Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = nanoscale iron oxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4569 KiB  
Article
Tailored Magnetic Fe3O4-Based Core–Shell Nanoparticles Coated with TiO2 and SiO2 via Co-Precipitation: Structure–Property Correlation for Medical Imaging Applications
by Elena Emanuela Herbei, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Nicoleta Lucica Bogatu, Vasile Basliu, Claudiu-Ionut Vasile and Lucian Barbu-Tudoran
Diagnostics 2025, 15(15), 1912; https://doi.org/10.3390/diagnostics15151912 - 30 Jul 2025
Viewed by 167
Abstract
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4 [...] Read more.
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4@TiO2 and Fe3O4@SiO2, and to evaluate their potential as tunable contrast agents for diagnostic imaging. Methods: Fe3O4, Fe3O4@TiO2, and Fe3O4@SiO2 nanoparticles were synthesized via co-precipitation at varying temperatures from iron salt precursors. Fourier transform infrared spectroscopy (FTIR) was used to confirm the presence of Fe–O bonds, while X-ray diffraction (XRD) was employed to determine the crystalline phases and estimate average crystallite sizes. Morphological analysis and particle size distribution were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM). Magnetic properties were investigated using vibrating sample magnetometry (VSM). Results: FTIR spectra exhibited characteristic Fe–O vibrations at 543 cm−1 and 555 cm−1, indicating the formation of magnetite. XRD patterns confirmed a dominant cubic magnetite phase, with the presence of rutile TiO2 and stishovite SiO2 in the coated samples. The average crystallite sizes ranged from 24 to 95 nm. SEM and TEM analyses revealed particle sizes between 5 and 150 nm with well-defined core–shell morphologies. VSM measurements showed saturation magnetization (Ms) values ranging from 40 to 70 emu/g, depending on the synthesis temperature and shell composition. The highest Ms value was obtained for uncoated Fe3O4 synthesized at 94 °C. Conclusions: The synthesized Fe3O4-based core–shell nanomaterials exhibit desirable structural, morphological, and magnetic properties for use as contrast agents. Their tunable magnetic response and nanoscale dimensions make them promising candidates for advanced diagnostic imaging applications. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

30 pages, 3682 KiB  
Review
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response
by Bojana B. Zmejkovski, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2025, 18(7), 999; https://doi.org/10.3390/ph18070999 - 3 Jul 2025
Viewed by 696
Abstract
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs [...] Read more.
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs that combine in vivo imaging (using fluorescent nanomaterials) with targeted drug delivery, aiming to maximize therapeutic efficacy while minimizing toxicity. These fascinating nanoscale “magic bullets” should be available in the near future. Inorganic nanovehicles are flexible carriers to deliver drugs to their biological targets. Most commonly, mesoporous nanostructured silica, carbon nanotubes, gold, and iron oxide nanoparticles have been thoroughly studied in recent years. Opposite to polymeric and lipid nanostructured materials, inorganic nanomaterial drug carriers are unique because they have shown astonishing theranostic (therapy and diagnostics) effects, expressing an undeniable part of future use in medicine. This review summarizes research from development to the most recent discoveries in the field of nanostructured materials and their applications in drug delivery, including promising metal-based complexes, platinum, palladium, ruthenium, titanium, and tin, to tumor cells and possible use in theranostics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1101
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

17 pages, 5149 KiB  
Article
Impact of a Nanoscale Iron–Chlorobenzene Mixture on Pulmonary Injury in Rat Pups: Extending Exposure Knowledge Using Network Technology
by Kezhou Liu, Ying Xu, Mengjie Ying and Meiling Chen
Toxics 2025, 13(3), 221; https://doi.org/10.3390/toxics13030221 - 17 Mar 2025
Viewed by 635
Abstract
Particulate matter coexists with persistent organic pollutants (POPs) in the atmosphere, which can enter the human body by accompanying inhalable particles in the respiratory tract. Photochemical conversion further alters the chemical composition of the precursor particles and secondary products. This study investigated the [...] Read more.
Particulate matter coexists with persistent organic pollutants (POPs) in the atmosphere, which can enter the human body by accompanying inhalable particles in the respiratory tract. Photochemical conversion further alters the chemical composition of the precursor particles and secondary products. This study investigated the effects of nanoscale iron–chlorobenzene mixtures and their photochemical conversion products on early lung development in rat pups. Using network toxicology and animal experiments, we constructed a compound toxicity–target network and developed air exposure models. This study revealed that both pollutants, before and after photochemical conversion, bound to the aryl hydrocarbon receptor (AhR), increased oxidative stress, altered lung tissue morphology, and reduce inflammatory factor expression. Rat pups were highly sensitive to pollutants during critical stages of lung development. However, no significant differences in oxidative stress or inflammation were observed between the pollutants, likely because of immature lung tissues. Once tissue damage reached a threshold, the response to increasing pollutant concentrations diminished. This study provides insights into atmospheric pollutant toxicity and scientific evidence for the risk assessment of dioxin-like nanoscale mixtures. Full article
Show Figures

