Leveraging the Potential of In Situ Green-Synthesized Zero-Valent Iron Nanoparticles (nZVI) for Advanced Oxidation of Clinical Dyes in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Extraction of Polyphenols from Green Tea Leaves and Determination of the Polyphenol Content
2.3. Experimental Procedure
2.4. Experimental Design
2.5. Characterization of n-ZVI
2.5.1. Texture and Morphology
2.5.2. Chemical Characterization and Crystal Structure
2.5.3. Thermal Analysis
3. Results and Discussion
3.1. Characterization of Polyphenol Extracts
3.2. Texture and Morphology of the nZVI Samples
3.3. Chemical Characterization and Crystal Structure of the nZVI Samples
3.4. Thermal Analysis
3.5. Preliminary Tests and Determination of the Operational Variables and Working Intervals
3.6. Analysis of the Statistical Design of Experiments
3.6.1. Numerical Analysis
3.6.2. Graphical Analysis
3.7. Contribution of Fe0 Nanoparticles to the Elimination Process of Dyes
3.8. Contribution of the Fenton/Fenton-like Processes to the Removal of Dyes
3.9. Synergistic Effect of Nanoparticle Formation and Advanced Oxidation Processes on the Removal of Dyes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Industry Analysts Inc. Pigments and Dyes—A Global Strategic Business Report; Global Industry Analysts Inc.: San Jose, CA, USA, 2023. [Google Scholar]
- Hossain, M.Y.; Liang, Y.; Pervez, M.N.; Ye, X.; Dong, X.; Hassan, M.M.; Cai, Y. Effluent-Free Deep Dyeing of Cotton Fabric with Cacao Husk Extracts Using the Taguchi Optimization Method. Cellulose 2021, 28, 517–532. [Google Scholar] [CrossRef]
- Masek, A.; Plota, A.; Chrzastowska, J.; Piotrowska, M. Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials. Int. J. Mol. Sci. 2021, 22, 12524. [Google Scholar] [CrossRef]
- Swarnkar, K.; Nikam, V.; Gupta, K.; Pearson, J.M. Review of the State-of-the-Art for Monitoring Urban Drainage Water Quality Using Rhodamine WT Dye as a Tracer. ISH J. Hydraul. Eng. 2023, 29, 531–539. [Google Scholar] [CrossRef]
- Cascarano, R.N.; Reeves, D.M.; Henry, M.A. A Dye Tracer Approach for Quantifying Fluid and Solute Flux Across the Sediment–Water Interface. Groundwater 2021, 59, 428–437. [Google Scholar] [CrossRef]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, R.; Chen, Y.; Liu, X.; Wang, K.; Mao, L.; Yuan, J.; Zhang, X.; Tao, L.; Wei, Y. A Polymerizable Aggrega-tion-Induced Emission Dye for Fluorescent Nanoparticles: Synthesis, Molecular Structure and Application in Cell Imaging. Polym. Chem. 2019, 10, 2162–2169. [Google Scholar] [CrossRef]
- Biyase, N.G. Contrast and Dyes. South. Afr. J. Anaesth. Analg. 2020, 26, S12–S16. [Google Scholar] [CrossRef]
- Wright, P.M.; Seiple, I.B.; Myers, A.G. The Evolving Role of Chemical Synthesis in Antibacterial Drug Discovery. Angew. Chem. Int. Ed. 2014, 53, 8840–8869. [Google Scholar] [CrossRef]
- Lian, C.; Zhang, J.Z.; Li, Y.R.; Liu, H.L.; Liu, X.J.; Li, X.L. Methylene Blue Staining: A Novel Application to Identify the Damaged Tissues on the Surface of Pressure Ulcers. Int. Wound J. 2019, 16, 570–571. [Google Scholar] [CrossRef]
- Gama, C.R.B.; Pombo, M.A.G.; Nunes, C.P.; Gama, G.F.; Mezitis, S.G.E.; Neto, M.S.; Guimarães, O.R.; Geller, M.; Oliveira, L.; da Fonseca, A.d.S.; et al. Treatment of Recurrent Urinary Tract Infection Symptoms with Urinary Antiseptics Containing Me-thenamine and Methylene Blue: Analysis of Etiology and Treatment Outcomes. Res. Rep. Urol. 2020, 12, 639–649. [Google Scholar] [CrossRef]
- Mak, R.S.P.; Liebelt, E.L. Methylene Blue: An Antidote for Methemoglobinemia and Beyond. Pediatr. Emerg. Care 2021, 37, 478–479. [Google Scholar] [CrossRef]
