Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = nanoscale additive manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 23283 KiB  
Article
Titanium–Aluminum–Vanadium Surfaces Generated Using Sequential Nanosecond and Femtosecond Laser Etching Provide Osteogenic Nanotopography on Additively Manufactured Implants
by Jonathan T. Dillon, David J. Cohen, Scott McLean, Haibo Fan, Barbara D. Boyan and Zvi Schwartz
Biomimetics 2025, 10(8), 507; https://doi.org/10.3390/biomimetics10080507 - 4 Aug 2025
Viewed by 173
Abstract
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale [...] Read more.
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale structures. Studies indicate that topography with micro/nano features of osteoclast resorption pits causes bone marrow stromal cells (MSCs) and osteoprogenitor cells to favor differentiation into an osteoblastic phenotype. This study examined whether the biological response of human MSCs to Ti6Al4V surfaces is sensitive to laser treatment-controlled micro/nano-topography. First, 15 mm diameter Ti6Al4V discs (Spine Wave Inc., Shelton, CT, USA) were either machined (M) or additively manufactured (AM). Surface treatments included no laser treatment (NT), nanosecond laser (Ns), femtosecond laser (Fs), or nanosecond followed by femtosecond laser (Ns+Fs). Surface wettability, roughness, and surface chemistry were determined using sessile drop contact angle, laser confocal microscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Human MSCs were cultured in growth media on tissue culture polystyrene (TCPS) or test surfaces. On day 7, the levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and vascular endothelial growth factor 165 (VEGF) in the conditioned media were measured. M NT, Fs, and Ns+Fs surfaces were hydrophilic; Ns was hydrophobic. AM NT and Fs surfaces were hydrophilic; AM Ns and Ns+Fs were hydrophobic. Roughness (Sa and Sz) increased after Ns and Ns+Fs treatment for both M and AM disks. All surfaces primarily consisted of oxygen, titanium, and carbon; Fs had increased levels of aluminum for both M and AM. SEM images showed that M NT discs had a smooth surface, whereas AM surfaces appeared rough at a higher magnification. Fs surfaces had a similar morphology to their respective NT disc at low magnification, but higher magnification revealed nano-scale bumps not seen on NT surfaces. AM Fs surfaces also had regular interval ridges that were not seen on non-femto laser-ablated surfaces. Surface roughness was increased on M and AM Ns and Ns+Fs disks compared to NT and Fs disks. OCN was enhanced, and DNA was reduced on Ns and Ns+Fs, with no difference between them. OPN, OPG, and VEGF levels for laser-treated M surfaces were unchanged compared to NT, apart from an increase in OPG on Fs. MSCs grown on AM Ns and Ns+Fs surfaces had increased levels of OCN per DNA. These results indicate that MSCs cultured on AM Ns and AM Ns+Fs surfaces, which exhibited unique roughness at the microscale and nanoscale, had enhanced differentiation to an osteoblastic phenotype. The laser treatments of the surface mediated this enhancement of MSC differentiation and warrant further clinical investigation. Full article
Show Figures

Graphical abstract

20 pages, 51475 KiB  
Article
Mechanism-Driven Strength–Conductivity Synergy in Hypereutectic Al-Si Alloys Reinforced with Interface-Engineered Ni-Coated CNTs
by Xuexuan Yang, Yulong Ren, Peng Tang and Jun Tan
Materials 2025, 18(15), 3647; https://doi.org/10.3390/ma18153647 - 3 Aug 2025
Viewed by 249
Abstract
Secondary hypereutectic Al-Si alloys are attractive for sustainable manufacturing, yet their application is often limited by low strength and electrical conductivity due to impurity-induced microstructural defects. Achieving a balance between mechanical and conductive performance remains a significant challenge. In this work, nickel-coated carbon [...] Read more.
Secondary hypereutectic Al-Si alloys are attractive for sustainable manufacturing, yet their application is often limited by low strength and electrical conductivity due to impurity-induced microstructural defects. Achieving a balance between mechanical and conductive performance remains a significant challenge. In this work, nickel-coated carbon nanotubes (Ni-CNTs) were introduced into secondary Al-20Si alloys to tailor the microstructure and enhance properties through interfacial engineering. Composites containing 0 to 0.4 wt.% Ni-CNTs were fabricated by conventional casting and systematically characterized. The addition of 0.1 wt.% Ni-CNTs resulted in the best combination of properties, with a tensile strength of 170.13 MPa and electrical conductivity of 27.60% IACS. These improvements stem from refined α-Al dendrites, uniform eutectic Si distribution, and strong interfacial bonding. Strengthening was achieved through grain refinement, Orowan looping, dislocation generation from thermal mismatch, and the formation of reinforcing interfacial phases such as AlNi3C0.9 and Al4SiC4. At higher Ni-CNT contents, property degradation occurred due to agglomeration and phase coarsening. This study presents an effective and scalable strategy for achieving strength–conductivity synergy in secondary aluminum alloys via nanoscale interfacial design, offering guidance for the development of multifunctional lightweight materials. Full article
Show Figures

