Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (398)

Search Parameters:
Keywords = nanocrystalline composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 230
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 294
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

13 pages, 3130 KiB  
Article
Tribological Property of AlCoCrFeNi Coating Electrospark-Deposited on H13 Steel
by Ke Lv, Guanglin Zhu, Jie Li, Xiong Cao, Haonan Song and Cean Guo
Metals 2025, 15(6), 649; https://doi.org/10.3390/met15060649 - 10 Jun 2025
Viewed by 786
Abstract
AlCoCrFeNi coatings were electrospark-deposited (ESD) on H13 steel substrates, and their nano-mechanical and tribological properties under a load of 2 N, 4 N, 6 N, 8 N, and 10 N were investigated by utilizing a nanoindentation instrument and a reciprocating friction and wear [...] Read more.
AlCoCrFeNi coatings were electrospark-deposited (ESD) on H13 steel substrates, and their nano-mechanical and tribological properties under a load of 2 N, 4 N, 6 N, 8 N, and 10 N were investigated by utilizing a nanoindentation instrument and a reciprocating friction and wear tester, respectively. The morphologies, composition, and phase structure of the as-deposited and worn AlCoCrFeNi coating were characterized using SEM (Scanning electron Microscope), EDS (Energy dispersive spectrometer), and XRD (X-Ray Diffraction). The results showed that the as-deposited AlCoCrFeNi coating with a nanocrystalline microstructure mainly consists of a BCC and B2 phase structure, and a gradient transition of elements between the coating and the substrate ensures an excellent bond between the coating and the substrate. The hardness of the AlCoCrFeNi coating exhibits an 8% increase, while its elastic modulus is reduced by 16% compared to the H13 steel. The AlCoCrFeNi coating remarkably increased the tribological property of the H13 steel under various loads, and its wear mechanism belongs to micro-cutting abrasive wear whilst that of the H13 steel can be characterized as severe adhesive wear. The friction coefficient and weight loss of the AlCoCrFeNi coating decrease with increasing load, both following a linear relationship with respect to the applied load. As the load intensifies, the work hardening sensitivity and oxidation degree on the worn surface of the coating are significantly enhanced, which collectively contributes to the improved tribological performance of the AlCoCrFeNi coating. Full article
(This article belongs to the Special Issue Advances in the Design and Behavior Analysis of High-Strength Steels)
Show Figures

Figure 1

19 pages, 3303 KiB  
Article
Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders
by Ádám Révész, Richárd Nagy, Zoltán Dankházi, Stanislava Todorova and Tony Spassov
Energies 2025, 18(11), 2925; https://doi.org/10.3390/en18112925 - 3 Jun 2025
Viewed by 408
Abstract
High-energy ball milling for different durations was used to synthesize nanocrystalline Mg60Ni25Cu10Ce5 powders. The morphology and microstructure of the milled powders were investigated by scanning electron microscopy and X-ray diffraction, respectively. It was found that different [...] Read more.
High-energy ball milling for different durations was used to synthesize nanocrystalline Mg60Ni25Cu10Ce5 powders. The morphology and microstructure of the milled powders were investigated by scanning electron microscopy and X-ray diffraction, respectively. It was found that different milling times result in considerably different phase composition. The powder milled for 1 h is characterized by elemental Mg, Ni, Cu and Ce with some minor content of intermetallics. In total, 3 h milling promotes the intensive formation of intermetallic compounds, while 10 h of powder processing results in a partially amorphous state coupled with compound phases. Isothermal hydrogenation and dehydrogenation experiments were conducted in a Sieverts’-type apparatus. It was found that all powders absorb H2 reversibly, while the shortest milling time provides the best overall capacity. Excellent kinetics without any activation cycle were obtained for the 3 h milled composite, releasing and absorbing 50% of the total hydrogen content within 120 s. Each kinetic measurement has satisfactorily been fitted by the Johnson–Mehl–Avrami function. X-ray diffraction analysis on the dehydrided powders confirmed the complete desorption. Full article
Show Figures