- Stelmashook, E.V.; Genrikhs, E.E.; Mukhaleva, E.V.; Kapkaeva, M.R.; Kondratenko, R.V.; Skrebitsky, V.G.; Isaev, N.K. Neuro-protective Effects of Methylene Blue In Vivo and In Vitro. Bull. Exp. Biol. Med. 2019, 167, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Luger, P.; Dittrich, B.; Benecke, L.; Sterzel, H. Charge Density Studies on Methylene Blue—A Potential Anti-Alzheimer Agent. Z. Naturforschung Sect. B J. Chem. Sci. 2018, 73, 99–108. [Google Scholar] [CrossRef]
- Smith, E.S.; Clark, M.E.; Hardy, G.A.; Kraan, D.J.; Biondo, E.; Gonzalez-Lima, F.; Cormack, L.K.; Monfils, M.; Lee, H.J. Daily Consumption of Methylene Blue Reduces Attentional Deficits and Dopamine Reduction in a 6-OHDA Model of Parkinson’s Disease. Neuroscience 2017, 359, 8–16. [Google Scholar] [CrossRef]
- Delport, A.; Harvey, B.H.; Petzer, A.; Petzer, J.P. Methylene Blue and Its Analogues as Antidepressant Compounds. Metab. Brain Dis. 2017, 32, 1357–1382. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Iqbal, J.; Zhu, Y.; Wang, F.; Zhang, F.; Chen, W.; Wu, T.; Du, Y. Chitosan/Al2O3-HA Nanocomposite Beads for Efficient Removal of Estradiol and Chrysoidin from Aqueous Solution. Int. J. Biol. Macromol. 2020, 145, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, Y.; Li, M.; Han, S.; Yang, X.; Liu, R. Toxic Effects of Chrysoidine on Human Serum Albumin: Isothermal Titration Calorimetry and Spectroscopic Investigations. Luminescence 2016, 31, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Z.; Feng, Y.X.; Yue, D.M. Phytotoxicity of Methylene Blue to Rice Seedlings. Glob. J. Environ. Sci. Manag. 2015, 1, 199–204. [Google Scholar] [CrossRef]
- Tkaczyk-Wlizło, A.; Mitrowska, K. Occurrence and Ecotoxicological Risk Assessment of Pharmacologically Active Dyes in the Environmental Water of Poland. Chemosphere 2023, 313, 137432. [Google Scholar] [CrossRef]
- Liu, S.; Ge, H.; Wang, C.; Zou, Y.; Liu, J. Agricultural Waste/Graphene Oxide 3D Bio-Adsorbent for Highly Efficient Removal of Methylene Blue from Water Pollution. Sci. Total Environ. 2018, 628–629, 959–968. [Google Scholar] [CrossRef]
- Azil, K.; Ferria, K.; Bouzid, S. Cladless Optical Fiber Sensor Based on Evanescent Wave Absorption for Monitoring Methylene Blue Induced Water Pollution. J. Opt. Soc. Am. B 2020, 37, A253. [Google Scholar] [CrossRef]
- Rahimi Aqdam, S.; Otzen, D.E.; Mahmoodi, N.M.; Morshedi, D. Adsorption of Azo Dyes by a Novel Bio-Nanocomposite Based on Whey Protein Nanofibrils and Nano-Clay: Equilibrium Isotherm and Kinetic Modeling. J. Colloid Interface Sci. 2021, 602, 490–503. [Google Scholar] [CrossRef]
- Raghav, L.; Patanjali, P.; Patanjali, N.; Singh, R. Adsorption of Malachite Green and Chrysoidine-Y by Sn-Pillared Clay. Environ. Qual. Manag. 2023, 32, 181–193. [Google Scholar] [CrossRef]
- Mariyam, A.; Mittal, J.; Sakina, F.; Baker, R.T.; Sharma, A.K. Adsorption Behaviour of Chrysoidine r Dye on a Metal/Halide-Free Variant of Ordered Mesoporous Carbon. Desalination Water Treat. 2021, 223, 425–433. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Z.; Gou, J.; Dong, S. Highly Efficient Adsorption and Removal of Chrysoidine Y from Aqueous Solution by Magnetic Graphene Oxide Nanocomposite. Arab. J. Chem. 2019, 12, 3064–3074. [Google Scholar] [CrossRef]
- Matheswaran, M.; Karunanithi, T. Adsorption of Chrysoidine R by Using Fly Ash in Batch Process. J. Hazard. Mater. 2007, 145, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Bentahar, S.; Dbik, A.; Khomri, M.E.; El Messaoudi, N.; Lacherai, A. Adsorption of Methylene Blue, Crystal Violet and Congo Red from Binary and Ternary Systems with Natural Clay: Kinetic, Isotherm, and Thermodynamic. J. Environ. Chem. Eng. 2017, 5, 5921–5932. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Q.; Zhang, L.; Pei, L.; Xue, H.; Li, Z. Adsorption of Methylene Blue and Congo Red from Aqueous Solution on 3D MXene/Carbon Foam Hybrid Aerogels: A Study by Experimental and Statistical Physics Modeling. J. Environ. Chem. Eng. 2023, 11, 109206. [Google Scholar] [CrossRef]