Graphical abstract

42 pages, 2949 KiB  
Review
Nanotherapy of Glioblastoma—Where Hope Grows
by Jan Grzegorzewski, Maciej Michalak, Maria Wołoszczuk, Magdalena Bulicz and Aleksandra Majchrzak-Celińska
Int. J. Mol. Sci. 2025, 26(5), 1814; https://doi.org/10.3390/ijms26051814 - 20 Feb 2025
Cited by 4 | Viewed by 2682
Abstract
Localization in the central nervous system, diffuse growth, the presence of stem cells, and numerous resistance mechanisms, all make glioblastoma (GBM) an incurable tumor. The standard treatment of GBM consisting of surgery; radio- and chemotherapy with temozolomide provides insufficient therapeutic benefit and needs [...] Read more.
Localization in the central nervous system, diffuse growth, the presence of stem cells, and numerous resistance mechanisms, all make glioblastoma (GBM) an incurable tumor. The standard treatment of GBM consisting of surgery; radio- and chemotherapy with temozolomide provides insufficient therapeutic benefit and needs to be updated with effective modern solutions. One of the most promising and intensively explored therapeutic approaches against GBM is the use of nanotherapy. The first, and so far only, nanoparticle-based therapy approved for GBM treatment is NanoThermTM. It is based on iron oxide nanoparticles and the thermal ablation of the tumor with a magnetic field. Numerous other types of nanotherapies are being evaluated, including polymer and lipid-based nanoformulations, nanodiscs, dendrimers, and metallic, silica, or bioderived nanoparticles, among others. The advantages of these nanoscale drug carriers include improved penetration across the blood–brain barrier, targeted drug delivery, biocompatibility, and lower systemic toxicity, while major problems with their implementation involve scaling up their production and high costs. Nevertheless, taking all the impressive benefits of nanotherapies into consideration, it seems obvious that the combined effort of the scientific world will need to be taken to tackle these challenges and implement these novel therapies into clinics, giving hope that the battle against GBM can finally be won. Full article
(This article belongs to the Special Issue Current Developments in Glioblastoma Research and Therapy)
Show Figures

Graphical abstract

17 pages, 2656 KiB  
Article
161Terbium-Labeled Gold Nanoparticles as Nanoscale Brachytherapy Agents Against Breast Cancer
by Evangelia-Alexandra Salvanou, Adamantia Apostolopoulou, Stavros Xanthopoulos, Stuart Koelewijn, Philippe van Overeem, Gautier Laurent, Rana Bazzi, Franck Denat, Stéphane Roux and Penelope Bouziotis
Materials 2025, 18(2), 248; https://doi.org/10.3390/ma18020248 - 8 Jan 2025
Viewed by 1335
Abstract
Due to their intriguing emission profile, Terbium-161 (161Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of 161Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we [...] Read more.
Due to their intriguing emission profile, Terbium-161 (161Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of 161Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we propose the application of a hybrid nanosystem comprising gold decorated (Au@TADOTAGA) iron oxide nanoflowers as a form of injectable nanobrachytherapy for the local treatment of breast cancer. More specifically, Au@TADOTAGA and NFAu@TADOTAGA NPs were efficiently radiolabeled with 161Tb, and their in vitro stability was assessed up to 21 d post-radiolabeling. Furthermore, their cytotoxic profile against 4T1 breast cancer cells was evaluated, and their ex vivo biodistribution characteristics were revealed after intratumoral injection in the same animal model. The enhanced retention at the tumor site urged us to evaluate the therapeutic effect of the [161Tb]Tb-NFAu@TADOTAGA nanosystem after intratumoral administration to 4T1-tumor-bearing mice, over a period of 24 days. Three different therapeutic protocols were performed in order to identify which therapeutic approach would offer the optimum results and identify the proposed nanosystem as a promising nanoscale brachytherapy agent. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications)
Show Figures