Graphical abstract

16 pages, 5658 KiB  
Article
Pressure Effect on the Rheological Behavior of Highly Filled Solid Propellant During Extrusion Flow
by Jun Zhang, Wei Zheng, Zhifeng Yuan, Junbo Chen, Jiangfeng Pei and Ping Xue
Polymers 2025, 17(15), 2003; https://doi.org/10.3390/polym17152003 - 22 Jul 2025
Viewed by 288
Abstract
Currently, the shear-extrusion behavior of solid propellants (SPs), which comprise a significant volume fraction of micro-/nanoscale solid particles (e.g., octogen/HMX), nitroglycerin as a plasticizer/solvent, nitrocellulose as a binder, and other functional additives, is still insufficiently understood. While the rheology of highly filled polymers [...] Read more.
Currently, the shear-extrusion behavior of solid propellants (SPs), which comprise a significant volume fraction of micro-/nanoscale solid particles (e.g., octogen/HMX), nitroglycerin as a plasticizer/solvent, nitrocellulose as a binder, and other functional additives, is still insufficiently understood. While the rheology of highly filled polymers has been extensively documented, the rheological behavior of SPs within the practical processing temperature range of 80–95 °C remains poorly understood. This study investigated, in particular, the pressure dependence of the viscosity of SPs melts during steady-state shear flow. Steady-state shear measurements were conducted using a twin-bore capillary rheometer with capillary dies of varying diameters and lengths to explore the viscosity dependence of SPs. The results reveal that interface defects between octogen particles and the polymer matrix generate a melt pressure range of 3–30 MPa in the long capillary die, underscoring the non-negligible impact of pressure on the measured viscosity (η). At constant temperature and shear rate, the measured viscosity of SPs exhibits strong pressure dependence, showing notable deviations in pressure sensitivity (β), which was found to be greatly relevant to the contents of solvent and solid particles. Such discrepancies are attributed to the compressibility of particle–particle and particle–polymer networks during capillary flow. The findings emphasize the critical role of pressure effect on the rheological properties of SPs, which is essential for optimizing manufacturing processes and ensuring consistent propellant performance. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

32 pages, 41844 KiB  
Article
Surface Resistivity Correlation to Nano-Defects in Laser Powder Bed Fused Molybdenum (Mo)-Silicon Carbide (SiC) Alloys
by Andrew Mason, Larry Burggraf, Ryan Kemnitz and Nate Ellsworth
J. Manuf. Mater. Process. 2025, 9(6), 174; https://doi.org/10.3390/jmmp9060174 - 26 May 2025
Viewed by 595
Abstract
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components [...] Read more.
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components while maintaining a 0.01 mass fraction of Mo. At an Linear Energy Densities (LED) of 1.8 J/mm, the addition of 80 nm SiC particles achieved a 46% reduction in porosity, while sheet resistance decreased by 6% at LED of 2.0 J/mm with 80 nm SiC particles. These performance improvements stem from several mechanisms: SiC particles serve as oxygen scavengers, facilitate secondary phase formation, and enhance laser absorption efficiency. Their dual role as sacrificial oxidizing agents and Mo disilicide phase promoters represents a novel approach to addressing microcracking and porosity in LB-PBF-printed Mo components. Through systematic investigation of particle size effects on both microscale and nanoscale properties, our findings suggest that optimized nanoparticle addition could become a universal strategy for enhancing LB-PBF processing of refractory metals, particularly in applications requiring enhanced mechanical and electrical performance. Full article
Show Figures