- Tran, T.H.; Le, H.H.; Pham, T.H.; Nguyen, D.T.; La, D.D.; Chang, S.W.; Lee, S.M.; Chung, W.J.; Nguyen, D.D. Comparative Study on Methylene Blue Adsorption Behavior of Coffee Husk-Derived Activated Carbon Materials Prepared Using Hydrothermal and Soaking Methods. J. Environ. Chem. Eng. 2021, 9, 105362. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Ghaedi, M.; Hajati, S.; Ghaedi, A.M.; Goudarzi, A.; Asfaram, A. Random Forest Model for the Ultrasonic-Assisted Removal of Chrysoidine G by Copper Sulfide Nanoparticles Loaded on Activated Carbon; Response Surface Methodology Approach. RSC Adv. 2015, 5, 59335–59343. [Google Scholar] [CrossRef]
- Raghav, L.; Patanjali, P.; Chopra, I.; Singh, R. Adsorption and Kinetic Studies for Removal of Basic Dyes Using Pillared Bentonites. Indian J. Chem. Technol. 2022, 29, 47–53. [Google Scholar]
- Saitoh, T.; Saitoh, M.; Hattori, C.; Hiraide, M. Rapid Removal of Cationic Dyes from Water by Coprecipitation with Aluminum Hydroxide and Sodium Dodecyl Sulfate. J. Environ. Chem. Eng. 2014, 2, 752–758. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, C.; Liu, X.; Sui, M.; Meng, Y. Selective Flocculation of Pollutants in Wastewater Using PH Responsive HM-Alginate/Chitosan Complexes. J. Environ. Chem. Eng. 2017, 5, 5406–5410. [Google Scholar] [CrossRef]
- Jaafar, A.; El-Husseini, S.; Platas-Iglesias, C.; Bilbeisi, R.A. Zeolitic Imidazolate Framework (AMCD-ZIF) Functionalised Mem-brane for the Removal of Dyes from Water. J. Environ. Chem. Eng. 2022, 10, 108019. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Cai, X.; Zhou, H.; Kong, Z.; Ma, X.; Gao, L.; Tan, H.; Cai, J. Tunable Reduced Graphene Oxide Nanofiltration Membrane for Efficient Retention and Separation of Dye/Salt Based on Molecular Interactions. J. Environ. Chem. Eng. 2023, 11, 109735. [Google Scholar] [CrossRef]
- Torabian, A.; Bihdendi, G.R.N.; Ranjbar, P.Z.; Razmkhah, N. Efficiency Evaluation of Textile Basic Dye Removal from Water by Nanofiltration. Iran. J. Environ. Health Sci. Eng. 2007, 4, 177–180. [Google Scholar]
- Kakuta, T.; Aoki, F.; Okada, T.; Shindo, H.; Yoshizawa, K.; Koizumi, T.; Nojiro, K. Biodegradation of Azo-Dye by a Yeast Candida Curvata AN723. J. Fiber Sci. Technol. 1998, 54, 54–57. [Google Scholar] [CrossRef]
- Kanekar, P.; Sarnaik, S. Microbial Process for Treatment of Phenol Bearing Dye—Industry Effluent in a Fixed Film Bioreactor. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1995, 30, 1817–1826. [Google Scholar] [CrossRef]
- Ramakrishnan, R.K.; Padil, V.V.T.; Waclawek, S.; Cerník, M.; Tiwari, D. Sustainable, Biodegradable, and Recyclable Bio-Sponge for Rapid and Practical Bioremediation of Dye from Water. J. Environ. Chem. Eng. 2022, 10, 108285. [Google Scholar] [CrossRef]
- Tabasum, B.; Dhagale, P.R.; Nitnaware, K.M.; Nikule, H.A.; Nikam, T.D. New Chemical Products Formation from Textile Dye Degradation, Chitinolytic and Antioxidant Activity in New Strain Nbpc5-18 of Cellulosimicrobium Sp. TH-20. J. Environ. Chem. Eng. 2019, 7, 103114. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.A.; Abd Aziz, A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.-D. Performance Eval-uation of Dye Wastewater Treatment Technologies: A Review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Luo, H.; Zeng, Y.; He, D.; Pan, X. Application of Iron-Based Materials in Heterogeneous Advanced Oxidation Processes for Wastewater Treatment: A Review. Chem. Eng. J. 2021, 407, 127191. [Google Scholar] [CrossRef]