Figure 1

15 pages, 2890 KiB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 456
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 2249 KiB  
Article
Mechanical Properties, Thermal Stability, and Formaldehyde Emission Analysis of Nanocellulose-Reinforced Urea–Formaldehyde Resin and Its Mechanism
by Xue Deng, Zhu Liu, Zhongwei Wang, Zhigang Wu, Dan Li, Shoulu Yang, Shiqiang He and Ning Ji
Polymers 2025, 17(10), 1402; https://doi.org/10.3390/polym17101402 - 20 May 2025
Viewed by 639
Abstract
In this research, a urea–formaldehyde (UF) resin was modified with nanocrystalline cellulose (NCC) and nanofibrillated cellulose (CNF), and the properties of the modified resin were comprehensively evaluated by combining the techniques of infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric [...] Read more.
In this research, a urea–formaldehyde (UF) resin was modified with nanocrystalline cellulose (NCC) and nanofibrillated cellulose (CNF), and the properties of the modified resin were comprehensively evaluated by combining the techniques of infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that (1) the introduction of NCC and CNF significantly changed the hydrogen bonding network of the UF resin, in which CNF enhanced the internal hydrogen bonding of the resin through its long-chain structure and elevated the cross-linking density. NCC increased the crystallinity of the resin, while CNF enhanced the overall performance of the resin by improving its dispersion. (2) The composite curing agent system significantly reduced the curing temperature of the resin, resulting in a more homogeneous and efficient curing reaction, and the CNF-modified UF exhibited better thermal stability. (3) The addition of NCC and CNF significantly improved the dry and water-resistant bonding strengths of the resins. In addition, the use of complex curing agent further enhanced the bonding strength, especially in the CNF-modified system; the addition of complex curing agent increased the dry bonding strength to 1.60 MPa, and the water-resistant bonding strength reached 1.13 MPa, which showed a stronger cross-linking network and structural stability. (4) The addition of NCC and CNF led to a significant reduction in the free formaldehyde content of UF resins, resulting in respective levels of 0.17% and 0.14%. For plywood bonded with the CNF-modified UF resin, formaldehyde emissions were measured at 0.35 mg/L, which were markedly lower than the 0.54 mg/L of the unmodified sample. This further highlights CNF’s effectiveness in minimizing formaldehyde release. (5) Overall, CNF is superior to NCC in improving the thermal stability, bonding strength, water resistance, formaldehyde release, and overall performance of the resin. The use of complex curing agents not only optimizes the curing process of the resin but also further enhances the modification effect, especially for CNF-modified resins, which show more significant performance advantages. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 2202 KiB  
Article
Porous La-Fe-O Perovskite as Catalyst for Combustion of Volatile Organic Compounds
by Corneliu Doroftei, Gabriel Murariu and Marius Dobromir
Materials 2025, 18(9), 2008; https://doi.org/10.3390/ma18092008 - 29 Apr 2025
Viewed by 459
Abstract
Porous nanocrystalline lanthanum perovskite La-Fe-O (LaFeO3) powders were synthesized by the sol–gel self-combustion method, using polyvinyl alcohol as the colloidal medium. The perovskite structure of the material, without secondary phases, was obtained at a calcination temperature of 900 °C for 40 [...] Read more.
Porous nanocrystalline lanthanum perovskite La-Fe-O (LaFeO3) powders were synthesized by the sol–gel self-combustion method, using polyvinyl alcohol as the colloidal medium. The perovskite structure of the material, without secondary phases, was obtained at a calcination temperature of 900 °C for 40 min. The obtained powder was tested for catalytic activity at moderate temperatures (50–550 °C) for ethanol, methanol, acetone, benzene, and Pb-free gasoline vapors. Catalytic combustion begins at quite low temperatures (60–200 °C), compared to normal combustion, and this can be attributed to the nanometric crystallites, the large specific surface area, and the presence of iron cations with different valences, Fe3+/Fe2+, resulting from the method we used to obtain the material. The degree of conversion reaches values of over 99% for acetone and ethanol vapors at a temperature of 270 °C and 310 °C, respectively, and over 97% for methanol vapors at a temperature of 330 °C. The degree of conversion for Pb-free gasoline and benzene reaches somewhat lower values, over 88% at much higher temperatures, 470 °C and 550 °C, respectively. The lanthanum perovskite catalyst, LaFeO3, obtained by the presented preparation method, can be recommended for the combustion of acetone, ethanol, and methanol vapors. The performance of this catalyst is remarkable and can be compared to that of a catalyst containing noble metals in its composition. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

