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Abstract: Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has been an environmen-
tal issue worldwide, which aggravates the ecological risks faced by animals, plants, and humans.
In this work, the composites of nanoscale zero-valent iron supported on carbonylated activated
carbon (nZVI-CAC) were prepared and applied to activate persulfate (PS) for the degradation
of PAHs in contaminated soil. The prepared nZVI-CAC catalyst was characterized by scanning
electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy
(FTIR), and X-ray photoelectron spectroscopy (XPS). It was found that the PS/nZVI-CAC sys-
tem was superior for phenanthrene (PHE) oxidation than other processes using different oxidants
(PS/nZVI-CAC > PMS/nZVI-CAC > H2O2/nZVI-CAC) and it was also efficient for the degradation
of other six PAHs with different structures and molar weights. Under optimal conditions, the lowest
and highest degradation efficiencies for the selected PAHs were 60.8% and 90.7%, respectively. Active
SO4

−• and HO• were found to be generated on the surface of the catalysts, and SO4
−• was dominant

for PHE oxidation through quenching experiments. The results demonstrated that the heterogeneous
process using activated PS with nZVI-CAC was effective for PAH degradation, which could provide
a theoretical basis for the remediation of PAH-polluted soil.

Keywords: polycyclic aromatic hydrocarbons; soil remediation; nanoscale zero-valent iron; carbonylated
activated carbon; persulfate; advanced oxidation process

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are classic hydrophobic organic compounds
(HOCs) consisting of two or more benzene rings linked in the form of condensed rings [1].
PAHs are mainly derived from natural phenomena or human production activities, includ-
ing natural disasters (such as volcanic eruptions and forest fires), transportation, industrial
emissions, and the incomplete combustion of various fossil fuels and other hydrocarbons [2].
Owing to the characteristic of high hydrophobicity, PAHs tend to combine with soil organic
matter and clay minerals [3]. PAHs in the soil can be ingested by plants and eventually
pose a threat to human health through the food chain due to their bio-accumulation and
toxicity [4]. According to the “National Soil Pollution Survey Bulletin”, the over-standard
rate of contaminated soil by PAHs was 1.4%, and PAHs were mainly detected in farmlands,
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industrial zones and wastelands, oil fields, and mining fields [5]. Therefore, the remediation
of PAH-polluted soil has aroused widespread concern.

A variety of remediation technologies have been developed, including physical reme-
diation (e.g., steam extraction and thermal desorption) [6,7], chemical remediation (e.g.,
in situ chemical oxidation and electrokinetic remediation) [1,8], biological remediation
(e.g., microbial remediation and phytoremediation) [9], and physicochemical remediation
(e.g., solvent extraction/soil washing or soil flushing) [10]. Among these technologies, the
physical restoration method has a high energy consumption and may destroy the original
structure of the soil [6,11]. The biological methods hold the drawbacks of a long restoration
period and the feasibility of biological methods largely depends on the limiting factors and
the location of pollutants [11,12]. In contrast, chemical oxidation, as a promising remedia-
tion technology, converts organic pollutants into harmless or less harmful chemicals after
the introduction of chemical oxidants directly into pollution sources, which has advantages
in cost and efficiency [13–15]. The commonly used chemical oxidants include ozone (O3),
hydrogen peroxide (H2O2), permanganate (KMnO4), and persulfate (PS). However, the
poor stability of O3 and H2O2, and the high affinity with soil organic matter of KMnO4,
make these oxidants difficult to transport to designated areas [16]. On the contrary, PS
is advantageous in the remediation of organic contaminated soil due to its high redox
potential (S2O2−

8 , E0 = 2.1 V) and chemical stability [1,16]. Active free radicals (e.g., SO−•
4

and HO•) and non-free radicals (1O2) are generated by the breakage of the O-O bond in PS
molecules, thus rapidly mineralizing various persistent organic pollutants [17]. Moreover,
PS used in the remediation process finally decomposes to the main derivative of SO4

2−,
and SO4

2− can combine with other soil substances to generate sulfate, which is one of the
inherent components of soil [18–20]. Therefore, PS has been widely applied in the processes
of in situ chemical oxidation for the remediation of various forms of organics-contaminated
soil [21–23]. Compared to other oxidants, PS has a lower price [24], so PS has a higher
economic value.

PS can be activated by heat [25], alkali [26], transition metals [14], ultrasound (US) [25],
and ultraviolet (UV) irradiation [10]. Among them, heterogeneous catalysts, such as
natural metallic minerals, carbon materials, and transition metal oxides, exhibit excellent
performance in PS activation [1,17,27].