- Liu, J.; Peng, C.; Shi, X. Preparation, Characterization, and Applications of Fe-Based Catalysts in Advanced Oxidation Processes for Organics Removal: A Review. Environ. Pollut. 2022, 293, 118565. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wang, S.; Yu, Z.; Cao, X. Characteristics and Application of Iron-Based Materials in Heterogeneous Fenton Oxidation for Wastewater Treatment: A Review. Environ. Sci. 2023, 9, 1266–1289. [Google Scholar] [CrossRef]
- Guo, S.; Yang, H.; Sun, Q.; Zhang, G.; Zhao, T.; Zhou, Y.; Li, X.; Gao, P. Evaluation of a Novel Carbon-Based Micro-Nano Ze-ro-Valent Iron Composite for Immobilization of Heavy Metals in Soil. J. Environ. Chem. Eng. 2023, 11, 109740. [Google Scholar] [CrossRef]
- Barka, E.; Noutsopoulos, C.; Galani, A.; Panagou, I.; Kalli, M.; Koumaki, E.; Malamis, S.; Mamais, D. Removal of Contaminants of Emerging Concern from Wastewater Using an Integrated Column System Containing Zero Valent Iron Nanoparticles. Water 2023, 15, 598. [Google Scholar] [CrossRef]
- Yang, W.; Xi, D.; Li, C.; Yang, Z.; Lin, Z.; Si, M. “In-Situ Synthesized” Iron-Based Bimetal Promotes Efficient Removal of Cr(VI) in by Zero-Valent Iron-Loaded Hydroxyapatite. J. Hazard. Mater. 2021, 420, 126540. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Zhu, J.-J.; Li, P.-H.; Sun, Y.-F.; Yang, M.; Huang, X.-J. In-Situ Growth of Zero-Valent Iron in FeOx/Mn3O4 to Improve the Surficial Redox for High-Efficient Electrocatalysis of Pb(II). Chem. Eng. J. 2022, 430, 132959. [Google Scholar] [CrossRef]
- Samaraweera, H.; Nawalage, S.; Nayanathara, R.M.O.; Peiris, C.; Karunaratne, T.N.; Gunatilake, S.R.; Thirumalai, R.V.K.G.; Zhang, J.; Zhang, X.; Mlsna, T. In Situ Synthesis of Zero-Valent Iron-Decorated Lignite Carbon for Aqueous Heavy Metal Remediation. Processes 2022, 10, 1659. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Xie, Y.; Ren, N.; Ma, J.; Ning, P. Facile In-Situ Construction of Highly Dispersed Nano Zero-Valent Iron Modified Black TiO2 Z-Scheme Recyclable Heterojunction with Highly Efficient Visible-Light-Driven Photocatalytic Activity. Appl. Catal. B 2022, 310, 121325. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Tian, S.; Zhu, S.; Chen, Z.; Si, H. The Effect of Zero-Valent Iron/Fe3+ Coupling and Reuse on the Properties of Anoxic Sludge. J. Clean. Prod. 2022, 344, 131031. [Google Scholar] [CrossRef]
- Soliemanzadeh, A.; Fekri, M. Synthesis of Green and Ecofriendly Iron Nanoparticles Using Plant Part Extracts: Application on the Removal of Phosphorus from Aqueous Media. Inorg. Nano-Met. Chem. 2021, 51, 340–351. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Y.; Zhao, F.; Wang, F.; Tian, G.; Liang, J. Novel Synthesis of Nanoscale Zero-Valent Iron from Iron Ore Tailings and Green Tea for the Removal of Methylene Blue. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130412. [Google Scholar] [CrossRef]
- Panić, S.; Petronijević, M.; Vukmirović, J.; Grba, N.; Savić, S. Green Synthesis of Nanoscale Zero-Valent Iron Aggregates for Catalytic Degradation of Textile Dyes. Catal. Lett. 2023, 153, 3605–3619. [Google Scholar] [CrossRef]
- Shojaei, S.; Shojaei, S. Optimization of Process Variables by the Application of Response Surface Methodology for Dye Removal Using Nanoscale Zero-Valent Iron. Int. J. Environ. Sci. Technol. 2019, 16, 4601–4610. [Google Scholar] [CrossRef]
- Khoshro, S.; Mirbagheri, N.S.; Sabbaghi, S. Removal of Nitrate from Aqueous Solution Using Nano Zerovalent Iron-Reduced Graphene Oxide Composite: Optimization of Parameters. Water Environ. J. 2020, 34, 608–621. [Google Scholar] [CrossRef]