Figure 1

17 pages, 3171 KiB  
Article
Activation of ClO2 by Nanoscale Zero-Valent Iron for Efficient Soil Polycyclic Aromatic Hydrocarbon Degradation: New Insight into the Relative Contribution of Fe(IV) and Hydroxyl Radicals
by Xiaojun Hu, Xiaorong Xing, Fan Zhang, Bingzhi Li, Senlin Chen, Bo Wang, Jiaolong Qin and Jie Miao
Toxics 2025, 13(1), 36; https://doi.org/10.3390/toxics13010036 - 5 Jan 2025
Viewed by 956
Abstract
Recently, the activation of chlorine dioxide (ClO2) by metal(oxide) for soil remediation has gained notable attention. However, the related activation mechanisms are still not clear. Herein, the variation of iron species and ClO2, the generated reactive oxygen species, and [...] Read more.
Recently, the activation of chlorine dioxide (ClO2) by metal(oxide) for soil remediation has gained notable attention. However, the related activation mechanisms are still not clear. Herein, the variation of iron species and ClO2, the generated reactive oxygen species, and the toxicity of the degradation intermediates were explored and evaluated with nanoscale zero-valent iron (nFe0) being employed to activate ClO2 for soil polycyclic aromatic hydrocarbon (PAH) removal. With an optimized ClO2/nFe0 molar ratio of 15:1 and a soil/water ratio of 3:1, the degradation efficiency of phenanthrene improved 12% in comparison with that of a ClO2-alone system. The presence of nFe0 significantly promoted ClO2 consumption (improved 85.4%) but restrained ClO2 generation (reduced 22.5%). The surface Fe(II) and soluble Fe(II) in the ClO2/nFe0 system was 2.0-fold and 2.8-fold that in the nFe0 system after 2 min. Electron paramagnetic resonance analysis, along with quenching experiments, revealed that Fe(IV), HOCl, and •OH dominated phenanthrene degradation in a ClO2/nFe0 system, with oxidation contributions, respectively, of 34.3%, 52.8% and 12.9%. The degradation intermediates of PAHs in the ClO2/nFe0 system had lower estimated toxicity than those of the ClO2 system. The lettuces grown in ClO2/nFe0-treated soil displayed better results in bioassay indexes than those grown in ClO2-treated soil. This study offers new perspectives for the remediation of organic-pollutant-contaminated soil by using metal-activated ClO2 technology. Full article
(This article belongs to the Special Issue Novel Remediation Strategies for Soil Pollution)
Show Figures

Figure 1

33 pages, 7173 KiB  
Article
Development of Solid Nanosystem for Delivery of Chlorhexidine with Increased Antimicrobial Activity and Decreased Cytotoxicity: Characterization and In Vitro and In Ovo Toxicological Screening
by Alexandra-Ioana Dănilă, Mihai Romînu, Krisztina Munteanu, Elena-Alina Moacă, Andreea Geamantan-Sîrbu, Iustin Olariu, Diana Marian, Teodora Olariu, Ioana-Cristina Talpoş-Niculescu, Raluca Mioara Cosoroabă, Ramona Popovici and Ştefania Dinu
Molecules 2025, 30(1), 162; https://doi.org/10.3390/molecules30010162 - 3 Jan 2025
Viewed by 1891
Abstract
The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including [...] Read more.
The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines—HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells. After the characterization of the CHX-NPS nanosystem through infrared spectroscopy and electronic microscopy, the in vitro results showed that the CHX antimicrobial efficacy was enhanced when delivered through a nanoscale system, with improved bioavailability and reduced toxicity when this was tested as the newly CHX-NPS nanosystem. The in ovo screening exhibited that the CHX-NPS nanosystem did not cause any sign of irritation on the chorioallantoic membrane vasculature and was classified as a non-irritant substance. Despite this, future research should focus on optimizing this type of nanosystem and conducting comprehensive in vivo studies to validate its therapeutic efficacy and safety in clinical settings. Full article
(This article belongs to the Special Issue Advances in Targeted Delivery of Nanomedicines)
Show Figures