As an environmentally friendly and cheap metal element, iron is the first choice
for the activation of persulfate [28]. Nano zero-valent iron (nZVI) has a high specific
surface area, surface energy, reactivity, and reduction properties, and the direct or indirect
generation of Fe2+ can effectively activate PS [17]. However, it has been reported that
it is easy for a single nZVI to agglomerate and be affected by acid and alkali, and the
formation of hydroxide after the reaction leads to a large area of passivation, undermining
its activity [3,29]. For example, it was reported that the agglomeration of conventional
nZVI particles affected the activation of PS and consequently inhibited the remediation of
anthracene in soil [9]. To overcome the limitations, composite materials composed of nZVI
particles loaded onto stable materials, such as activated carbon (AC), biochar (BC), and
zeolite, were developed [30–32]. Among these supporting materials, AC was favored in the
reported research due to its low cost, high specific surface area, richness of porous structure,
and surface functional groups [33,34]. For example, Zhang et al. reported the activation
of PS by synthesized AC-nZVI for ampicillin oxidation, and it was found that the loaded
catalyst effectively inhibited nZVI particle agglomeration and Fe ion leakage [33]. Among
many activated carbon preparation materials, coconut shell is one of the ideal materials
because of its abundant supply in many countries. Moreover, the natural structure of
coconut shell is suitable for the preparation of porous materials with low ash content [35].
In addition, several studies have reported that the AC could be utilized as a catalyst to
activate PS for the decomposition of soil organic pollutants [1,36]. The oxygen-containing
carbonyl functional group (C=O) and sp2 hybridized carbon (sp2-C) of AC itself could act
as active sites for the activation of PS [16,37]. It has been reported that PS was specifically
adsorbed to the active sites of the porous structure of AC, and subsequently, 1O2 was
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generated by these active sites (e.g., C=O and sp2-C) reacting with PS to degrade organic
pollutants via non-radical pathways [38]. Cheng and co-authors found that, among various
oxygen-containing functional groups of carbon nanotubes, the C=O group was the main
active site that promoted PS activation for 2,4-dichlorophenol oxidation [39]. Therefore,
the development of composites of carbonylated activated carbon (CAC) with nZVI seems
to be a feasible strategy for PS activation to enhance the oxidation of soil pollutants. In
this scenario, the modified AC with rich C=O groups not only functioned as a supporting
material for stabilizing nZVI but concurrently played a role in the synergistic activation
of PS. Nevertheless, to the knowledge of the authors, the synthesis of CAC-supported
nanoscale zero-valent iron to be applied in the ISCO process for the remediation of PAH-
contaminated soil has not been reported so far.

Herein, composites of nanoscale zero-valent iron supported on carbonylated activated
carbon (nZVI-CAC) were prepared by the chemical reduction method for the activation
of PS to remove PAHs from soil. PHE is one of the 16 polycyclic aromatic hydrocarbons
listed as priority pollutants [40] which is biotoxic, teratogenic, mutagenic, and difficult
to degrade [41,42]. In addition, PHE is reported to be ubiquitous in the environment,
especially in contaminated soils [43–46]. Therefore, PHE is selected as the representative
of PAHs.

The objectives of this study are as follows: (1) to explore the catalytic performance of
nZVI-CAC for soil pollutant oxidation using PHE; (2) to optimize the operation conditions
and to evaluate the feasibility of oxidation of different PAHs in soil; and (3) to elucidate the
intrinsic mechanism of the developed PS/nZVI-CAC system.

2. Results and Discussions
2.1. Characterization of CAC and nZVI-CAC

The XRD patterns of CAC and nZVI-CAC are shown in Figure 1a. The peaks of CAC at
2θ of 26.5◦ and 44.3◦ were attributed to the high graphitization of the carbon material [47].
The peak of nZVI-CAC at 44.6◦ represented a typical reflection of Fe0, indicating a successful
loading of Fe [48].
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Figure 1. (a) XRD pattern of CAC and nZVI-CAC; (b) FTIR spectra of CAC and nZVI-CAC before
and after the reaction.

The FTIR spectra of CAC and nZVI-CAC reflected the types and changes of groups
on the sample surface (Figure 1b). The distinct absorption peaks at 3430 cm−1, 3130 cm−1,

and 1630 cm−1 for both samples represented the -OH stretching vibration, -CH2 asym-
metric stretching vibration, and C=O stretching vibration, respectively [49,50]. The peak
at 1400 cm−1 could be attributed to the stretching vibrations of C=C on the surface of the
samples [32]. The absorption peaks at 620–400 cm−1 were from the stretching vibrations
of Fe-O bonds of different iron oxides, but the non-sharp absorption peaks indicated that
Fe was mainly presented in the form of Fe0 with a low content of Fe oxides [32]. After the
reaction, the O-H stretching vibration at 3430 cm−1 was enhanced, indicating that PHE
was adsorbed to nZVI-CAC [51]; the enhancement of the Fe-O peak can be attributed to the
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oxidation of Fe0 [52], the enhancement of C=O may be due to the transfer of electrons from
PHE to nZVI-CAC [53].