Figure 1

20 pages, 6222 KiB  
Article
Elucidation of the Nano-Mechanical Property Evolution of 3D-Printed Zirconia
by Joshua Z. R. Dantzler, Diana Hazel Leyva, Amanda L. Borgaro, Md Shahjahan Mahmud, Alexis Lopez, Saqlain Zaman, Sabina Arroyo, Yirong Lin and Alba Jazmin Leyva
Micro 2025, 5(2), 24; https://doi.org/10.3390/micro5020024 - 15 May 2025
Viewed by 666
Abstract
Understanding the mechanical properties of three-dimensional (3D)-printed ceramics while keeping the parts intact is crucial for advancing their application in high-performance and biocompatible fields, such as biomedical and aerospace engineering. This study uses non-destructive nanoindentation techniques to investigate the mechanical performance of 3D-printed [...] Read more.
Understanding the mechanical properties of three-dimensional (3D)-printed ceramics while keeping the parts intact is crucial for advancing their application in high-performance and biocompatible fields, such as biomedical and aerospace engineering. This study uses non-destructive nanoindentation techniques to investigate the mechanical performance of 3D-printed zirconia across pre-conditioned and sintered states. Vat photopolymerization-based additive manufacturing (AM) was employed to fabricate zirconia samples. The structural and mechanical properties of the printed zirconia samples were explored, focusing on hardness and elastic modulus variations influenced by printing orientation and post-processing conditions. Nanoindentation data, analyzed using the Oliver and Pharr method, provided insights into the elastic and plastic responses of the material, showing the highest hardness and elastic modulus in the 0° print orientation. The microstructural analysis, conducted via scanning electron microscopy (SEM), illustrated notable changes in grain size and porosity, emphasizing the influencing of the printing orientation and thermal treatment on material properties. This research uniquely investigates zirconia’s mechanical evolution at the nanoscale across different processing stages—pre-conditioned and sintered—using nanoindentation. Unlike prior studies, which have focused on bulk mechanical properties post-sintering, this work elucidates how nano-mechanical behavior develops throughout additive manufacturing, bridging critical knowledge gaps in material performance optimization. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

14 pages, 2486 KiB  
Article
High-Performance O-Band Angled Multimode Interference Splitter with Buried Silicon Nitride Waveguide for Advanced Data Center Optical Networks
by Eduard Ioudashkin and Dror Malka
Photonics 2025, 12(4), 322; https://doi.org/10.3390/photonics12040322 - 30 Mar 2025
Cited by 3 | Viewed by 737
Abstract
Many current 1 × 2 splitter couplers based on multimode interference (MMI) face difficulties such as significant back reflection and limited flexibility in waveguide segmentation at the output, which necessitate the addition of transitional structures like tapered waveguides or S-Bends. These limitations reduce [...] Read more.
Many current 1 × 2 splitter couplers based on multimode interference (MMI) face difficulties such as significant back reflection and limited flexibility in waveguide segmentation at the output, which necessitate the addition of transitional structures like tapered waveguides or S-Bends. These limitations reduce their effectiveness as photonic data-center applications, where precise waveguide configurations are crucial. To address these challenges, we propose a novel nanoscale 1 × 2 angled multimode interference (AMMI) power splitter with silicon nitride (SiN) buried core and silica cladding. The innovative angled light path design improved performance by minimizing back reflections back to the source and by providing greater flexibility of waveguide interconnections, making the splitter more adaptable for data-center applications. The SiN core was selected due to its lower refractive index contrast with silica compared to silicon, which helps further reduce back reflection. The dimensions of the splitter were optimized using full vectorial beam propagation method (FV-BPM), finite-difference time domain (FDTD), and multivariable optimization scanning tool (MOST) simulations to support transmission across the O-band. Our proposed device demonstrated excellent performance, achieving an excess loss of 0.22 dB and an imbalance of <0.01 dB at the output ports at an operational wavelength of 1.31 µm. The total device length is 101 µm with a thickness of 0.4 µm. Across the entire O-band range (1260–1360 nm), the performance of the splitter presented excess loss of up to 1.57 dB and an imbalance of up to 0.05 dB. Additionally, back reflections at the operational wavelength were measured at −40.96 dB and up to −39.67 dB over the O-band. This silicon-on-insulator (SOI) complementary metal-oxide semiconductor (CMOS) compatible AMMI splitter demonstrates high tolerance for manufacturing deviations due to its geometric layout, dimensions, and material selection. Furthermore, the proposed splitter is well-suited for use in O-band transceiver systems and can enhance data-center optical networks by supporting high-speed, low-loss data transmission. The compact design and CMOS compatibility make this device ideal for integrating into dense, high-performance computing environments, ensuring reliable signal distribution and minimal power loss. The splitter can support multiple communication channels, thus enhancing bandwidth and scalability for next-generation data-center infrastructures. Full article
(This article belongs to the Special Issue Emerging Trends in On-Chip Photonic Integration)
Show Figures