11 pages, 9122 KiB  
Article
Effect of AlTiN Coating Structure on the Cutting Performance of Cemented Carbide PCB Microdrills
by Xiaofan Yang, Haiyang Lin, Yicong Chen, Yajue He and Zhihuang Shen
Coatings 2025, 15(5), 520; https://doi.org/10.3390/coatings15050520 - 26 Apr 2025
Cited by 2 | Viewed by 389
Abstract
The preparation of high-performance hard coatings on the surface of cemented carbide PCB (printed circuit board) microdrills can effectively decrease the rapid tool wear that occurs during cutting. In this study, arc ion plating technology was employed to deposit conventional AlTiN columnar crystal [...] Read more.
The preparation of high-performance hard coatings on the surface of cemented carbide PCB (printed circuit board) microdrills can effectively decrease the rapid tool wear that occurs during cutting. In this study, arc ion plating technology was employed to deposit conventional AlTiN columnar crystal single-layer coatings and AlTiN nanocrystalline single-layer coatings on the cemented carbide substrates of PCB microdrills. Additionally, a novel AlTiN composite coating with alternating columnar and nanocrystalline layers was designed and deposited. The mechanical properties and morphological characteristics of the three coating structures were analyzed using an indentation tester and scanning electron microscopy. The above three coated PCB microdrills were tested under the same conditions, and the cutting performance and tool wear mechanisms were compared and analyzed. The results show that the primary wear mechanisms for AlTiN-coated PCB microdrills are abrasive wear and coating flaking, and that the microdrill with the AlTiN columnar/nanocrystalline multilayer composite coating has the longest tool life. The novel AlTiN columnar/nanocrystalline composite coating exhibits superior interfacial adhesion strength, higher toughness, and better surface quality, and, hence, is more suitable for the high-speed drilling of PCB microholes. Full article
Show Figures

Figure 1

17 pages, 1754 KiB  
Article
Sustainable Semicrystalline/Nanocrystalline UiO-66-Type Zr-MOFs as Photodegraders of Rhodamine B
by Jemal M. Yassin, Abi M. Taddesse and Manuel Sánchez-Sánchez
Inorganics 2025, 13(5), 131; https://doi.org/10.3390/inorganics13050131 - 24 Apr 2025
Cited by 1 | Viewed by 1400
Abstract
UiO-type Zr-BDC MOFs have garnered the interest of the scientific community due to their exceptional diversity in composition, structure, and chemical environment, as well as their high thermal and chemical stabilities. This work demonstrates the sustainable synthesis of a series of nanocrystalline/semicrystalline UiO-66(Zr) [...] Read more.
UiO-type Zr-BDC MOFs have garnered the interest of the scientific community due to their exceptional diversity in composition, structure, and chemical environment, as well as their high thermal and chemical stabilities. This work demonstrates the sustainable synthesis of a series of nanocrystalline/semicrystalline UiO-66(Zr) metal–organic frameworks (MOFs) under facile conditions—specifically at room temperature, in water, with high yield, and without the use of modulators or toxic byproducts. The synthesis involves either deprotonating the linker or utilizing various ratios of water and DMF as solvents. The as-prepared materials obtained from both synthesis strategies share key structural features with conventional UiO-66(Zr) in their short- and medium-range physicochemical properties, while exhibiting significant differences in crystallinity and textural properties. Nonetheless, the materials generally lack long-range order (semicrystalline), in particular these synthesized following the deprotonation strategy. However, the materials prepared using mixed solvent strategy seem to exhibit characteristics of nanocrystalline UiO-66(Zr). Overall, both approaches successfully addressed various synthesis challenges related to the highly sought-after Zr-based metal–organic frameworks (MOFs). Some of these MOF materials were tested for the photodegradation of rhodamine B (RhB) under mercury light irradiation, evidencing high photocatalytic efficiency of up to 75 ± 0.078% within 120 min under the pseudo-first-order model. This suggests an interaction between the photocatalyst and the RhB dye, involving electron injection from RhB and the ability for ligand-to-metal charge transfer (LMCT), which enhances the efficient photocatalytic degradation of RhB. The trapping experiments indicated that superoxide radicals (•O2) and photogenerated holes (h+) are crucial in the photodegradation of RhB. Moreover, the materials showed good recyclability across five tested cycles. A plausible photocatalytic reaction mechanism has been proposed to explain these findings. Full article
Show Figures