- Amiri, M.J. Synthesis and Optimization of Spherical NZVI (20–60 Nm) Immobilized in Bio-Apatite-Based Material for Efficient Removal of Phosphate: Box-Behnken Design in a Fixed-Bed Column. Environ. Sci. Pollut. Res. 2022, 29, 67751–67764. [Google Scholar] [CrossRef] [PubMed]
- Scherer, R.; Godoy, H.T. Effects of Extraction Methods of Phenolic Compounds from Xanthium strumarium L. and Their An-tioxidant Activity|Efeito de Métodos de Extração de Compostos Fenólicos de Xanthium strumarium L. e Suas Atividades Antioxidantes. Rev. Bras. Plantas Med. 2014, 16, 41–46. [Google Scholar] [CrossRef]
- Jorgensen, E.M.; Marin, A.B.; Kennedy, J.A. Analysis of the Oxidative Degradation of Proanthocyanidins under Basic Conditions. J. Agric. Food Chem. 2004, 52, 2292–2296. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Gil, M.I.; Cremin, P.; Waterhouse, A.L.; Hess-Pierce, B.; Kader, A.A. HPLC-DAD-ESIMS Analysis of Phenolic Compounds in Nectarines, Peaches, and Plums. J. Agric. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [CrossRef]
- Tao, W.; Zhou, Z.; Zhao, B.; Wei, T. Simultaneous Determination of Eight Catechins and Four Theaflavins in Green, Black and Oolong Tea Using New HPLC–MS–MS Method. J. Pharm. Biomed. Anal. 2016, 131, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Nian, B.; Chen, L.; Yi, C.; Shi, X.; Jiang, B.; Jiao, W.; Liu, Q.; Lv, C.; Ma, Y.; Zhao, M. A High Performance Liquid Chromatography Method for Simultaneous Detection of 20 Bioactive Components in Tea Extracts. Electrophoresis 2019, 40, 2837–2844. [Google Scholar] [CrossRef] [PubMed]
- Paiva, L.; Rego, C.; Lima, E.; Marcone, M.; Baptista, J. Comparative Analysis of the Polyphenols, Caffeine, and Antioxidant Activities of Green Tea, White Tea, and Flowers from Azorean Camellia Sinensis Varieties Affected by Different Harvested and Processing Conditions. Antioxidants 2021, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, D.; Cobbs, M.; Rahhal, S.; Bakarr Kanu, A. The Use of Liquid Chromatography and Mass Spectrometry to Identify and Quantify Chemical Components in Tea Extracts. Anal. Chem. Lett. 2022, 12, 292–301. [Google Scholar] [CrossRef]
- Yang, X.-R.; Wang, Y.-Y.; Li, K.-K.; Li, J.; Li, C.-R.; Shi, X.-G.; Ko, C.-H.; Leung, P.-C.; Ye, C.-X.; Song, X.-H. Cocoa Tea (Camellia Ptilophylla Chang), a Natural Decaffeinated Species of Tea—Recommendations on the Proper Way of Preparation for Con-sumption. J. Funct. Foods 2011, 3, 305–312. [Google Scholar] [CrossRef]
- Zhang, C.; Suen, C.L.-C.; Yang, C.; Quek, S.Y. Antioxidant Capacity and Major Polyphenol Composition of Teas as Affected by Geographical Location, Plantation Elevation and Leaf Grade. Food Chem. 2018, 244, 109–119. [Google Scholar] [CrossRef]
- Kim, Y.; Goodner, K.L.; Park, J.-D.; Choi, J.; Talcott, S.T. Changes in Antioxidant Phytochemicals and Volatile Composition of Camellia Sinensis by Oxidation during Tea Fermentation. Food Chem. 2011, 129, 1331–1342. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Sepúlveda, P.; Cáceres-Jensen, L.; Castro-Rojas, J.; Poblete-Grant, P.; Bolan, N.; Mora, M.D.L.L. NZVI-Based Nanomaterials Used for Phosphate Removal from Aquatic Systems. Nanomaterials 2023, 13, 399. [Google Scholar] [CrossRef]
- Som, I.; Suman, S.; Roy, M.; Gupta, S.; Saha, R. Effective Phosphate Removal from Sewage Water Using Zerovalent Iron Na-nomaterial as an Adsorbent. Water Qual. Res. J. 2022, 57, 177–199. [Google Scholar] [CrossRef]
- Badmus, K.O.; Coetsee-Hugo, E.; Swart, H.; Petrik, L. Synthesis and Characterisation of Stable and Efficient Nano Zero Valent Iron. Environ. Sci. Pollut. Res. 2018, 25, 23667–23684. [Google Scholar] [CrossRef]
- He, Y.; Gao, J.F.; Feng, F.Q.; Liu, C.; Peng, Y.Z.; Wang, S.Y. The Comparative Study on the Rapid Decolorization of Azo, An-thraquinone and Triphenylmethane Dyes by Zero-Valent Iron. Chem. Eng. J. 2012, 179, 8–18. [Google Scholar] [CrossRef]