Figure 1

20 pages, 2470 KiB  
Review
Improving the Clinical Performance of Dental Implants Through Advanced Surface Treatments: The Case of Ti and ZrO2 Coatings
by Mohamed Aissi, Qanita Tayyaba, Azzedine Er-Ramly, Hendra Hermawan and Nadia Merzouk
Metals 2025, 15(3), 320; https://doi.org/10.3390/met15030320 - 14 Mar 2025
Cited by 1 | Viewed by 1204
Abstract
This review summarizes the development of surface treatments applied to dental implants with the aim of improving their clinical performance. It covers the advancement of various techniques, from the conventional to the more advanced ones. Among the recent advancements, surface texturing has enabled [...] Read more.
This review summarizes the development of surface treatments applied to dental implants with the aim of improving their clinical performance. It covers the advancement of various techniques, from the conventional to the more advanced ones. Among the recent advancements, surface texturing has enabled atomic and structural modifications of implant surfaces at the micro- and nanoscales, improving tissue–material interactions. Acid etching and atomic layer deposition applied onto implant surfaces results in optimized osseointegration by stimulating the deposition and proliferation of osteoblasts and fibroblasts. The atomic layer deposition of TiO2, ZnO, ZrO2, and CaCO3 has proven effective in improving osseointegration and tackling corrosion. Corrosion is still an important issue, whereby metals released from titanium implants and their associated degradation products cause local and systemic side effects, leaving a wide avenue for future research. The development of hybrid dental implants is envisaged through new materials and technologies, such as additive manufacturing, which may play a critical role in the fabrication of patient-specific implants with tailored nano-topography capable of enhancing such properties as antibacterial activity and osseointegration. Full article
(This article belongs to the Special Issue Advanced Biomedical Materials (2nd Edition))
Show Figures