The SEM images of CAC and nZVI-CAC are revealed in Figure 2a–c. The CAC surface
was rich in pore structures, which could provide a large number of loading sites for active
iron species. As shown in Figure 2c, many fine particles were attached to the nZVI-CAC
surface, and the average particle size was close to 100 nm, further indicating that the Fe
nanoparticles were successfully loaded onto the surface of CAC. The black spots in the TEM
characteration of nZVI-CAC (Figure 2d–h) are nZVI particles on the surface of CAC. nZVI
presents a chain structure, which is caused by magnetic interaction between particles and
surface tension [54]. In addition, the lattice fringe spacing of nZVI-CAC was determined to
be 0.202 nm, which corresponded to the (110) plane of Fe0 [55]. It can be seen from the EDS
mapping of nZVI-CAC that there are abundant Fe elements on the surface of CAC. The
TEM and EDS characterization of nZVI-CAC further verified the successful loading of Fe0

onto CAC.
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The BET-specific surface areas of CAC and nZVI-CAC were 412.8 m2 g−1 and
147.8 m2 g−1, respectively. The large surface area of CAC was attributed to the abundance
of pore structures. However, the specific surface area of nZVI-CAC formed after Fe0 loading
decreased, which might be due to the blockage of pores caused by nZVI particles covering
the pores of CAC [48]. As shown in Figure 3a,b, the N2 isotherms of CAC displayed a
typical mesoporous carbon material (IUPAC, type IV). The main N2 adsorption in the lower
pressure range (P/P0 < 0.1) also indicated the existence of microporous structures [56], and
the average pore size was 2.02 nm. The nZVI-CAC exhibited a type IV adsorption isotherm
with an H3 hysteresis loop (0.4 < P/P0 < 1.0) and an average pore size of 3.80 nm, implying
that mesopores were mainly present in the catalyst after nZVI loading.
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The characteristic peaks of C 1s, O 1s, and Fe 2p were observed in the XPS full-scale
spectrum of CAC and nZVI-CAC (Figure 4a). As illustrated in Figure 4b, the peaks at
284.8 eV, 286.4 eV, 288.5 eV, and 290.7 eV in the C1s spectra of CAC and nZVI-CAC were
convolved as sp2-C, sp3-C, C-O, and C=O, respectively [57]. The relative content of sp3-
C increased from 19.7% to 26.9% after loading Fe, which indicates that nZVI-CAC was
produced [57,58]. The characteristic peaks of the O 1s spectra were C=O (531.2 eV), C-OH
or Fe-O (532.2 eV), C-C=O (533.3 eV), and C-O-C (534.5 eV), respectively [59]. It can be
seen from Figure 4c that the relative C-OH/Fe-OH concentration of nZVI-CAC increased
significantly, suggesting that the Fe species loaded onto the surface of CAC mainly exist
in the form of Fe oxides [29,30]. The Fe 2p spectra of nZVI-CAC are shown in Figure 4d.
The obvious peaks of Fe0 emphasized again the successful loading of nZVI particles, while
the marked peaks of ≡Fe2+ and ≡Fe3+ were attributed to the incomplete reduction and the
inevitable oxidation of Fe2+ during the preparation period [48].
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2.2. The Greenness of the Analysis Method

The AGREE software (Analytical Greenness Calculator v. 0.5 beta) is used to evaluate
the greenness of the analysis method [60]. Using the open-source AGREE software, we
can obtain a circular pictograph with 12 numbers, each scale is associated with a color
scale from dark green to dark red, the width of each segment represents its weight, and the
middle number in the pictograph represents the final average value calculated from the
12 data points [61]. The comprehensive value of this experimental analysis method is 0.61
(Figure 5), which confirms the green character of this experimental analysis method.
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2.3. Remediation of Soil PHE by Different Systems

The remediation efficiencies of PHE in soil by PS, nZVI-CAC, PS/nZVI, PS/CAC,
and PS/nZVI-CAC are compared in Figure 6a. The efficiency of PHE oxidation by PS
alone was only 7.4%, which might be due to the decomposition of PS by soil organic
matter (SOM) and Fe/Mn-minerals [62]. A removal efficiency of 11.4% for PHE was found
by nZVI-CAC alone, revealing the adsorption capacity for soil PHE by nZVI-CAC. The
adsorption sites of nZVI-CAC might be provided by the micropores and the abundant
oxygen-containing functional groups [48]. The radiation efficiency of the PS/nZVI system
for PHE in soil was 16.8%. The limited oxidation efficacy of PHE by the PS/nZVI system
could be explained by the following reasons. Owing to the buffering properties of the
soil matrix, it was difficult for the soil and water mixtures to maintain low pH values.
In this scenario, the superficial Fe0 particles were oxidized to produce ≡Fe3+ and ≡Fe2+

hydroxides and precipitated on the surface of agglomerates, hindering the exchange of
Fe0 inside the agglomerates with external ions [28]. Consequently, the sustainable release
of ≡Fe2+ and activity of Fe0 was blocked (Equation (1)), and the yielded reactive species
were limited through PS activation (Equations (2) and (3)). It is interesting to observe that
the removal efficiency of PHE by the PS/CAC system reached 33.2%. The free radical
pathway of PS/CAC is that CAC can provide active sites to promote electron transfer,
and free radicals are formed near or on the surface of the CAC [63,64]. For example, the
abundant oxygen-containing functional groups, such as carbonyl groups on the surface
of CAC, could catalyze the decomposition of PS to produce SO−•