- Machado, S.; Pacheco, J.G.; Nouws, H.P.A.; Albergaria, J.T.; Delerue-Matos, C. Characterization of Green Zero-Valent Iron Nanoparticles Produced with Tree Leaf Extracts. Sci. Total Environ. 2015, 533, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lin, J.; Chen, Z.; Megharaj, M.; Naidu, R. Green Synthesized Iron Nanoparticles by Green Tea and Eucalyptus Leaves Extracts Used for Removal of Nitrate in Aqueous Solution. J. Clean. Prod. 2014, 83, 413–419. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, J.; Niu, Y.; Ju, S.; Gu, Y.; Han, K.; Wan, X.; Li, N.; Zhou, Y. Removal of Nitrate Nitrogen from Wastewater by Green Synthetic Hydrophilic Activated Carbon Supported Sulfide Modified Nanoscale Zerovalent Iron: Characterization, Performance and Mechanism. Chem. Eng. J. 2023, 461, 141990. [Google Scholar] [CrossRef]
- Akhgar, B.N.; Kavanlouei, M.; Kazemi, H.; Ghavidel, S.; Dardman, S. Effect of Synthesis Routes on the Microstructural Properties of Nano Zero-Valent Metals of Fe and Cu Synthesized from the Industrial Copper Solvent Extraction Process. Mater. Chem. Phys. 2023, 302, 127704. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, W.-X. Fine Structural Features of Nanoscale Zero-Valent Iron Characterized by Spherical Aberration Corrected Scanning Transmission Electron Microscopy (Cs-STEM). Analyst 2014, 139, 4512–4518. [Google Scholar] [CrossRef] [PubMed]
- Kozma, G.; Rónavári, A.; Kónya, Z.; Kukovecz, Á. Environmentally Benign Synthesis Methods of Zero-Valent Iron Nanopar-ticles. ACS Sustain. Chem. Eng. 2016, 4, 291–297. [Google Scholar] [CrossRef]
- Mareedu, T.; Poiba, V.; Vangalapati, M. Green Synthesis of Iron Nanoparticles by Green Tea and Black Tea Leaves Extract. Mater. Today Proc. 2021, 42, 1498–1501. [Google Scholar] [CrossRef]
- Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green Synthesis of Iron Nanoparticles by Various Tea Extracts: Com-parative Study of the Reactivity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 295–301. [Google Scholar] [CrossRef]
- Kuang, Y.; Wang, Q.; Chen, Z.; Megharaj, M.; Naidu, R. Heterogeneous Fenton-like Oxidation of Monochlorobenzene Using Green Synthesis of Iron Nanoparticles. J. Colloid Interface Sci. 2013, 410, 67–73. [Google Scholar] [CrossRef]
- Iwamoto, I.; Kurniawan, A.; Hasegawa, H.; Kashiwaya, Y.; Nomura, T.; Akiyama, T. Reduction Behaviors and Generated Phases of Iron Ores Using Ammonia as Reducing Agent. ISIJ Int. 2022, 62, 2483–2490. [Google Scholar] [CrossRef]
- Rivero, M.J.; Alonso, E.; Dominguez, S.; Ribao, P.; Ibañez, R.; Ortiz, I.; Irabien, A. Kinetic Analysis and Biodegradability of the Fenton Mineralization of Bisphenol A. J. Chem. Technol. Biotechnol. 2014, 89, 1228–1234. [Google Scholar] [CrossRef]
- Domínguez, J.R.; González, T.; Palo, P.; Cuerda-Correa, E.M. Fenton + Fenton-like Integrated Process for Carbamazepine Degradation: Optimizing the System. Ind. Eng. Chem. Res. 2012, 51, 2531–2538. [Google Scholar] [CrossRef]
- Cadenas, E.; Packer, L. Handbook of Antioxidants, 2nd ed.; Marcel Dekker: New City, NY, USA, 2001; ISBN 9780824705473. [Google Scholar]
- Neyens, E.; Baeyens, J. A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. J. Hazard. Mater. 2003, 98, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Raman, C.D.; Kanmani, S. Textile Dye Degradation Using Nano Zero Valent Iron: A Review. J. Environ. Manag. 2016, 177, 341–355. [Google Scholar] [CrossRef]