Graphical abstract

6 pages, 1229 KiB  
Proceeding Paper
Synthesis of Nanocrystalline Composite CuO-ZnO Thin Films for Photovoltaic Sensors
by Irina O. Ignatieva, Victor V. Petrov and Ekaterina M. Bayan
Eng. Proc. 2024, 82(1), 110; https://doi.org/10.3390/ecsa-11-22210 - 23 Apr 2025
Viewed by 150
Abstract
Nanocrystalline CuO-ZnO composite thin films were obtained by solid-phase pyrolysis with different molar ratios of Cu:Zn (1:99 and 5:95). X-ray diffraction analysis showed that the films are composed of two phases. According to scanning electron microscopy data, the film is solid and is [...] Read more.
Nanocrystalline CuO-ZnO composite thin films were obtained by solid-phase pyrolysis with different molar ratios of Cu:Zn (1:99 and 5:95). X-ray diffraction analysis showed that the films are composed of two phases. According to scanning electron microscopy data, the film is solid and is formed by crystallites with an average size of 18 nm. The films have high transparency in the visible range. Full article
Show Figures

Figure 1

25 pages, 10572 KiB  
Article
Electrochemical Formation and Characterization of Functional Ag-Re Coatings
by Oksana Bersirova, Valeriy Kublanovsky, Svetlana Kochetova and Olena Bondar
Materials 2025, 18(9), 1893; https://doi.org/10.3390/ma18091893 - 22 Apr 2025
Viewed by 413
Abstract
Silver-white, matte, smooth, and durable deposits of silver-rhenium, with thicknesses ranging from 2.0 to 13.7 μm and containing 0.15 to 13.5 wt.% Re, were obtained with a current efficiency of 66–98% from a developed dicyanoargentate–perrhenate bath based on a borate–phosphate–carbonate silver-plating electrolyte. This [...] Read more.
Silver-white, matte, smooth, and durable deposits of silver-rhenium, with thicknesses ranging from 2.0 to 13.7 μm and containing 0.15 to 13.5 wt.% Re, were obtained with a current efficiency of 66–98% from a developed dicyanoargentate–perrhenate bath based on a borate–phosphate–carbonate silver-plating electrolyte. This study was focused on the influence of bath composition, the [Ag(I)]:[ReO4] ratio, surfactant additives, applied current density, temperature, and stirring, on the alloys’ composition, structure, morphology, microhardness, adhesion, and porosity. A voltammetric analysis was conducted, considering the influence of ethanolamines on electrode processes. In baths with triethanolamine (TEA), coatings similar to a silver matrix with rhenium doped in mass fractions are likely achievable. Monoethanolamine (MEA) is recommended due to its process-activating properties. All coatings were nanocrystalline (τ = 28.5–35 nm). For deposits containing less than 10 wt.% Re, characteristic silver XRD peaks were observed, while for other deposits, additional peaks attributed probably to Re(VII) and Re(VI) oxides. A linear relationship Hv − τ−1/2, typical for Hall–Petch plots, was obtained, confirming that grain boundaries play a crucial role in mechanical properties of coatings. The conditions for stable electrochemical synthesis of promising functional Ag-Re coatings of predetermined composition (0.7–1.5 wt.% Re) were proposed for practical use in power electronics and energy sectors for manufacturing electrical contacts operating across a wide temperature range. This was realized by deposition from an Ag-rich bath in the area of mixed electrochemical kinetics, at potential values corresponding to the region of half the limiting current: j = 2.5–6 mA cm−2, t = 19–33 °C. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Graphical abstract