Figure 1

15 pages, 3022 KiB  
Article
Zero-Valent Iron-Enhanced Nutrient Removal in Simultaneous Nitrification Denitrification and Phosphorus Removal Process: Performance, Microbial Community and Potential Mechanism
by Ju Zhang, Xiaoling Zhang, Shuting Xie, Shuhan Lei, Wenjuan Yang, Ying Chen, Aixia Chen and Jianqiang Zhao
Water 2024, 16(24), 3666; https://doi.org/10.3390/w16243666 - 19 Dec 2024
Viewed by 1035
Abstract
The efficacy of zero-valent iron (ZVI) for the simultaneous nitrification denitrification and phosphorus removal (SNDPR) process is unclear, although it has been shown in numerous studies to help improve nitrate removal in biological wastewater treatment systems. This study investigated the response of the [...] Read more.
The efficacy of zero-valent iron (ZVI) for the simultaneous nitrification denitrification and phosphorus removal (SNDPR) process is unclear, although it has been shown in numerous studies to help improve nitrate removal in biological wastewater treatment systems. This study investigated the response of the SNDPR process to ZVI addition in an anaerobic/aerobic/anoxic (An/O/A)-sequencing batch reactor (SBR). The results indicated that ZVI addition could promote the removal of phosphorus and total inorganic nitrogen (TIN). The phosphorus removal by ZVI was mainly attributed to iron precipitation due to the in situ oxidation of ZVI by oxygen or nitrate. The TIN removal by ZVI was attributed to the chemical denitrification reaction, which reduces nitrate to nitrite and nitrogen gas. The nanoscale zero-valent iron (nZVI) was more favorable for TIN removal than microscale zero-valent iron (mZVI) in the SNDPR process. The average removal efficiency of PO43−-P and TIN increased from 50.37 ± 7.55% to 99.29 ± 1.24% and 73.15 ± 5.92% to 76.75 ± 5.05% with nZVI addition. The relative abundance of Dechloromonas sp. decreased by 0.65% and that of Nitrospira sp. increased by 3.78% with the addition of ZVI, indicating that ZVI could weaken the activity of polyphosphate-accumulating organisms (PAOs) and promote the activity of nitrite-oxidizing bacteria. These results provide a new and environmentally friendly approach for applying ZVI in SNDPR systems, reducing the dependence on organic carbon sources. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

16 pages, 6303 KiB  
Article
Seasonal Variations in Ochreous Precipitates and Drainage Waters in the Grantcharitsa Tungsten Deposit, Western Rhodopes, Bulgaria
by Mihail Tarassov, Eugenia Tarassova, Valentina Lyubomirova, Milen Stavrev, Elena Tacheva and Aleksey Benderev
Minerals 2024, 14(11), 1090; https://doi.org/10.3390/min14111090 - 28 Oct 2024
Viewed by 1035
Abstract
Seasonal variations of drainage waters and ochreous products of their discharge from the closed abandoned old gallery at the Grantcharitsa scheelite deposit (Bulgaria) were studied by field and laboratory methods for the period 2019–2023. The drainage is generated under anoxic conditions and is [...] Read more.
Seasonal variations of drainage waters and ochreous products of their discharge from the closed abandoned old gallery at the Grantcharitsa scheelite deposit (Bulgaria) were studied by field and laboratory methods for the period 2019–2023. The drainage is generated under anoxic conditions and is inherently diluted (EC = 100–202 µS/cm) with S (6–12 mg/L), Si (6–22 mg/L), Na (6–10 mg/L), Fe (0.2–3.3 mg/L), and W (0.19–3.5 µg/L), at a pH 4.4–6.5 and temperature 7–11.5 °C, with dissolved oxygen DO (2.1–7.7 mg/L). The concentrations of Fe and W and the pH of the water are variable and reach their maximum values during the dry (autumn) season. It was found that such parameters as pH, Eh, DO, Fe and W content change dramatically at a distance of up to 3 m from the water outlet; the values of pH, DO and Eh are sharply increased with a simultaneous nearly 5–6-times reduction in iron and tungsten content. The decrease in the contents of these elements is associated with the precipitation of ochreous material consisting of nanoscale ferrihydrite with an intermediate structural ordering between 2-line and 6-line ferrihydrite (major phase), hematite, goethite, quartz, montmorillonite and magnetite. The formation of ferrihydrite occurs as a result of abiotic and biotic processes with the participation of iron-oxidizing bacteria. Besides Fe2O3 (55.5–64.0 wt.%), the ochreous sediment contains SiO2 (12.0–16.4 wt.%), SO3 (1.3–2.4 wt.%), Al2O3 (3.1–6.8 wt.%) and WO3 (0.07–0.11 wt.%). It has been shown that drainage waters and ochreous sediments do not inherently have a negative impact on the environment. The environmental problem arises with intense snowmelt and heavy rainfall, as a result of which the accumulated sediments are washed away and carried in the form of suspensions into the water systems. It is suggested that by providing atmospheric oxygen access to the closed gallery (via local boreholes), it is possible to stop the generation of iron-enriched drainage. Full article
(This article belongs to the Special Issue Characterization and Management of Mine Waters)
Show Figures

