Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = nanocopper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7033 KiB  
Article
Nano-Copper Supplementation Reduces Fecal Copper Excretion and Enhances Piglet Performance Under Heat Stress
by Xiarui Xiao, Duo Xu, Haixin Zhang, Qian Xing, Daiwen Chen, Xiangbing Mao, Quyuan Wang, Huifen Wang and Hui Yan
Agriculture 2025, 15(12), 1296; https://doi.org/10.3390/agriculture15121296 - 17 Jun 2025
Viewed by 428
Abstract
This study aimed to evaluate the effects of dietary nano-copper supplementation on growth performance, nutrient digestibility, antioxidant status, inflammatory response, and intestinal barrier function in weanling pigs under heat stress conditions. Forty 20-day-old weaned weanling pigs (Yorkshire × Landrace × Duroc) weighing 6.49 [...] Read more.
This study aimed to evaluate the effects of dietary nano-copper supplementation on growth performance, nutrient digestibility, antioxidant status, inflammatory response, and intestinal barrier function in weanling pigs under heat stress conditions. Forty 20-day-old weaned weanling pigs (Yorkshire × Landrace × Duroc) weighing 6.49 ± 0.08 kg were randomly divided into five treatments with eight replicates each. The pre-feeding period was 2 days, followed by a 22-day experimental period. All groups were exposed to high heat conditions at 35 ± 1 °C. The control group received a basal diet, while the low copper sulfate (LC) group received a diet with 50 mg/kg of copper sulfate, the high copper sulfate (HC) group received a diet with 150 mg/kg of copper sulfate, the low nano-copper (LNC) group received a diet with 50 mg/kg of nano-copper oxide, and the high nano-copper (HNC) group received a diet with 150 mg/kg of nano-copper oxide. Compared to the basal group, pigs supplemented with copper (either CuSO4 or nano-CuO) exhibited significantly higher average daily gain (ADG, p < 0.048) and feed intake (ADFI, p = 0.005), with the 50 mg/kg nano-copper group showing improved nutrient digestibility (p < 0.05) and intestinal morphology. Nano-copper supplementation significantly enhanced mucosal SOD activity (p < 0.05), reduced MDA levels (p < 0.05), and downregulated pro-inflammatory cytokines such as IL-1β and IL-6 (p < 0.05). Notably, 50 mg/kg of nano-copper increased the apparent total tract digestibility (ATTD) of copper to 30.29%, significantly higher than the 16.55% observed in the 150 mg/kg CuSO4 group (p < 0.05). Furthermore, fecal copper concentration was significantly reduced by 20.7% in the 50 mg/kg nano-copper group compared to copper sulfate (p < 0.001). In conclusion, nano-copper appears to be a promising alternative to copper sulfate for improving growth performance and reducing fecal copper concentrations in weanling pigs under heat stress conditions. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

16 pages, 5250 KiB  
Article
Hybrid Additives of 1,3-Diketone Fluid and Nanocopper Particles Applied in Marine Engine Oil
by Yuwen Xu, Yan Yang, Li Zhong, Xingyuan Jing, Xiaoyu Yin, Tao Xia, Jingsi Wang, Tobias Amann and Ke Li
Lubricants 2025, 13(6), 252; https://doi.org/10.3390/lubricants13060252 - 4 Jun 2025
Viewed by 586
Abstract
The lubrication performance of the cylinder liner–piston ring (CLPR) is crucial for the energy efficiency and operating reliability of marine diesel engines. To enhance the boundary lubrication of marine engine oil, a 1,3-diketone fluid HPTD (1-(4-hexylphenyl) tridecane-1,3-dione, HPTD) was introduced as an ash-free [...] Read more.
The lubrication performance of the cylinder liner–piston ring (CLPR) is crucial for the energy efficiency and operating reliability of marine diesel engines. To enhance the boundary lubrication of marine engine oil, a 1,3-diketone fluid HPTD (1-(4-hexylphenyl) tridecane-1,3-dione, HPTD) was introduced as an ash-free friction modifier. Besides that, octadecylamine-functionalized nanocopper particles (ODA-Cu) were also added to the marine oil to improve its anti-wear behavior. Through cylinder-on-disk friction tests, the appropriate contents of HPTD and ODA-Cu were determined, which then formed hybrid additives and modified the engine oil. The tribological performance of the modified oil was analyzed under various normal loads, reciprocating frequencies, and testing temperatures. Based on the synergy of the tribochemical reaction of HPTD and the mending effect of ODA-Cu on the sliding surface, the modified oil not only had lower sulfated ash content but also exhibited superior lubrication performance (i.e., reduced coefficient of friction by 15%, smaller wear track by 43%, and higher maximum non-seizure load by 11%) than the pristine engine oil. The results of this study would be helpful for the design of novel hybrid eco-friendly additives for marine engine oil. Full article
(This article belongs to the Special Issue Marine Tribology)
Show Figures

