental component of the chemical engineering curriculum, was selected as the case study for the development of the HECOF learning system. A group of undergraduate students evaluated the system’s usability and educational efficiency. The findings showed that the HECOF system contributed positively to students’ learning—although the extent of improvement varied among individuals—and was associated with a high level of satisfaction, suggesting that HECOF was effective in delivering a positive and engaging learning experience. Full article
Show Figures

Figure 1

26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 413
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

27 pages, 2565 KiB  
Review
The Role of ESG in Driving Sustainable Innovation in Water Sector: From Gaps to Governance
by Gabriel Minea, Elena Simina Lakatos, Roxana Maria Druta, Alina Moldovan, Lucian Marius Lupu and Lucian Ionel Cioca
Water 2025, 17(15), 2259; https://doi.org/10.3390/w17152259 - 29 Jul 2025
Viewed by 444
Abstract
The water sector is facing a convergence of systemic challenges generated by climate change, increasing demand, and increasingly stringent regulations, which threaten its operational and strategic sustainability. In this context, the article examines how ESG (environmental, social, governance) principles are integrated into the [...] Read more.
The water sector is facing a convergence of systemic challenges generated by climate change, increasing demand, and increasingly stringent regulations, which threaten its operational and strategic sustainability. In this context, the article examines how ESG (environmental, social, governance) principles are integrated into the governance, financing, and management of water resources, with a comparative focus on Romania and the European Union. It aims to assess the extent to which ESG practices contribute to the sustainable transformation of the water sector in the face of growing environmental and socio-economic challenges. The methodology is based on a systematic analysis of policy documents, regulatory frameworks, and ESG standards applicable to the water sector at both national (Romania) and EU levels. This study also investigates investment strategies and their alignment with the EU Taxonomy for Sustainable Activities, enabling a comparative perspective on implementation, gaps and strengths. Findings reveal that while ESG principles are increasingly recognized across Europe, their implementation remains uneven (particularly in Romania) due to unclear standards, limited funding mechanisms, and fragmented policy coordination. ESG integration shows clear potential to foster innovation, improve governance transparency, and support long-term resilience in the water sector. These results underline the need for coherent, integrated policies and stronger institutional coordination to ensure consistent ESG adoption across Member States. Policymakers should prioritize the development of clear guidelines and supportive funding instruments to accelerate sustainable outcomes. The originality of our study lies in its comparative approach, offering an in-depth analysis of ESG integration in the water sector across different governance contexts. It provides valuable insights for advancing policy coherence, investment alignment, and sustainable water resource management at both national and European levels. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

21 pages, 1133 KiB  
Article
Research on China’s Innovative Cybersecurity Education System Oriented Toward Engineering Education Accreditation
by Yimei Yang, Jinping Liu and Yujun Yang
Information 2025, 16(8), 645; https://doi.org/10.3390/info16080645 - 29 Jul 2025
Viewed by 167
Abstract
This study, based on engineering education accreditation standards, addresses the supply–demand imbalance in China’s cybersecurity talent cultivation by constructing a sustainable “education-industry-society” collaborative model. Through case studies at Huaihua University and other institutions, employing methods such as literature analysis, field research, and empirical [...] Read more.
This study, based on engineering education accreditation standards, addresses the supply–demand imbalance in China’s cybersecurity talent cultivation by constructing a sustainable “education-industry-society” collaborative model. Through case studies at Huaihua University and other institutions, employing methods such as literature analysis, field research, and empirical investigation, we systematically explore reform pathways for an innovative cybersecurity talent development system. The research proposes a “three-platform, four-module” practical teaching framework, where the coordinated operation of the basic skills training platform, comprehensive ability development platform, and innovation enhancement platform significantly improves students’ engineering competencies (practical courses account for 41.6% of the curriculum). Findings demonstrate that eight industry-academia practice bases established through deep collaboration effectively align teaching content with industry needs, substantially enhancing students’ innovative and practical abilities (172 national awards, 649 provincial awards). Additionally, the multi-dimensional evaluation mechanism developed in this study enables a comprehensive assessment of students’ professional skills, practical capabilities, and innovative thinking. These reforms have increased the employment rate of cybersecurity graduates to over 90%, providing a replicable solution to China’s talent shortage. The research outcomes offer valuable insights for discipline development under engineering education accreditation and contribute to implementing sustainable development concepts in higher education. Full article
(This article belongs to the Topic Explainable AI in Education)
Show Figures

Figure 1

31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 1177
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