4 and HO• for the attack
of organic pollutants through the free radical pathway [65]. In addition, carbon materials
were reported to be the transmission medium of electrons to induce PS activation by
electron transfer, promoting the oxidation of organic pollutants [16,66] and the surface
active functional groups, such as C=O on CAC, to activate PS to produce 1O2 [63,67].
Therefore, the PHE was oxidized through the radical and/or nonradical pathways in the
PS/CAC process. However, the active sites on the surface of CAC were, after all, restrained,
and strategies for further prosperity were necessary. Notably, the removal of PHE in the
PS/nZVI-CAC system (60.3%) was significantly improved in comparison with the PS/CAC
process, indicating the superiority of the composite catalysts. The corresponding first-order
rate constant of PHE degradation in the PS/nZVI-CAC system is 0.00179 min−1 (Figure 6b).
The supported materials could overcome the deficiency of commercial nZVI, which was
prone to passivation and agglomeration, and, meanwhile, compensate for the deficient
active sites of CAC.

As shown in Figure 6c, the performance of PS was further compared with H2O2 and
PMS, the other two commonly used oxidants in advanced oxidation techniques for soil
remediation [28]. All three oxidants alone performed poorly in terms of PHE removal, and
the removal rates by the three oxidants were less than 10%. Only relying on the redox
potential to oxidize organic pollutants, the introduction of oxidants alone in soil had been
reported to make it difficult for the oxidants to be broken down and for contaminants to be
removed effectively [65]. With the addition of nZVI-CAC, the removal efficiencies of PHE
followed the order of PS/nZVI-CAC (60.3%) > PMS/nZVI-CAC (54.7%) > H2O2/nZVI-
CAC (51.3%), respectively. All three oxidants could be activated to produce reactive oxygen
species (ROS) to attack PHE in soil (Equations (2)−(5)); however, it was reported that the
presence of H2O2 aggravated the hydroxide covering the surface of nZVI-CAC and reduced
the available ≡Fe2+ [65]. In contrast, both PMS and PS contained peroxy bonds, which were
broken to generate ROS, but the activation of PMS was more difficult resulting in a slightly
lower removal efficiency of PHE in the PMS process than in the PS system [68]. Notably,
the removal of PHE in the PS/nZVI-CAC system (60.3%) was significantly improved
in comparison with the PS/CAC process, indicating the superiority of the composite
catalysts. The corresponding first-order rate constant of PHE degradation in the system of
PS/nZVI-CAC was 0.00179 min−1 (Figure 6b). The supported materials could overcome
the deficiency of commercial nZVI, which was prone to passivation and agglomeration, and,
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meanwhile, compensate for the deficient active sites of CAC. Therefore, PS was selected as
the oxidant, considering efficacy, economic cost, and environmental impact.

Fe0+2H2O → Fe2++2OH− + H2 (1)

Fe0+2S2O2−
8 → Fe2+ + 2SO2−

4 +2SO−•
4 (2)

≡ Fe2+ + S2O2−
8 → ≡ Fe3+ + SO−•

4 + SO2−
4 (3)

≡ Fe2++HSO−
5 → ≡ Fe3+ + SO−•

4 + OH− (4)

≡ Fe2+ + H2O2 → ≡ Fe3+ + HO• + OH− (5)
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2.4. Effects of Parameters

The parameters of nZVI-CAC dosage, Fe/CAC mass ratio, and oxidant concentration
greatly affected the remediation process, and these factors need to be optimized for the
development of an optimal remediation system. As recorded in Figure 7a, the remediation
of PHE with different Fe/CAC mass ratios was studied. With the Fe/C mass ratio increasing
from 0.4:1 to 4:1, the removals of soil PHE under nZVI-CAC alone were in the range of
6.4–13.7%. In the PS-involved systems, the removals of PHE exhibited an augment trend,
with the Fe/CAC mass ratio increasing from 0.4:1 to 1:1, while the PHE removal efficiencies
subsequently decreased as the mass ratio of Fe/CAC further increased to 4:1. With the
Fe/CAC mass ratio increasing from 0.4:1 to 1:1, the loaded active iron was amplified and
more active sites could be provided by the composites. However, with the occurrence of
Fe overloading, the Fe0 particles appeared to agglomerate and fill up the pore channels,
resulting in the possible shrinkage of the specific surface areas of the catalysts and also the
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restriction of PS activation by the active sites in the internal region of the catalysts [48,69].
Therefore, the Fe/CAC mass ratio of 1:1 was favored for the oxidation of contaminants.
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As shown in Figure 7b, as the dose of nZVI-CAC was increased from 0 to 10 g kg−1,
the removal efficiency of soil PHE increased rapidly from 7.4% to 60.3%, while, upon
further addition of nZVI-CAC to 40 g kg−1, the removal rate tardily increased to 78.2%.
The positive correlation of the PHE removal efficiency with the dose of nZVI-CAC possibly
could be ascribed to the increased amount of active sites provided by the augment of
nZVI-CAC for both the adsorption and activation of PS [37,70]. The sluggish elevation
of PHE removal was probably due to the limited concentration of PS [17]. The dosage of
nZVI-CAC was selected as 10 g kg−1, taking the cost of catalysts into consideration.