Figure 1

21 pages, 2682 KiB  
Article
Non-Canonical Wnt16 and microRNA-145 Mediate the Response of Human Bone Marrow Stromal Cells to Additively Manufactured Porous 3-Dimensional Biomimetic Titanium–Aluminum–Vanadium Constructs
by David. J. Cohen, Michael B. Berger, Jingyao Deng, Thomas W. Jacobs, Barbara D. Boyan and Zvi Schwartz
Cells 2025, 14(3), 211; https://doi.org/10.3390/cells14030211 - 1 Feb 2025
Viewed by 1484
Abstract
Metal 3D printing is increasingly being used to manufacture titanium–aluminum–vanadium (Ti6Al4V) implants. In vitro studies using 2D substrates demonstrate that the osteoblastic differentiation of bone marrow stromal cells (MSCs) on Ti6Al4V surfaces, with a microscale/nanoscale surface topography that mimics an osteoclast resorption pit, [...] Read more.
Metal 3D printing is increasingly being used to manufacture titanium–aluminum–vanadium (Ti6Al4V) implants. In vitro studies using 2D substrates demonstrate that the osteoblastic differentiation of bone marrow stromal cells (MSCs) on Ti6Al4V surfaces, with a microscale/nanoscale surface topography that mimics an osteoclast resorption pit, involves non-canonical Wnt signaling; Wnt3a is downregulated and Wnt5a is upregulated, leading to the local production of BMP2 and semaphorin 3A (sema3A). In this study, it was examined whether the regulation of MSCs in a 3D environment occurs by a similar mechanism. Human MSCs from two different donors were cultured for 7, 14, or 21 days on porous (3D) or solid (2D) constructs fabricated by powder-bed laser fusion. mRNA and secretion of osteoblast markers, as well as factors that enhance peri-implant osteogenesis, were analyzed, with a primary focus on the Wnt family, sema3A, and microRNA-145 (miR-145) signaling pathways. MSCs exhibited greater production of osteocalcin, latent and active TGFβ1, sema3A, and Wnt16 on the 3D constructs compared to 2D, both of which had similar microscale/nanoscale surface modifications. Wnt3a was reduced on 2D constructs as a function of time; Wnt11 and Wnt5a remained elevated in the 3D and 2D cultures. To better understand the role of Wnt16, cultures were treated with rhWnt16; endogenous Wnt16 was blocked using an antibody. Wnt16 promoted proliferation and inhibited osteoblast differentiation, potentially by reducing production of BMP2 and BMP4. Wnt16 expression was reduced by exogenous Wnt16 in 3D cells. Addition of the anti-Wnt16 antibody to the cultures reversed the effects of exogenous Wnt16, indicating an autocrine mechanism. Wnt16 increased miR-145-5p, suggesting a potential feedback mechanism. The miR-145-5p mimic increased Wnt16 production and inhibited sema3A in a 3D porous substrate-specific manner. Wnt16 did not affect sema3A production, but it was reduced by miR-145-5p mimic on the 3D constructs and stimulated by miR-145-5p inhibitor. Media from 7-, 14-, and 21-day cultures of MSCs grown on 3D constructs inhibited osteoclast activity to a greater extent than media from the 2D cultures. The findings present a significant step towards understanding the complex molecular interplay that occurs in 3D Ti6Al4V constructs fabricated by additive manufacturing. In addition to enhancing osteogenesis, the 3D porous biomimetic structure inhibits osteoclast activities, indicating its role in modulating bone remodeling processes. Our data suggest that the pathway mediated by sema3A/Wnt16/miR145-5p was enhanced by the 3D surface and contributes to bone regeneration in the 3D implants. This comprehensive exploration contributes valuable insights to guide future strategies in implant design, customization, and ultimately aims at improving clinical outcomes and successful osseointegration. Full article
Show Figures

Figure 1

30 pages, 6636 KiB  
Article
Biomass-Derived Nanoporous Carbon Honeycomb Monoliths for Environmental Lipopolysaccharide Adsorption from Aqueous Media
by Jakpar Jandosov, Dmitriy Berillo, Anil Misra, Mo Alavijeh, Dmitriy Chenchik, Alzhan Baimenov, Maria Bernardo, Seitkhan Azat, Zulkhair Mansurov, Joaquin Silvestre-Albero and Sergey Mikhalovsky
Int. J. Mol. Sci. 2025, 26(3), 952; https://doi.org/10.3390/ijms26030952 - 23 Jan 2025
Cited by 2 | Viewed by 1334
Abstract
After undergoing biological treatment, wastewater still contains substances with endotoxic activity, such as lipopolysaccharide. However, due to the increasing practice of treating wastewater to make it suitable for drinking (potable reuse), the removal of these endotoxic active materials is crucial. These substances can [...] Read more.
After undergoing biological treatment, wastewater still contains substances with endotoxic activity, such as lipopolysaccharide. However, due to the increasing practice of treating wastewater to make it suitable for drinking (potable reuse), the removal of these endotoxic active materials is crucial. These substances can be harmful to human health, leading to a condition called endotoxaemia. Furthermore, environmental endotoxins pose risks to pharmaceutical manufacturing processes and the quality of the final pharmaceutical products. Ultimately, the most significant concern lies with the patient, as exposure to such substances can have adverse effects on their health and well-being. Activated carbon has a proven efficiency for endotoxin removal; rice husk (RH), as a type of natural lignocellulosic agricultural waste, is a unique carbon precursor material in terms of its availability, large-scale world production (over 140 million tons annually), and is characterized by the presence of nanoscale silica phytoliths, which serve as a template to create additional meso/macropore space within the nanoscale range. High surface area RH/lignin-derived honeycomb monoliths were prepared in this study via extrusion, followed by carbonization and physical and chemical activation to develop additional pore space. The nanoporosity of the carbon honeycomb monoliths was established by means of low-temperature nitrogen adsorption studies, using calculations based on QSDFT equilibrium and BJH models, as well as mercury intrusion porosimetry (MIP) and SEM investigations. An alternative method for the elimination of the bacterial lipopolysaccharide (LPS)—a conventional marker—using filtration in flowing recirculation systems and the adsorbent activity of the monoliths towards LPS was investigated. Since LPS expresses strong toxic effects even at very low concentrations, e.g., below 10 EU/mL, its removal even in minute amounts is essential. It was found that monoliths are able to eliminate biologically relevant LPS levels, e.g., adsorption removal within 5, 30, 60, 90, and 120 min of circulation reached the values of 49.8, 74.1, 85.4, 91.3%, and 91.6%, respectively. Full article
Show Figures