24 pages, 331 KiB  
Perspective
Strategy for the Development of Cartography in Bulgaria with a 10-Year Planning Horizon (2025–2035) in the Context of Industry 4.0 and 5.0
by Temenoujka Bandrova, Davis Dinkov and Stanislav Vasilev
ISPRS Int. J. Geo-Inf. 2025, 14(8), 289; https://doi.org/10.3390/ijgi14080289 - 25 Jul 2025
Viewed by 730
Abstract
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance [...] Read more.
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance with the national methodology for strategic planning and through preliminary consultations with key stakeholders, including research institutions, business organizations, and public institutions. It aims to build a human-centered, data-driven geospatial framework aligned with global standards such as ISO 19100 and the EU INSPIRE Directive. Core components include: (1) modernization of the national geodetic system, (2) adoption of remote sensing and AI technologies, (3) development of interactive, web-based geospatial platforms, and (4) implementation of quality assurance and certification standards. A SWOT analysis highlights key strengths—such as existing institutional expertise—and critical challenges, including outdated legislation and insufficient coordination. The strategy emphasizes the need for innovation, regulatory reform, inter-institutional collaboration, and sustained investment. It ultimately positions Bulgarian cartography as a strategic contributor to national sustainable development and digital transformation. Full article
22 pages, 2697 KiB  
Article
Empowering the Irish Energy Transition: Harnessing Sensor Technology for Engagement in an Embedded Living Lab
by Madeleine Lyes
Sustainability 2025, 17(15), 6677; https://doi.org/10.3390/su17156677 - 22 Jul 2025
Viewed by 318
Abstract
The transition to a decarbonised energy system in Ireland presents significant socio-technical challenges. This paper, focused on the work of the SMARTLAB project at the Citizen Innovation Lab in Limerick city, investigated the potential of a localised living lab approach to address these [...] Read more.
The transition to a decarbonised energy system in Ireland presents significant socio-technical challenges. This paper, focused on the work of the SMARTLAB project at the Citizen Innovation Lab in Limerick city, investigated the potential of a localised living lab approach to address these challenges. Engaging across 70 buildings and their inhabitants, the project captured the evolution of attitudes and intentions towards the clean energy transition in ways directly relevant to future policy implementation across grid redevelopment, smart service design, and national retrofit. Project methodology was framed by a living lab approach, with wireless energy and indoor environment sensors installed in participant buildings and participant journeys developed by harnessing the Citizen Innovation Lab ecosystem. The results indicate behaviour changes among participants, particularly focusing on indoor environmental conditions. The study concludes that embedded, localised living labs offer a methodological framework which can capture diverse datasets and encompass complex contemporary contexts towards transition goals. Full article
(This article belongs to the Special Issue Sustainable Impact and Systemic Change via Living Labs)
Show Figures