The effect of PS dosage on PHE removal was also considered and investigated
(Figure 7c). When nZVI-CAC was not introduced, the oxidation efficiency of PHE slightly
increased with an increasing PS dosage, revealing the possibility of limited PHE removal
by a combination of PS relying on its own oxidizing properties and ROS generation by soil
Fe/Mn minerals and SOM. On the contrary, in the PS/nZVI-CAC systems with various PS
doses, the removal efficiencies of PHE did not increase consistently with the increase in PS
concentration, and the maximum removal efficiency was reached at a PS concentration of
200 mmol kg−1. The inhibition of PHE oxidation at high doses of PS might be attributed to
the mutual quenching of radicals generated by excess PS, which led to a lower content of
ROS in the system and the inhibition of the oxidation capacity of soil PHE [17,71].
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2.5. Oxidation Performance for Various PAHs

The toxicity of PAHs varies with the number of rings. Generally, PAHs with five
rings and above were less hydrophilic, and their strong interaction with soil organic matter
causes them to be confined and difficult to utilize by organisms [72]. In contrast, PAHs with
3–4 rings were more likely to enter soil pore water, resulting in high bioaccessibility and
great ecological risk [73]. Therefore, six additional 3–4 ring-PAHs (Table 1) were selected to
investigate the oxidation feasibility by the PS/nZVI-CAC system. As depicted in Figure 8,
the removal efficiencies of the seven tested PAHs were 90.7% for ACP, 86.5% for ACE,
72.6% for FLU, 67.4% for PHE, 67.4% for ANT, 62.2% for FLUA, and 60.8% for PYR. It was
observed that the removal of different PAHs was reduced with an increase in molecular
weight (Table 1). Owing to the poor water solubility of high molecular weight PAHs, the
removal of PAHs with high molecular weights was more difficult [74]. With PS alone, the
correlation between the removal and the molecular weights of PAHs was not observable
due to the relatively low amounts of removal of PAHs by PS.

Table 1. Abbreviations and structural formulas of the tested PAHs.

Reagents Abbreviation Molecular Weight Structural Formula

Acenaphthene ACP 154.21
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2.6. Catalytic Mechanism of the PS/nZVI-CAC Process

During the catalytic processes, ROS including SO−•
4 , HO•, O−•

2 , 1O2 were probably
produced and likely contributed to the degradation of PAHs. To clarify the dominant
ROS and to elucidate the potential mechanism of PS activation by nZVI-CAC, quenching
experiments with 500 mmol kg−1 MeOH, TBA, CF, FFA, and phenol were carried out.
MeOH was commonly involved in scavenging both HO• (k MeOH, HO

• = 9.7 × 108 M−1 s−1)
and SO−•

4 (k MeOH,SO−•
4

= 2.5 × 107 M−1 s−1), and TBA predominantly quenched HO•

(k TBA, HO
• = 5.2 × 1010 M−1 s−1) in bulk solution [75]. As illustrated in Figure 9, The

addition of MeOH and TBA resulted in the reduction of the PHE removal efficiencies by
24.5% and 19.7%, respectively, indicating that HO• and SO−•

4 were the contributive ROS
in the PS/nZVI-CAC system. However, it is worth noting that the PS/nZVI-CAC system
presented an advantage for PHE removal over the H2O2/nZVI-CAC process (Figure 6b),
suggesting SO−•

4 was more selective and contributive towards PHE than HO• [76–79]. In
addition, the general electropositivity of the composite of nZVI supported by AC or BC, as
well as the abundant C=O on the catalysts, favored the adsorptions of PS [70,80,81], which
probably led to the production of absorbed SO−•

4 via the reactions of PS with Fe0, ≡Fe2+

(Equations (2) and (3)), and also the C=O group (Equation (6)) during the catalytic reactions
of nZVI-CAC [37]. Therefore, the slightly better inhibitory effect of MeOH than that of
TBA probably could be attributed to the overwhelming active SO−•

4 mainly presenting on
the surface of nZVI-CAC where the absorbed SO−•

4 radical was not quenched by MeOH
due to the hydrophilic nature of MeOH [82]. O−•

2 could be produced by the redox reaction
between superficial ≡Fe2+ on the solid and dissolved oxygen (Equation (7)) [28], and O−•

2
was usually quenched by CF (k CF, O−•

2
= 3.0 × 1010 M−1 s−1) [83]. When CF was present,

PHE removal was inhibited by 14.3% in this study. Considering the low reactively of
O−•

2 itself with pollutants, the inhibition of PHE oxidation by CF could be ascribed to
the participation of O−•

2 for the activation of PS to produce SO−•
4 for PHE degradation

(Equation (8)) [84].

nZVI − CAC − C = O+S2O2−
8 → nZVI − CAC − C − O∗ + 2SO−•

4 (6)