Graphical abstract

32 pages, 15315 KiB  
Review
Recent Advances in the Performance and Mechanisms of High-Entropy Alloys Under Low- and High-Temperature Conditions
by Rui Xi and Yanzhou Li
Coatings 2025, 15(1), 92; https://doi.org/10.3390/coatings15010092 - 15 Jan 2025
Cited by 5 | Viewed by 3387
Abstract
High-entropy alloys, since their development, have demonstrated great potential for applications in extreme temperatures. This article reviews recent progress in their mechanical performance, microstructural evolution, and deformation mechanisms at low and high temperatures. Under low-temperature conditions, the focus is on alloys with face-centered [...] Read more.
High-entropy alloys, since their development, have demonstrated great potential for applications in extreme temperatures. This article reviews recent progress in their mechanical performance, microstructural evolution, and deformation mechanisms at low and high temperatures. Under low-temperature conditions, the focus is on alloys with face-centered cubic, body-centered cubic, and multi-phase structures. Special attention is given to their strength, toughness, strain-hardening capacity, and plastic-toughening mechanisms in cold environments. The key roles of lattice distortion, nanoscale twin formation, and deformation-induced martensitic transformation in enhancing low-temperature performance are highlighted. Dynamic mechanical behavior, microstructural evolution, and deformation characteristics at various strain rates under cold conditions are also summarized. Research progress on transition metal-based and refractory high-entropy alloys is reviewed for high-temperature environments, emphasizing their thermal stability, oxidation resistance, and frictional properties. The discussion reveals the importance of precipitation strengthening and multi-phase microstructure design in improving high-temperature strength and elasticity. Advanced fabrication methods, including additive manufacturing and high-pressure torsion, are examined to optimize microstructures and improve service performance. Finally, this review suggests that future research should focus on understanding low-temperature toughening mechanisms and enhancing high-temperature creep resistance. Further work on cost-effective alloy design, dynamic mechanical behavior exploration, and innovative fabrication methods will be essential. These efforts will help meet engineering demands in extreme environments. Full article
Show Figures