Figure 1

49 pages, 17347 KiB  
Review
Electrocatalytic Nitrate Reduction for Brackish Groundwater Treatment: From Engineering Aspects to Implementation
by Hamza Outaleb, Sanaa Kouzbour, Fabrice Audonnet, Christophe Vial and Bouchaib Gourich
Appl. Sci. 2024, 14(19), 8986; https://doi.org/10.3390/app14198986 - 5 Oct 2024
Cited by 2 | Viewed by 3518
Abstract
In recent years, nitrate has emerged as a significant groundwater pollutant due to its potential ecotoxicity. In particular, nitrate contamination of brackish groundwater poses a serious threat to both ecosystems and human health and remains difficult to treat. A promising, sustainable, and environmentally [...] Read more.
In recent years, nitrate has emerged as a significant groundwater pollutant due to its potential ecotoxicity. In particular, nitrate contamination of brackish groundwater poses a serious threat to both ecosystems and human health and remains difficult to treat. A promising, sustainable, and environmentally friendly solution when biological treatments are not applicable is the conversion of nitrate to harmless nitrogen (N2) or ammonia (NH3) as a nutrient by electrocatalytic nitrate reduction (eNO3R) using solar photovoltaic energy. This review provides a comprehensive overview of the current advances in eNO3R for the production of nitrogen and ammonia. The discussion begins with fundamental concepts, including a detailed examination of the mechanisms and pathways involved, supported by Density Functional Theory (DFT) to elucidate specific aspects of ammonium and nitrogen formation during the process. Furthermore, the integration of artificial intelligence (AI) and machine learning (ML) offers promising advancements in enhancing the predictive power of DFT, accelerating the discovery and optimization of novel catalysts. In this review, we also explore various electrode preparation methods and emphasize the importance of in situ characterization techniques to investigate surface phenomena during the reaction process. The review highlights numerous examples of copper-based catalysts and analyses their feasibility and effectiveness in ammonia production. It also explores strategies for the conversion of nitrate to N2, focusing on nanoscale zerovalent iron as a selective material and the subsequent oxidation of the produced ammonia. Finally, this review addresses the implementation of the eNO3R process for the treatment of brackish groundwater, discussing various challenges and providing reasonable opinions on how to overcome these obstacles. By synthesizing current research and practical examples, this review highlights the potential of eNO3R as a viable solution to mitigate nitrate pollution and improve water quality. Full article
Show Figures