≡ Fe2+ + O2 → O−•
2 +≡ Fe3+ (7)

O−•
2 + S2O2−

8 → SO2−
4 + SO−•

4 + O2 (8)
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In the presence of FFA, the PHE removal efficiency was observably restrained by
27.3%, which was higher than the inhibition using MeOH. FFA was generally used as an
inhibitor of 1O2 (k FFA,1O2

= 1.2 × 108 M−1 s−1), and 1O2 was reported to be the dominant
ROS produced by activation of PS [85]. However, Lu et al. argued that these studies ignored
the rapid quenching of 1O2 in water in the non-optical regime and the false-positive results
of electron paramagnetic resonance (EPR) experiments [86]. More importantly, FFA was
also capable of quenching the active SO−•

4 and HO• species bound to the surface of the
solid catalysts due to the hydrophobicity of FFA [82,87,88]. This led to the higher inhibition
of PHE degradation with FFA than with MeOH. To further verify this viewpoint, phenol
was introduced as a scavenger since phenol was reported to effectively scavenge HO•

(k phenol, HO
• = 6.6 × 109 M−1 s−1) and SO−•

4 (k phenol,SO−•
4

= 8.8 × 109 M−1 s−1) present in
a bound state on the surface of solid materials [82,85,89]. With the addition of phenol, PHE
oxidation was dramatically retarded by 39.1%, which was higher than that of FFA. Never-
theless, owing to the much lower rate constant with 1O2 (k phenol, 1O2

= 2.6 × 106 M−1 s−1),
phenol is generally not regarded as a scavenger of 1O2 [78]. As a consequence, it could be
concluded that surface-bound SO−•

4 was predominantly responsible for PHE oxidation and
1O2 was not the main ROS contributor to PHE oxidation.

Based on the above discussion, the mechanism of PS activation by nZVI-CAC for
the oxidative remediation of organic contaminants is proposed in Figure 10. Specifically,
the PS molecules were specifically adsorbed to nZVI-CAC rich in C=O groups, and then
SO−•

4 and HO• were generated through reactions between PS and ≡Fe2+, Fe0, and C=O in
the nZVI-CAC material to effectively attack soil PHE. In the meantime, dissolved oxygen
could react with ≡Fe2+ to produce O−•

2 , and O−•
2 subsequently activated PS to enhance the

production of SO−•
4 and HO•. During the catalytic process, the presence of C=O groups on

nZVI-CAC functioned as both adsorptive sites and active sites for PS, strengthening the
formation of surface-bound SO−•

4 and HO• for the remediation of soil pollutants.
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2.7. Degradation Products of PHE

The intermediates produced during the degradation of PHE by nZVI-CAC/PS were
identified and are listed in Table 2. Three possible degradation pathways for PHE were sum-
marized based on the products. In the first pathway, PHE was first attacked by ROS to pro-
duce 9-phenanthrol at the C9,C10 position of the PHE central ring. The 9-phenanthrol was
hydroxylated to 9, 10-dihydro-9,10-dihydroxyphenanthrene (D). D was then oxygenated
to 2,2′-biphenyldicarboxylic anhydride (B) [90]. B could be isomerized to biphenyldicar-
boxylic acid (A) by ring opening [91]. A was further oxidized to a short-chain acid. D can
also form 2,2-biphenyldicarbalin by oxidation and ring-opening, and 3,4-benzocoumarin
(F) can be produced by oxidation and esterification. Additionally, amiable nucleus addition
could generate 9,10-phenanthrenequinone, and 9,10-phenanthrenequinone was oxygenated
to B [91]. In the second pathway, PHE was attacked by C3 to generate [1,1′-biphenyl]-
2-acetic acid (C). C could further decompose to 1,2,4-trimethylbenzene through chain
breaking or to 1,2,3-trimethylbenzene through methylation and oxidation [92]. In the third
pathway, PHE could be attacked at the C2 and C3 positions forming 2,3-phenanthrenediol.
The 2,3-phenanthrenediol further isomerizes to 2,3-phenanthrenequinone [93], followed
by ring opening to 1,2-naphthalic anhydride (E) [90]. E was further hydroxylated to 1,4-
dihydroxy-2-naphthalic acid through oxidation, ring-opening, and loss of CO2 [94]. The
1,4-dihydroxy-2-naphthalic acid is then decarboxylated to l-(+)-mandelic acid, or hydrox-
ylated to 2,4-dihydroxybenzoic acid (G), and those intermediates are further oxidized to
short-chain acids [43].
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Table 2. PHE degradation products determined by GC-MS.