- Moon, B.-H.; Park, Y.-B.; Park, K.-H. Fenton Oxidation of Orange II by Pre-Reduction Using Nanoscale Zero-Valent Iron. Desalination 2011, 268, 249–252. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, C.; Megharaj, M. Characterization of Iron-Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustain. Chem. Eng. 2014, 2, 1022–1025. [Google Scholar] [CrossRef]
- García, F.E.; Plaza-Cazón, J.; Montesinos, V.N.; Donati, E.R.; Litter, M.I. Combined Strategy for Removal of Reactive Black 5 by Biomass Sorption on Macrocystis Pyrifera and Zerovalent Iron Nanoparticles. J. Environ. Manag. 2018, 207, 70–79. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Weng, C.-H.; Chen, F.-Y. Effective Removal of AB24 Dye by Nano/Micro-Size Zero-Valent Iron. Sep. Purif. Technol. 2008, 64, 26–30. [Google Scholar] [CrossRef]
- Freyria, F.S.; Bonelli, B.; Sethi, R.; Armandi, M.; Belluso, E.; Garrone, E. Reactions of Acid Orange 7 with Iron Nanoparticles in Aqueous Solutions. J. Phys. Chem. C 2011, 115, 24143–24152. [Google Scholar] [CrossRef]
- Cao, J.; Wei, L.; Huang, Q.; Wang, L.; Han, S. Reducing Degradation of Azo Dye by Zero-Valent Iron in Aqueous Solution. Chemosphere 1999, 38, 565–571. [Google Scholar] [CrossRef]
- Valsaraj, K.T. Elements of Environmental Engineering: Thermodynamics and Kinetics, 3rd ed.; CRC Press-Taylor & Francis Group: Boca Raton, FL, USA, 2000. [Google Scholar]
- Simsek, U.B.; Turabik, M. Decolorization Mechanisms of an Anionic Dye by Using Zero-Valent Iron Nanoparticles: Application of Response Surface Modeling for the Optimization Process. Desalination Water Treat. 2017, 81, 303–314. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Xi, B.; Meng, X.; Gong, B.; Li, R.; Peng, X.; Liu, H. Decolorization of Methyl Orange by a New Clay-Supported Nanoscale Zero-Valent Iron: Synergetic Effect, Efficiency Optimization and Mechanism. J. Environ. Sci. 2017, 52, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Weng, X.; Dharmarajan, R.; Chen, Z. Characterization and Reactivity of Iron Based Nanoparticles Synthesized by Tea Extracts under Various Atmospheres. Chemosphere 2017, 169, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, D.; Li, Y. Green Chemistry for Nanoparticle Synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-X.; Jin, X.-Y.; Chen, Z.; Megharaj, M.; Naidu, R. Removal of Methyl Orange from Aqueous Solution Using Benton-ite-Supported Nanoscale Zero-Valent Iron. J. Colloid Interface Sci. 2011, 363, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, F.; Chen, Z.; Megharaj, M.; Naidu, R. Heterogeneous Fenton Oxidation of Direct Black G in Dye Effluent Using Functional Kaolin-Supported Nanoscale Zero Iron. Environ. Sci. Pollut. Res. 2014, 21, 1936–1943. [Google Scholar] [CrossRef]
- Shen, J.-H.; Horng, J.-J.; Wang, Y.-S.; Zeng, Y.-R. The Use of Reactive Index of Hydroxyl Radicals to Investigate the Degradation of Acid Orange 7 by Fenton Process. Chemosphere 2017, 182, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Ferroudj, N.; Combes, A.; Pichon, V.; Abramson, S. Tracking the Degradation Pathway of Three Model Aqueous Pollutants in a Heterogeneous Fenton Process. J. Environ. Chem. Eng. 2019, 7, 102987. [Google Scholar] [CrossRef]
- Hamdy, A.; Mostafa, M.K.; Nasr, M. Zero-Valent Iron Nanoparticles for Methylene Blue Removal from Aqueous Solutions and Textile Wastewater Treatment, with Cost Estimation. Water Sci. Technol. 2018, 78, 367–378. [Google Scholar] [CrossRef]
- Mukherjee, R.; Kumar, R.; Sinha, A.; Lama, Y.; Saha, A.K. A Review on Synthesis, Characterization, and Applications of Nano Zero Valent Iron (NZVI) for Environmental Remediation. Crit. Rev. Environ. Sci. Technol. 2016, 46, 443–466. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Litter, M.I.; Slodowicz, M. An Overview on Heterogeneous Fenton and PhotoFenton Reactions Using Zerovalent Iron Materials. J. Adv. Oxid. Technol. 2017, 20, 20160164. [Google Scholar] [CrossRef]