Figure 1

21 pages, 3902 KiB  
Brief Report
Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA
by Cristian F. Rodríguez, Paula Guzmán-Sastoque, Carolina Muñoz-Camargo, Luis H. Reyes, Johann F. Osma and Juan C. Cruz
Micromachines 2024, 15(8), 1057; https://doi.org/10.3390/mi15081057 - 22 Aug 2024
Cited by 5 | Viewed by 2615
Abstract
Superparamagnetic iron oxide micro- and nanoparticles have significant applications in biomedical and chemical engineering. This study presents the development and evaluation of a novel low-cost microfluidic device for the purification and hyperconcentration of these magnetic particles. The device, fabricated using laser ablation of [...] Read more.
Superparamagnetic iron oxide micro- and nanoparticles have significant applications in biomedical and chemical engineering. This study presents the development and evaluation of a novel low-cost microfluidic device for the purification and hyperconcentration of these magnetic particles. The device, fabricated using laser ablation of polymethyl methacrylate (PMMA), leverages precise control over fluid dynamics to efficiently separate magnetic particles from non-magnetic ones. We assessed the device’s performance through Multiphysics simulations and empirical tests, focusing on the separation of magnetite nanoparticles from blue carbon dots and magnetite microparticles from polystyrene microparticles at various total flow rates (TFRs). For nanoparticle separation, the device achieved a recall of up to 93.3 ± 4% and a precision of 95.9 ± 1.2% at an optimal TFR of 2 mL/h, significantly outperforming previous models, which only achieved a 50% recall. Microparticle separation demonstrated an accuracy of 98.1 ± 1% at a TFR of 2 mL/h in both simulations and experimental conditions. The Lagrangian model effectively captured the dynamics of magnetite microparticle separation from polystyrene microparticles, with close agreement between simulated and experimental results. Our findings underscore the device’s robust capability in distinguishing between magnetic and non-magnetic particles at both micro- and nanoscales. This study highlights the potential of low-cost, non-cleanroom manufacturing techniques to produce high-performance microfluidic devices, thereby expanding their accessibility and applicability in various industrial and research settings. The integration of a continuous magnet, as opposed to segmented magnets in previous designs, was identified as a key factor in enhancing magnetic separation efficiency. Full article
Show Figures

Figure 1

34 pages, 8828 KiB  
Article
Leveraging the Potential of In Situ Green-Synthesized Zero-Valent Iron Nanoparticles (nZVI) for Advanced Oxidation of Clinical Dyes in Water
by María F. Alexandre-Franco, Cristina Rodríguez-Rasero, Ana González-Trejo, Mireya Casas-Pulido, Carmen Fernández-González and Eduardo M. Cuerda-Correa
Appl. Sci. 2024, 14(15), 6558; https://doi.org/10.3390/app14156558 - 26 Jul 2024
Cited by 4 | Viewed by 2470
Abstract
Nanotechnology, a rapidly growing field, holds tremendous promise as it harnesses the unique properties and applications of nanoparticulate materials on a nanoscale. In parallel, the pressing global environmental concerns call for the development of sustainable chemical processes and the creation of new materials [...] Read more.
Nanotechnology, a rapidly growing field, holds tremendous promise as it harnesses the unique properties and applications of nanoparticulate materials on a nanoscale. In parallel, the pressing global environmental concerns call for the development of sustainable chemical processes and the creation of new materials through eco-friendly synthesis methods. In this work, zero-valent iron nanoparticles (nZVI) were synthesized using an innovative and environmentally friendly approach as an alternative to conventional methods. This method leverages the antioxidant capacity of natural plant extracts to effectively reduce dissolved metals and produce nZVI. The chosen extract of green tea plays a pivotal role in this process. With the extract in focus, this study delves into the remarkable capability of nZVI in degrading two dyes commonly used in medicine, chrysoidine G and methylene blue, in aqueous solutions. Additionally, Fenton-type oxidation processes are explored by incorporating hydrogen peroxide into the nanoparticle mixture. By applying the statistical design of experiments and Response Surface Methodology, the influence of four key parameters—initial concentrations of Fe2+, Fe3+, H2O2, and polyphenols—on dye elimination efficiency in aqueous solutions is thoroughly analyzed. The obtained results demonstrate that advanced oxidation technologies, such as Fenton-type reactions in conjunction with nanoparticles, achieve an excellent efficiency of nearly 100% in eliminating the dyes. Moreover, this study reveals the synergistic effect achieved by simultaneously employing nZVI and the Fenton process, showcasing the potential for further advancements in the field. Full article
(This article belongs to the Special Issue Advances in Pollutant Removal from Water Environments)
Show Figures