Products Chemical Name M.W. Chemical Structure

A
2,2′-

Biphenyldicarboxylic
acid

242
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3. Materials and Methods
3.1. Chemical and Reagents

Phenanthrene (PHE, C14H10, 97.0%, CAS: 85-01-8) was bought from the Energy Chem-
ical Reagent Co., Ltd. (Shanghai, China). Acenaphthylene (ACP, C12H10, 98.0%, CAS:
208-96-8) was obtained from Shanghai Acmec Biochemical Co., Ltd. (Shanghai, China).
Methanol (MeOH, ≥99.5%, CAS: 67-56-1) and acetonitrile (ACN, ≥99.9%, CAS: 75-05-8)
were purchased from Tianjin ZhiYuan Reagent Co., Ltd. (Tianjin, China). Trichloromethane
(CF, ≥99.0%, CAS: 67-66-3) was purchased from Chengdu Colon Co., Ltd. (Chengdu,
China). Pyrene (PYR, C16H10, 97.0%, CAS: 129-00-0) and alcohol (TBA, ≥99.0%, CAS:
442663-47-0) were obtained from the Macklin Biochemical Technology Co., Ltd. (Shanghai,
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China). Sodium persulfate (Na2S2O8, 99.0%, CAS: 7775-27-1), furfuryl alcohol (FFA, 98%,
CAS: 98-00-0), anthracene (ANT, C14H10, ≥99.0%, CAS: 120-12-7), fluoranthene (FLUA,
C16H10, 98%, CAS: 206-44-0), fluorene (FLU, C13H10, 97.0%, CAS: 86911-17-3), acenaphthene
(ACE, C12H8, 98.0%, CAS: 83-32-9), phenol (C6H5OH, ≥99.0%, CAS: 108-95-2), and peroxy-
monosulfate (PMS, KHSO5·0.5KHSO4·0.5K2SO4, 99.0%, CAS: 22047-43-4) were purchased
from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Commercial nZVI
powders were purchased from Flance (Beijing) nanotechnology Co., Ltd. (Beijing, China).

3.2. nZVI-CAC Preparation

The crushed coconut shell was screened and dried for 2 h to remove water, then the
dried powder was heated to 400 ◦C at a rate of 10 ◦C min−1 under anoxic conditions, and
kept for calcination for 2 h to obtain carbon materials. To activate the carbon materials, the
obtained carbon was heated to 400 ◦C with inert argon gas and then carbonized for 2 h
with the argon gas switched to CO2 and air. The activated material obtained was washed
with deionized water to neutralize and dried at 110 ◦C for 4 h to obtain activated carbon.
The activated carbon was placed in a quartz tube, heated to 700 ◦C at a rate of 8 ◦C min−1

in inert gas, annealed for 2 h to obtain carbonylated activated carbon, and named CAC.
The CAC pellets were firstly ground and passed through a 60-mesh sieve to obtain

CAC powder, after which 0.756 g CAC powder was immersed in 100 mL FeSO4·7H2O
solution (0.135 M) and stirred thoroughly for 30 min in a three-neck burner under N2
atmosphere, and then 100 mL NaBH4 (0.27 M) was added in a droplet. After the reaction,
the solids were washed three times with anhydrous ethanol and dried under vacuum at
60 ◦C for 10 h to obtain nZVI-CAC composites with a mass ratio of Fe/CAC of 1:1. To
obtain materials with different mass ratios of Fe/CAC, the CAC powder was fixed at 1 g
and the added FeSO4·7H2O was adjusted to a predetermined concentration according to
the mass ratio of Fe/CAC.

3.3. Soil Spiking

The uncontaminated soil with a depth of 10−30 cm was collected from the East
campus of Yangtze University. The physical–chemical characteristics of the soil are listed
in Table 3. PHE-contaminated soil was obtained by mixing uncontaminated soil with
PHE in methanol solution (1/1, w/v), placing it in a 200-rpm shaker for 1 day, and air-
drying until the solvent was completely volatile. The preparation procedure of the other
soils contaminated with other PAHs was the same as that of the PHE-contaminated soil,
except for ANT and PYR, which were dissolved by ACN. All contaminated soil samples
used in this study were aged for one week before use. To determine the concentration
of PAHs in the spiked soil, the contaminated soil was thoroughly mixed with acetone
and sonicated for 20 min. After centrifugation at a speed of 4000 r min−1 for 10 min,
the supernatant was removed for the determination of the dosage of PAHs, the residual
solid was extracted for the second time by acetone. The extraction was conducted three
times to completely extract the PAHs from the soil. The concentration of PAHs in the
filtrate was determined using a Jimadzu high-performance liquid chromatography system
(HPLC). The concentrations of PHE, ANT, FLUA, FLU, PYR, ACP, and ACE in the spiked
soil were 94.2 ± 3.2 mg kg−1, 93.2 ± 2.3 mg kg−1, 92.1 ± 2.7 mg kg−1, 84.5 ± 3.8 mg kg−1,
98.7 ± 1.2 mg kg−1, 87.9 ± 2.1 mg kg−1, and 86.2 ± 2.6 mg kg−1.
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Table 3. Primary physical and chemical properties of the collected soil.