Figure 1

10 pages, 2185 KiB  
Article
Preparation and Characterization of Transferable Encapsulated Dye-Sensitized Solar Cells
by Patrick Hartwich, Swathi Naidu Vakamulla Raghu, Maurice Müller, Christian Pritzel, Peter Haring Bolívar and Manuela S. Killian
Processes 2024, 12(11), 2546; https://doi.org/10.3390/pr12112546 - 14 Nov 2024
Cited by 1 | Viewed by 1088
Abstract
The increasing demand for sustainable energy as a means to combat the impact of climate change is addressed via a novel concept in the present work. Herein presented are developed transferable encapsulated dye-sensitized solar cells, canonically “solar capsules”, for photovoltaic applications on alternative [...] Read more.
The increasing demand for sustainable energy as a means to combat the impact of climate change is addressed via a novel concept in the present work. Herein presented are developed transferable encapsulated dye-sensitized solar cells, canonically “solar capsules”, for photovoltaic applications on alternative surfaces, such as facades. The solar capsule assembly houses all the components necessary for photovoltaic energy conversion, enclosed within a semiconductor nanotubular array, making them truly unique in their construction. This capsule-style unit enables an easy transfer and draft onto a wide range of materials and surfaces for photovoltaic functionalization and applications. This type of dye-sensitized solar cell typically consists of transferred solar capsules and two additional electrodes. The design and construction of solar capsules means they have a high economic viability as they can seamlessly be up-scaled using commercially established techniques such as anodization and subsequent functionalization. This work demonstrates a working model of such transferable solar capsules by fabricating TiO2 nanotubes that are functionalized via facile dip- and spin-coating techniques in a wet lab at ambient conditions. These prototypes are characterized in bulk and are thoroughly investigated at the nanoscale for information on the chemical distribution of the constituents, as they may be influenced during the manufacturing process. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 6631 KiB  
Review
Recent Advances in Hybrid Nanocomposites for Aerospace Applications
by Beatriz Monteiro and Sónia Simões
Metals 2024, 14(11), 1283; https://doi.org/10.3390/met14111283 - 12 Nov 2024
Cited by 12 | Viewed by 3104
Abstract
Hybrid nanocomposites have emerged as a groundbreaking class of materials in the aerospace industry, offering exceptional mechanical, thermal, and functional properties. These materials, composed of a combination of metallic matrices (based on aluminum, magnesium, or titanium) reinforced with a mixture of nanoscale particles, [...] Read more.
Hybrid nanocomposites have emerged as a groundbreaking class of materials in the aerospace industry, offering exceptional mechanical, thermal, and functional properties. These materials, composed of a combination of metallic matrices (based on aluminum, magnesium, or titanium) reinforced with a mixture of nanoscale particles, such as carbon nanotubes (CNTs), graphene, and ceramic nanoparticles (SiC, Al2O3), provide a unique balance of high strength, low weight, and enhanced durability. Recent advances in developing these nanocomposites have focused on optimizing the dispersion and integration of nanoparticles within the matrix to achieve superior material performance. Innovative fabrication techniques have ensured uniform distribution and strong bonding between the matrix and the reinforcements, including advanced powder metallurgy, stir casting, in situ chemical vapor deposition (CVD), and additive manufacturing. These methods have enabled the production of hybrid nanocomposites with improved mechanical properties, such as increased tensile strength, fracture toughness, wear resistance, and enhanced thermal stability and electrical conductivity. Despite these advancements, challenges remain in preventing nanoparticle agglomeration due to the high surface energy and van der Walls forces and ensuring consistent quality and repeatability in large-scale production. Addressing these issues is critical for fully leveraging the potential of hybrid nanocomposites in aerospace applications, where materials are subjected to extreme conditions and rigorous performance standards. Ongoing research is focused on developing novel processing techniques and understanding the underlying mechanisms that govern the behavior of these materials under various operational conditions. This review highlights the recent progress in the design, fabrication, and application of hybrid nanocomposites for aerospace applications. It underscores their potential to revolutionize the industry by providing materials that meet the demanding requirements for lightweight, high-strength, and multifunctional components. Full article
(This article belongs to the Section Metal Matrix Composites)
Show Figures

Graphical abstract

22 pages, 10262 KiB  
Article
Controllable Fabrication of Gallium Ion Beam on Quartz Nanogrooves
by Peizhen Mo, Jinyan Cheng, Qiuchen Xu, Hongru Liu, Chengyong Wang, Suyang Li and Zhishan Yuan
Micromachines 2024, 15(9), 1105; https://doi.org/10.3390/mi15091105 - 30 Aug 2024
Viewed by 1442
Abstract
Nanogrooves with high aspect ratios possess small size effects and high-precision optical control capabilities, as well as high specific surface area and catalytic performance, demonstrating significant application value in the fields of optics, semiconductor processes, and biosensing. However, existing manufacturing methods face issues [...] Read more.
Nanogrooves with high aspect ratios possess small size effects and high-precision optical control capabilities, as well as high specific surface area and catalytic performance, demonstrating significant application value in the fields of optics, semiconductor processes, and biosensing. However, existing manufacturing methods face issues such as complexity, high costs, low efficiency, and low precision, especially in the difficulty of fabricating nanogrooves with high resolution on the nanoscale. This study proposes a method based on focused ion beam technology and a layer-by-layer etching process, successfully preparing V-shaped and rectangular nanogrooves on a silicon dioxide substrate. Combining with cellular automaton algorithm, the ion sputtering flux and redeposition model was simulated. By converting three-dimensional grooves to discrete rectangular slices through a continuous etching process and utilizing the sputtering and redeposition effects of gallium ion beams, high-aspect-ratio V-shaped grooves with up to 9.6:1 and rectangular grooves with nearly vertical sidewalls were achieved. In addition, the morphology and composition of the V-shaped groove sidewall were analyzed in detail using transmission electron microscopy (TEM) and tomography techniques. The influence of the etching process parameters (ion current, dwell time, scan times, and pixel overlap ratio) on groove size was analyzed, and the optimized process parameters were obtained. Full article
Show Figures