12 pages, 5558 KiB  
Article
Evolution of the Phase Composition in a Nickel-Predominant NiTi Shape Memory Alloy During High-Energy Ball Milling
by Tomasz Goryczka, Grzegorz Dercz and Maciej Zubko
Materials 2025, 18(8), 1882; https://doi.org/10.3390/ma18081882 - 21 Apr 2025
Cited by 1 | Viewed by 383
Abstract
Three alloys differing in their nominal chemical composition (Ni50Ti50, Ni51Ti49, and Ni52Ti48) were produced in the form of powders using high-energy ball milling. Their microstructure, morphology, structure, and phase composition were [...] Read more.
Three alloys differing in their nominal chemical composition (Ni50Ti50, Ni51Ti49, and Ni52Ti48) were produced in the form of powders using high-energy ball milling. Their microstructure, morphology, structure, and phase composition were studied using the X-ray diffraction technique, scanning, and transmission electron microscopy. For the detailed structural analysis, the Rietveld method was used. The results show that each of the alloys consists of three fractions: fine, medium, and thick. The fractions varied in particle/agglomerate size from 200 nm to 800 μm. Additionally, they varied in phase composition. The fine fraction comprised a mixture of amorphous and nanocrystalline phases. Additionally, the medium and coarse phases showed crystalline solid solutions formed on the bases of nickel or titanium, as well as a crystalline bcc phase—a precursor of the parent phase (B2). The largest contribution in the alloy powders, over 80%, comes from the amorphous–nanocrystalline mixture (ANM). The increase in the nickel content resulted in an increase in ANM quantity of 3 wt.%. Similarly, the weight content of the titanium-based solid solution increased to about 7 wt.%. In contrast, the quantity of the nickel-based solid solution decreased from 3 wt.% to approximately 1 wt.% in the Ni50Ti50 and Ni52Ti48 alloys. Full article
Show Figures

Figure 1

14 pages, 6751 KiB  
Article
Corrosion Resistance of SAE 5160 Steel Deposited by Duplex Simultaneous Treatment with Hastelloy Cathodic Cage
by Marcos Cristino de Sousa Brito, Juliermes Carvalho Pereira, Lauriene Gonçalves da Luz Silva, Renan Matos Monção, Ediones Maciel de Sousa, Weslley Rick Viana Sampaio, Igor Oliveira Nascimento, Anthunes Íkaro de Araújo, Michelle Cequeira Feitor, Thercio Henrique de Carvalho Costa and Rômulo Ribeiro Magalhães de Sousa
Lubricants 2025, 13(4), 177; https://doi.org/10.3390/lubricants13040177 - 12 Apr 2025
Viewed by 790
Abstract
SAE 5160 steel, classified as high-strength, low-alloy steel, is widely used in the automotive sector due to its excellent mechanical strength and ductility. However, its inherently low corrosion resistance limits its broader application. This study explores the application of the cathodic cage plasma [...] Read more.
SAE 5160 steel, classified as high-strength, low-alloy steel, is widely used in the automotive sector due to its excellent mechanical strength and ductility. However, its inherently low corrosion resistance limits its broader application. This study explores the application of the cathodic cage plasma deposition (CCPD) technique to enhance the corrosion resistance of SAE 5160 steel. The treatment was performed using a Hastelloy cathodic cage under two atmospheric conditions: hydrogen-rich (75%H2/25%N2) and nitrogen-rich (25%H2/75%N2). Comprehensive analyses revealed significant improvements in surface properties and corrosion resistance. The hydrogen-rich condition (H25N) facilitated the formation of Cr0.4Ni0.6 and CrN phases, associated with a nanocrystalline structure (37.6 nm) and a thicker coating (45.5 μm), resulting in polarization resistance over 290 times greater than that of untreated steel. Conversely, nitrogen-rich treatment (H75N) promoted the formation of Fe3N and Fe4N phases, achieving a dense but thinner layer (19.6 μm) with polarization resistance approximately 20 times higher than that of untreated steel. These findings underscore the effectiveness of CCPD as a versatile and scalable surface engineering technique capable of tailoring the properties of SAE 5160 steel for use in highly corrosive environments. This study highlights the critical role of optimizing gas compositions and treatment parameters, offering a foundation for advancing plasma-assisted technologies and alloying strategies. The results provide a valuable framework for developing next-generation corrosion-resistant materials, promoting the longevity and reliability of high-strength steels in demanding industrial applications. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Tribocorrosion)
Show Figures