Figure 1

22 pages, 9063 KiB  
Article
Remediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soil by Using Activated Persulfate with Carbonylated Activated Carbon Supported Nanoscale Zero-Valent Iron
by Changzhao Chen, Zhe Yuan, Shenshen Sun, Jiacai Xie, Kunfeng Zhang, Yuanzheng Zhai, Rui Zuo, Erping Bi, Yufang Tao and Quanwei Song
Catalysts 2024, 14(5), 311; https://doi.org/10.3390/catal14050311 - 8 May 2024
Cited by 4 | Viewed by 2420
Abstract
Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has been an environmental issue worldwide, which aggravates the ecological risks faced by animals, plants, and humans. In this work, the composites of nanoscale zero-valent iron supported on carbonylated activated carbon (nZVI-CAC) were prepared and applied [...] Read more.
Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has been an environmental issue worldwide, which aggravates the ecological risks faced by animals, plants, and humans. In this work, the composites of nanoscale zero-valent iron supported on carbonylated activated carbon (nZVI-CAC) were prepared and applied to activate persulfate (PS) for the degradation of PAHs in contaminated soil. The prepared nZVI-CAC catalyst was characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was found that the PS/nZVI-CAC system was superior for phenanthrene (PHE) oxidation than other processes using different oxidants (PS/nZVI-CAC > PMS/nZVI-CAC > H2O2/nZVI-CAC) and it was also efficient for the degradation of other six PAHs with different structures and molar weights. Under optimal conditions, the lowest and highest degradation efficiencies for the selected PAHs were 60.8% and 90.7%, respectively. Active SO4−• and HO were found to be generated on the surface of the catalysts, and SO4−• was dominant for PHE oxidation through quenching experiments. The results demonstrated that the heterogeneous process using activated PS with nZVI-CAC was effective for PAH degradation, which could provide a theoretical basis for the remediation of PAH-polluted soil. Full article
Show Figures

Figure 1

16 pages, 4367 KiB  
Article
Simultaneous Environmental Waste Management through Deep Dewatering of Alum Sludge Using Waste-Derived Cellulose
by Manasik M. Nour and Maha A. Tony
ChemEngineering 2024, 8(2), 40; https://doi.org/10.3390/chemengineering8020040 - 3 Apr 2024
Cited by 1 | Viewed by 2446
Abstract
To simultaneously solve problems in an eco-friendly manner, introducing a waste residual as a sustainable conditioner to aid alum sludge dewatering is suggested as a cradle-to-cradle form of waste management. In this regard, the superiority of deep dewatering alum sludge with a powdered [...] Read more.
To simultaneously solve problems in an eco-friendly manner, introducing a waste residual as a sustainable conditioner to aid alum sludge dewatering is suggested as a cradle-to-cradle form of waste management. In this regard, the superiority of deep dewatering alum sludge with a powdered wood chip composite residual as a novel conditioner was explored, whereby traditional conventional conditioners, i.e., polyelectrolytes and lime, were substituted with powdered wood chips. Initially, Fe3O4 was prepared at the nanoscale using a simple co-precipitation route. Next, wooden waste was chemically and thermally treated to attain cellulosic fine powder. Subsequently, the resultant wood powder and Fe3O4 nanoparticles were mixed at 50 wt % to attain a wood powder augmented with iron, and this conditioner was labeled nano-iron-cellulose (nIC-Conditioner). This material (nIC-Conditioner) was mixed with hydrogen peroxide to represent a dual oxidation and skeleton builder conditioning substance. Characterization of the resultant conditioner was carried out using transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) transmittance spectrum analysis. The feasibility of the experimental results revealed that the moisture content in the sludge cake was lower after conditioning, and the capillary suction time (CST) was reduced to 78% compared to that of raw alum sludge after 5 min of dewatering time. Moreover, the optimal system parameters, including nIC-Conditioner and H2O2 concentrations, as well as the working pH, were optimized, and optimal values were recorded at 1 g/L and 200 mg/L for nIC-Conditioner and H2O2, respectively, with a pH of 6.5. Additionally, scanning electron microscope (SEM) analyses of the sludge prior to and after conditioning were conducted to verify the change in sludge molecules due to this conditioning technique. The results of this study confirm the sustainability of an alum sludge and waste management facility. Full article
Show Figures

Figure 1

Back to TopTop