Crystal Phase | Formula | Percent | Crystal System | Space Group | a | b | c | Alpha | Beta | Gamma |
---|---|---|---|---|---|---|---|---|---|---|
α-Iron | α-Fe | 63.2 | Cubic | Im-3m (229) | 2.8608 | 2.8608 | 2.8608 | 90 | 90 | 90 |
Goethite | FeOOH | 23.9 | Orthorhombic | Pbnm (62) | 4.6080 | 9.9560 | 3.0215 | 90 | 90 | 90 |
Hematite | Fe2O3 | 12.9 | Rhombohedral | R-3c (167) | 5.4200 | 5.4200 | 5.4200 | 55.12 | 55.12 | 55.12 |
Experiment | Coded Values | Removal Efficiency (%) | ||||
---|---|---|---|---|---|---|
Fe (II) | Fe (III) | H2O2 | Polyphenols | Chrysoidine | Methylene Blue | |
1 | 0 | 2 | 0 | 0 | 89.5 | 87.4 |
2 | 0 | 0 | 0 | 0 | 88.3 | 90.6 |
3 | 1 | 1 | −1 | −1 | 85.1 | 86.8 |
4 | −1 | −1 | −1 | −1 | 83.2 | 76.4 |
5 | −1 | −1 | −1 | 1 | 80.7 | 49.5 |
6 | 0 | 0 | 0 | 0 | 88.9 | 83.9 |
7 | 0 | 0 | 2 | 0 | 93.8 | 91.6 |
8 | 0 | 0 | 0 | 0 | 89.2 | 87.8 |
9 | 1 | 1 | 1 | −1 | 94.9 | 97.5 |
10 | 0 | 0 | 0 | −2 | 74.4 | 85.5 |
11 | 0 | 0 | 0 | 0 | 88.4 | 86.1 |
12 | −1 | 1 | 1 | −1 | 96.4 | 93.5 |
13 | −1 | −1 | 1 | 1 | 93.7 | 55.6 |
14 | −1 | −1 | 1 | −1 | 94.9 | 84.1 |
15 | 0 | 0 | 0 | 0 | 89.1 | 80.4 |
16 | 0 | 0 | 0 | 0 | 88.6 | 80.0 |
17 | 1 | 1 | −1 | 1 | 82.7 | 40.5 |
18 | 2 | 0 | 0 | 0 | 89.3 | 78.1 |
19 | 0 | 0 | 0 | 2 | 81.3 | 50.4 |
20 | −1 | 1 | −1 | −1 | 82.8 | 94.1 |
21 | 0 | 0 | −2 | 0 | 61.5 | 53.0 |
22 | −1 | 1 | 1 | 1 | 94.5 | 83.1 |
23 | 0 | 0 | 0 | 0 | 89.7 | 87.9 |
24 | 0 | −2 | 0 | 0 | 95.2 | 63.5 |
25 | 1 | −1 | −1 | −1 | 84.2 | 94.0 |
26 | 0 | 0 | 0 | 0 | 88.3 | 84.8 |
27 | 0 | 0 | 0 | 0 | 89.0 | 85.0 |
28 | 1 | 1 | 1 | 1 | 94.6 | 94.8 |
29 | 1 | −1 | −1 | 1 | 81.0 | 24.7 |
30 | 0 | 0 | 0 | 0 | 89.4 | 84.8 |
31 | 0 | 0 | 0 | 0 | 88.9 | 85.2 |
32 | 1 | −1 | 1 | 1 | 90.7 | 69.6 |
33 | 0 | 0 | 0 | 0 | 88.7 | 86.8 |
34 | 1 | −1 | 1 | −1 | 95.6 | 96.2 |
35 | −2 | 0 | 0 | 0 | 94.3 | 61.2 |
36 | −1 | 1 | −1 | 1 | 86.3 | 45.7 |
Variable | Chrysoidine | Methylene Blue | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Fe(II) | −0.609945 | −1.99971 | −1.79394 | −0.451465 |
Fe(III) | 1.92918 | 2.00000 | 0.24663 | 0.15726 |
H2O2 | 1.0094 | 1.49197 | 1.98174 | 0.534451 |
Polyphenols | 0.4105 | 0.494255 | 0.42093 | −1.18908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandre-Franco, M.F.; Rodríguez-Rasero, C.; González-Trejo, A.; Casas-Pulido, M.; Fernández-González, C.; Cuerda-Correa, E.M. Leveraging the Potential of In Situ Green-Synthesized Zero-Valent Iron Nanoparticles (nZVI) for Advanced Oxidation of Clinical Dyes in Water. Appl. Sci. 2024, 14, 6558. https://doi.org/10.3390/app14156558
Alexandre-Franco MF, Rodríguez-Rasero C, González-Trejo A, Casas-Pulido M, Fernández-González C, Cuerda-Correa EM. Leveraging the Potential of In Situ Green-Synthesized Zero-Valent Iron Nanoparticles (nZVI) for Advanced Oxidation of Clinical Dyes in Water. Applied Sciences. 2024; 14(15):6558. https://doi.org/10.3390/app14156558
Chicago/Turabian StyleAlexandre-Franco, María F., Cristina Rodríguez-Rasero, Ana González-Trejo, Mireya Casas-Pulido, Carmen Fernández-González, and Eduardo M. Cuerda-Correa. 2024. "Leveraging the Potential of In Situ Green-Synthesized Zero-Valent Iron Nanoparticles (nZVI) for Advanced Oxidation of Clinical Dyes in Water" Applied Sciences 14, no. 15: 6558. https://doi.org/10.3390/app14156558
APA StyleAlexandre-Franco, M. F., Rodríguez-Rasero, C., González-Trejo, A., Casas-Pulido, M., Fernández-González, C., & Cuerda-Correa, E. M. (2024). Leveraging the Potential of In Situ Green-Synthesized Zero-Valent Iron Nanoparticles (nZVI) for Advanced Oxidation of Clinical Dyes in Water. Applied Sciences, 14(15), 6558. https://doi.org/10.3390/app14156558