Main Properties Value

pH a 8.02
Organic carbon (%) b 3.65

Organic carbon from soils contaminated with PHE (%) b 3.67
Cation exchange capacity (cmol kg−1) c 0.98

Particle size distribution (%) d

Silt (2~62 µm) 76.90
Sand (>63 µm) 23.10

Heavy metals (mg kg−1) e

Cr (total) 26.51 ± 1.45
Cu 21.24
Pb 46.23 ± 2.36
Cd <LOD g

Contaminants (mg kg−1) f

PAHs <LOD g

a Water to soil ratio = 5 mL g−1. b Potassium dichromate-sulfuric acid digestion. c Hexamminecobalt trichloride
solution. d Microtrac S3500 apparatus. e Digestion by HCl, HF, and HClO4, monitored by an atomic absorption
spectrophotometer AA-7003 (Ewai-group, Beijing, China). f Extraction by acetone, measured by an HPLC system.
g Limit of detection.

3.4. Batch Experiments

The experiments were carried out in batches in 100 mL glass bottles. To ensure
the homogeneous mixing of the soil slurry, an aqueous–soil mixture containing 2.0 g of
contaminated soil and 8 mL of deionized water was oscillated on a thermostatic shaker at a
fixed speed. The reaction was timed when the oxidant and catalyst were added to the slurry,
and the experiments were protected from light throughout. To determine the degradation
of PAHs, a multiple extraction method was used for the extraction of residual PAHs after
the reaction [95–98]. At the end of the reaction, excess MeOH or ACN (20 mL) was added,
and the bottles were sealed for shaking for 2 h. After sonication for 20 min, the mixture was
centrifuged, and the concentration of PAHs in the separated filtrate was determined. The
excess supernatant was discarded and the extraction was repeated twice with the residual
solid to completely extract PAHs from the soil sample [95–98]. The residual concentration
of PAHs in the soil was calculated from the sum of the PAH concentrations of the filtrates.

3.5. Analytic Methods and Characterization

The PAHs were quantified by an HPLC system equipped with an Inertsil ODS-SP C18
column (150 × 4.6 mm, 5 µm) with a mobile phase of a mixture of 80.0% acetonitrile and
20.0% ultrapure water, and the total flow rate was 1.2 mL min−1.

Scanning electron microscopy (SEM, TESCAN MIRA LMS, Brno, Czech Republic)
and transmission electron microscopy (TEM, FEI Talos F200S, Hillsboro, OR, USA) were
used to observe the morphology characteristics of the samples, and Fourier transform
infrared spectroscopy (FTIR, Nicolet 6700, Thermo Fisher Scientific, Waltham, MA, USA)
was employed to characterize the types of functional groups on the surface of the samples.
X-ray diffractometer (XRD, Panalytical Empyrean, Nottingham, UK) was conducted to
characterize the crystal type of the sample, while X-ray photoelectron spectroscopy (XPS, K-
Alpha, Thermo Scientific, Waltham, MA, USA) was used to analyze the composition of the
prepared materials. The specific surface areas of the catalysts were analyzed by Brunauer–
Emmett–Teller (BET, Micromeritics APSP 2460, Micromeritics, Norcross, GA, USA).

The AGREE software was used to evaluate the greenness of the analysis method [61].
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3.6. Calculation Method

The removal efficiency of PAHs was described by (C0 − C)/C0, where C0 denoted the
initial pollutant, using the following equation,

Removal =
C0 − C

C0
×100% (9)

where C0 and C represent the concentration of PAHs in the soil before and after the reaction
in mg kg−1, respectively.

The pseudo-first-order kinetic model was used to describe the degradation rate of
PHE, using the following equation [96]:

− ln
(

Ct

C0

)
= kt (10)

where k is the reaction rate constant, min−1; Ct is the concentration of PHE in the soil at
time t min, mg kg−1.

4. Conclusions

In this study, for the first time, an nZVI-CAC composite was synthesized and employed
for the remediation of PAH-contaminated soil. The characterizations of XRD, FTIR, SEM,
and XPS for the prepared materials demonstrated the successful loading of Fe0 and the
composite nZVI-CAC was rich in oxygen-containing functional groups, including C=O.
The PS/nZVI-CAC system was found to be superior for PHE oxidation over the processes
using commercial nZVI or those with oxidants of H2O2 and PMS. At the optimal conditions,
with an Fe/CAC ratio of 1:1, a PS concertation of 100 mmol kg−1, and an nZVI-CAC dosage
of 10 g kg−1, seven tested PAHs with 3–4 rings were effectively degraded, and the removal
efficiencies were in the range of 60.8–90.7%. Finally, based on the scavenging experiments,
surface-bound SO−•

4 was verified to be more contributive than HO• to PHE oxidation,
while O−•

2 partially improved PHE degradation and 1O2 played an insignificant role in
PHE remediation. Consequently, the findings of this study enable a cost-effective approach
for the remediation of PAH-polluted soil by ISCO with nZVI-CAC. Moreover, when using
the nZVI-CAC for actual site remediation, nZVI could be gradually oxidized to iron oxide
after being injected into the restoration area [99], and the carbon materials can improve
soil fertility and increase crop yields [100,101]. Therefore, the residue of nZVI-CAC in site
application is expected to have less impact on soil systems.
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