Figure 1

13 pages, 281 KiB  
Review
Genetics and Clinical Findings Associated with Early-Onset Myopia and Retinal Detachment in Saudi Arabia
by Mariam M. AlEissa, Abrar A. Alhawsawi, Doaa Milibari, Patrik Schatz, Hani B. AlBalawi, Naif M. Alali, Khaled K. Abu-Amero, Syed Hameed and Moustafa S. Magliyah
Genes 2025, 16(7), 848; https://doi.org/10.3390/genes16070848 - 21 Jul 2025
Viewed by 500
Abstract
Autosomal recessive types of both syndromic and non-syndromic inherited myopia are common in Saudi Arabia (SA) because many people marry their relatives. The prevalence of syndromic myopathies in SA, like Stickler syndrome (SS), Knobloch syndrome (KS), and Marfan syndrome (MFS), further complicates the [...] Read more.
Autosomal recessive types of both syndromic and non-syndromic inherited myopia are common in Saudi Arabia (SA) because many people marry their relatives. The prevalence of syndromic myopathies in SA, like Stickler syndrome (SS), Knobloch syndrome (KS), and Marfan syndrome (MFS), further complicates the disease spectrum. The causative genes linked to the Knobloch, Marfan, and Pierson syndromes are COL18A1, FBN1, and LAMB2, respectively. Additionally, we found recessive types of non-syndromic high myopia that have a high chance of causing retinal detachment, like those linked to LRPAP1 and LEPREL1. In these cases, regular evaluation and early intervention, including prophylactic laser photocoagulation and pars plana vitrectomy, may improve the outcome. Advancements in genetic testing for diagnosis and prevention accelerate detection, facilitate early interventions, and provide genetic counseling. The utilization of artificial intelligence (AI), machine learning (ML), and the advancement of gene therapy offer promising avenues for personalized care. We place a high value on using genetic knowledge to create a national screening program and patient registry aimed at understanding the national burden of myopia, knowing that we have a high rate of consanguinity, which reflects pathogenic homozygous alleles and founder mutations. This initiative will incorporate genetic counseling and leverage innovative technologies, which are crucial for disease management, early identification, and prevention in Saudi Arabia’s healthcare system. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
27 pages, 1046 KiB  
Review
Best Practices for Environmental Sustainability in Healthcare Simulation Education: A Scoping Review
by Jessica E. Marsack, Deborah Lee, Linda M. DiClemente, Melissa Bodi, Kimberley Clarke, Elizabeth S. Robison, Sandra Turnau, Laura Van Horn and Melissa A. Bathish
Sustainability 2025, 17(14), 6624; https://doi.org/10.3390/su17146624 - 20 Jul 2025
Viewed by 556
Abstract
Educators must understand current practices and gaps in knowledge regarding environmental sustainability in simulation education to reduce the environmental impact of plastic waste while still maintaining fidelity in simulation education. Therefore, a scoping review was conducted to answer the PICO question, “In healthcare [...] Read more.
Educators must understand current practices and gaps in knowledge regarding environmental sustainability in simulation education to reduce the environmental impact of plastic waste while still maintaining fidelity in simulation education. Therefore, a scoping review was conducted to answer the PICO question, “In healthcare institutions and hospitals, what are the environmentally sustainable practices that can be translated into simulation labs as best practice?” Fourteen studies were identified through a search of seven databases, critically appraised, and analyzed. Three key themes emerged: (1) the 5 R’s, (2) getting people motivated, and (3) larger external collaboration. These themes highlight practical strategies and motivational factors for sustainable practices. An expanded 5 R’s framework (reduce, reuse, recycle, research, and rethink) was introduced to guide a holistic approach. The literature highlights the importance of education, stakeholder engagement, and clearly defined standards as key drivers for motivating individuals and teams to engage in sustainable behaviors. These efforts are most effective when supported by interdisciplinary collaboration, regulatory frameworks, national policies, and technological innovation. Sustainability initiatives should extend beyond individual institutions to foster broader systemic change. Full article
Show Figures

Figure 1

27 pages, 2272 KiB  
Article
A New Approach Based on Trend Analysis to Estimate Reference Evapotranspiration for Irrigation Planning
by Murat Ozocak
Sustainability 2025, 17(14), 6531; https://doi.org/10.3390/su17146531 - 17 Jul 2025
Viewed by 376
Abstract
Increasing drought conditions at the global level have created concerns about the decrease in water resources. This situation has made the correct planning of irrigation applications the most important situation. Irrigation management in future periods is possible with the correct determination of the [...] Read more.
Increasing drought conditions at the global level have created concerns about the decrease in water resources. This situation has made the correct planning of irrigation applications the most important situation. Irrigation management in future periods is possible with the correct determination of the reference evapotranspiration (ET0) trend. In the current situation, the trend is usually determined using one or two methods. Failure to conduct a detailed trend analysis results in incorrect irrigation management. With the new approach presented in the research, all of the Mann–Kendall (MK), innovative trend analysis (ITA), Sen’s slope (SS) and Spearman’s rho (SR) tests were used, and the common results of the four tests, namely increase, decrease, and no trend, were taken into account. The ET0 values calculated in different approaches were focused on temporal and spatial analysis for the future irrigation management of Türkiye with the Blaney–Criddle (BC), Turc (TR), and Coutagne (CT) methods. The future period forecast was made using four different trend analyses with geographical information system (GIS) based spatial applications using 12-month ET0 data calculated from 59 years of data between 1965 and 2023. Statistical analysis was performed to reveal the relationship between ET0 calculation methods. The findings showed that although there is a general increasing trend in ET0 values in the region, this situation is more pronounced, especially in the provinces in the western and central regions. The research results improve the determination of plant water needs for future periods in terms of irrigation management. This new approach, which determines ET0 trend analysis in the Black Sea region, can be used in regional, national, and international studies by supporting different calculations to be made in order to plan future water management correctly, to reduce the concern of decreasing water resources in drought conditions, and to obtain comprehensive data in order to provide appropriate irrigation. Full article
Show Figures

Figure 1

Back to TopTop