Figure 1

14 pages, 5716 KiB  
Article
Microstructures and High-Temperature Mechanical Properties of Inconel 718 Superalloy Fabricated via Laser Powder Bed Fusion
by Nan Li, Changshun Wang and Chenglin Li
Materials 2024, 17(15), 3735; https://doi.org/10.3390/ma17153735 - 28 Jul 2024
Cited by 4 | Viewed by 2210
Abstract
The Inconel 718 superalloy demonstrates the potential to fabricate high-temperature components using additive manufacturing. However, additively manufactured Inconel 718 typically exhibits low strength, necessitating post-heat treatments for precipitate strengthening. This study investigated the microstructures and mechanical properties of the Inconel 718 superalloy fabricated [...] Read more.
The Inconel 718 superalloy demonstrates the potential to fabricate high-temperature components using additive manufacturing. However, additively manufactured Inconel 718 typically exhibits low strength, necessitating post-heat treatments for precipitate strengthening. This study investigated the microstructures and mechanical properties of the Inconel 718 superalloy fabricated via laser powder bed fusion. The room-temperature and high-temperature tensile properties of the Inconel 718 alloy samples following various post-heat treatments were evaluated. The results indicate that the as-built samples exhibited columnar grains with fine cell structures. Solution treatment resulted in δ phase formation and grain recrystallization. Subsequent double aging led to finely distributed nanoscale γ′ and γ″ particles. These nanoscale particles provided high strength at both room and high temperatures, resulting in a balanced strength and ductility comparable to the wrought counterpart. High-temperature nanoindentation analyses revealed that the double-aging samples exhibited very high hardness and low creep rates at 650 °C. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

21 pages, 6750 KiB  
Article
A Hierarchical Nano to Micro Scale Modelling of 3D Printed Nano-Reinforced Polylactic Acid: Micropolar Modelling and Molecular Dynamics Simulation
by AbdolMajid Rezaei, Razie Izadi and Nicholas Fantuzzi
Nanomaterials 2024, 14(13), 1113; https://doi.org/10.3390/nano14131113 - 28 Jun 2024
Cited by 7 | Viewed by 2066
Abstract
Fused deposition modelling (FDM) is an additive manufacturing technique widely used for rapid prototyping. This method facilitates the creation of parts with intricate geometries, making it suitable for advanced applications in fields such as tissue engineering, aerospace, and electronics. Despite its advantages, FDM [...] Read more.
Fused deposition modelling (FDM) is an additive manufacturing technique widely used for rapid prototyping. This method facilitates the creation of parts with intricate geometries, making it suitable for advanced applications in fields such as tissue engineering, aerospace, and electronics. Despite its advantages, FDM often results in the formation of voids between the deposited filaments, which can compromise mechanical properties. However, in some cases, such as the design of scaffolds for bone regeneration, increased porosity can be advantageous as it allows for better permeability. On the other hand, the introduction of nano-additives into the FDM material enhances design flexibility and can significantly improve the mechanical properties. Therefore, modelling FDM-produced components involves complexities at two different scales: nanoscales and microscales. Material deformation is primarily influenced by atomic-scale phenomena, especially with nanoscopic constituents, whereas the distribution of nano-reinforcements and FDM-induced heterogeneities lies at the microscale. This work presents multiscale modelling that bridges the nano and microscales to predict the mechanical properties of FDM-manufactured components. At the nanoscale, molecular dynamic simulations unravel the atomistic intricacies that dictate the behaviour of the base material containing nanoscopic reinforcements. Simulations are conducted on polylactic acid (PLA) and PLA reinforced with silver nanoparticles, with the properties derived from MD simulations transferred to the microscale model. At the microscale, non-classical micropolar theory is utilised, which can account for materials’ heterogeneity through internal scale parameters while avoiding direct discretization. The developed mechanical model offers a comprehensive framework for designing 3D-printed PLA nanocomposites with tailored mechanical properties. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

Back to TopTop