Figure 1

17 pages, 5165 KiB  
Article
Effect of Accumulative High-Pressure Torsion on Structure and Electrochemical Behavior of Biodegradable Fe-30Mn-5Si (wt.%) Alloy
by Pulat Kadirov, Yulia Zhukova, Dmitry Gunderov, Maria Antipina, Tatyana Teplyakova, Natalia Tabachkova, Alexandra Baranova, Sofia Gunderova, Yury Pustov and Sergey Prokoshkin
Crystals 2025, 15(4), 351; https://doi.org/10.3390/cryst15040351 - 9 Apr 2025
Cited by 2 | Viewed by 495
Abstract
A high-pressure torsion (HPT) with a number of revolutions (n) of up to 10 and an advanced method of accumulative HPT (AccHPT), n = 10 with subsequent post-deformation annealing (PDA) at 500 and 600 °C, were applied to a biodegradable Fe-30Mn-5Si (wt.%) alloy. [...] Read more.
A high-pressure torsion (HPT) with a number of revolutions (n) of up to 10 and an advanced method of accumulative HPT (AccHPT), n = 10 with subsequent post-deformation annealing (PDA) at 500 and 600 °C, were applied to a biodegradable Fe-30Mn-5Si (wt.%) alloy. The effect of HPT, AccHPT and AccHPT with PDA on the microstructure, phase composition, microhardness and electrochemical behavior in Hanks’ solution was studied. HPT with n = 1 and 5 resulted in forming a mixed submicrocrystalline (SMCS) and nanocrystalline (NCS)structure, while HPT, n = 10 and AccHPT, n = 10 resulted in a predominant NCS with grain/subgrain sizes of 15–100 nm and 5–40 nm, respectively. PDA after AccHPT resulted in a mixture of SMCS and NCS. HPT, n = 5, n = 10 and AccHPT, n = 10 led to a transition from a two-phase (γ-austenite and ε-martensite) state after reference quenching, and HPT, n = 1 to a single-phase state (stress-induced and deformed ε-martensite), while the AccHPT, n = 10 with PDA results in a two-phase state of γ-austenite and cooling-induced ε-martensite, similarly to reference heat treatment (RHT). The increase in n resulted in the microhardness increasing up to its maximum after AccHPT, followed by a slight decrease after PDA. HPT and AccHPT led the biodegradation rate to decrease as compared to the initial state. PDA after AccHPT at 500 and 600 °C resulted in a two-phase state corresponding to an elevated biodegradation rate without significant material softening. The observed electrochemical behavior features are explained by changes in a combination of the phase state and the overall level of crystal lattice distortion. Full article
(This article belongs to the Special Issue Shape Memory Alloys: Recent Advances and Future Perspectives)
Show Figures

Figure 1

13 pages, 4802 KiB  
Article
Electrochemical Study of β-Titanium Alloy in High-Temperature and -Pressure Water Environment
by Lin Chen, Xiao Ouyang, Xianying Wu, Pan Pang and Qingyan Hou
Coatings 2025, 15(4), 438; https://doi.org/10.3390/coatings15040438 - 7 Apr 2025
Viewed by 452
Abstract
The in situ electrochemical behaviors of Ti-39Nb-6Zr alloy were investigated in 2.3 ppm Li+ and 1500 ppm B3+ solution at 300 °C and 14 MPa. The activation energy is 12.84 kJ/mol, and the oxidation of titanium is controlled by oxygen ions [...] Read more.
The in situ electrochemical behaviors of Ti-39Nb-6Zr alloy were investigated in 2.3 ppm Li+ and 1500 ppm B3+ solution at 300 °C and 14 MPa. The activation energy is 12.84 kJ/mol, and the oxidation of titanium is controlled by oxygen ions diffusion in the liquid phases. The morphology, phase structure, and composition of the oxide film after 700 h exposure time in 300 °C and 14 MPa solution were characterized. The oxide film mainly included anatase TiO2 phases, ZrO2, Nb2O5, and a slight B2O3. The morphology of the film is shown by many nanocrystalline grains and the thickness is about 5 μm. The passivation film on the alloy substrate transforms from a single-layer film structure to a double-layer film structure. The impedance of the passivation decreases with the increase in temperature, which is related to the enhanced ion conductivity of the passivation film at high temperatures. The impedance of the dense layer inside the passivation film is much greater than that of the loose layer outside, and the dense layer inside plays a crucial role in the corrosion resistance of the Ti-39Nb-6Zr alloy. During the insulation process, the impedance of the dense layer inside the passivation film first increases and then slowly decreases, and the corrosion resistance of the passivation film first increases and decreases. Full article
Show Figures

Figure 1

Back to TopTop