Figure 1

15 pages, 6083 KiB  
Article
Investigation of 1,3-Diketone and Nano-Copper Additives for Enhancing Boundary Lubrication Performance
by Jingsi Wang, Dezhi Teng, Jiawei Fan, Xi Zhang, Qihang Cui, Ke Li and Pay Jun Liew
J. Mar. Sci. Eng. 2025, 13(5), 912; https://doi.org/10.3390/jmse13050912 - 4 May 2025
Viewed by 603
Abstract
In this work, 1,3-diketone synthesized via the Claisen condensation method and nano-copper particles modified by the Brust–Schiffrin method were added into a commercial marine medium-speed diesel engine cylinder piston oil to evaluate their effects on boundary lubrication performance. Friction and wear tests conducted [...] Read more.
In this work, 1,3-diketone synthesized via the Claisen condensation method and nano-copper particles modified by the Brust–Schiffrin method were added into a commercial marine medium-speed diesel engine cylinder piston oil to evaluate their effects on boundary lubrication performance. Friction and wear tests conducted on CKS-coated piston ring and cast-iron cylinder liner samples demonstrated significant reductions in both friction and wear with the addition of 1,3-diketone and nano-copper particles. Compared to the original oil without additives, the friction force was reduced by up to 16.7%, while the wear of the piston ring and cylinder liner was decreased by up to 21.6% and 15.1% at 150 °C, respectively. A worn surface analysis indicated that the addition of 1,3-diketone and functionalized nano-copper particles influenced the depolymerization and tribo-chemical reactions of the anti-wear additive ZDDP (zinc dialkyldithiophosphate) in the original engine oil. This modification enhanced the oil’s anti-friction and anti-wear properties, offering valuable insights into the development of eco-friendly lubricants for energy-efficient systems. Full article
Show Figures

Figure 1

13 pages, 4526 KiB  
Article
Fabrication of Durable Superhydrophobic Surfaces with a Mesh Structure and Drag Reduction by Chemical Etching Technology
by Jing Fan, Mengqi Zhang and Hong Li
Coatings 2025, 15(4), 402; https://doi.org/10.3390/coatings15040402 - 28 Mar 2025
Cited by 1 | Viewed by 685
Abstract
Superhydrophobic surfaces are critical in the marine industry because ships and underwater vehicles are constantly exposed to hydrodynamic friction and biofouling during operation, which can negatively affect their efficiency and increase operating costs. To address these challenges, this study proposes a straightforward method [...] Read more.
Superhydrophobic surfaces are critical in the marine industry because ships and underwater vehicles are constantly exposed to hydrodynamic friction and biofouling during operation, which can negatively affect their efficiency and increase operating costs. To address these challenges, this study proposes a straightforward method for fabricating stable superhydrophobic surfaces. By modifying nano-copper oxide on a microstructure substrate, a coating exhibiting exceptional hydrophobicity, designated as 100-SHB, was successfully developed. The 100-SHB has a water contact angle of about 163.0° and a sliding angle of about 2.0°, which is highly repulsive to water droplet impact. Furthermore, 100-SHB maintained its superhydrophobic properties under rigorous testing, including water puncture resistance, sandpaper abrasion, and ultrasonic damage tests. The incorporation of a lithography-based network structure further enhanced the mechanical stability of the surface, highlighting its robustness. In ship model experiments, the surface demonstrated a remarkable drag reduction rate of 64.2%. This environmentally friendly, simple, and scalable fabrication method represents a significant advancement toward practical implementation in the marine industry and holds promise for expanding applications in non-wetting-related fields. Full article
Show Figures

Figure 1

13 pages, 1759 KiB  
Article
Effects of Foliar Application of Copper and Gold Nanoparticles on Petroselinum crispum (Mill.)
by Alexandra Peshkova, Inga Zinicovscaia, Ludmila Rudi, Tatiana Chiriac, Nikita Yushin and Liliana Cepoi
Nanomaterials 2025, 15(4), 280; https://doi.org/10.3390/nano15040280 - 12 Feb 2025
Cited by 1 | Viewed by 1153
Abstract
The unintentional release of nanoparticles in the atmosphere and their targeted application to improve plant productivity requires detailed study. The translocation features of copper and gold nanoparticles applied by spraying in the concentration range of 1–100 mg/L in Petroselinum crispum (Mill.) tissues during [...] Read more.
The unintentional release of nanoparticles in the atmosphere and their targeted application to improve plant productivity requires detailed study. The translocation features of copper and gold nanoparticles applied by spraying in the concentration range of 1–100 mg/L in Petroselinum crispum (Mill.) tissues during a 10-day experiment were investigated. Atomic absorption spectrometry and inductively coupled plasma atomic emission spectroscopy showed that copper and gold nanoparticles applied to the leaves’ surface could accumulate in plant organs. A dose-dependent increase in the content of copper and gold in the aerial parts of parsley was revealed. The content of copper in leaves treated with nanoparticles was 1–2.3 times higher than the control, while the content of gold exceeded control values 2–116 times. The effect of nanoparticles on plants’ biochemical composition was assessed. The antioxidant tests showed an ambiguous response at exposure to metal nanoparticles. Copper nanoparticles at the applied concentration consistently reduced both chlorophyll and carotenoid content. Gold nanoparticles enhanced the chlorophyll and carotenoid level at low concentrations (1 mg/L) and significantly inhibited it at higher concentrations. The parsley exposed to nano-copper remained safe for human consumption, but parsley containing more than 14.9 mg/kg of gold may adversely affect human health. Full article
(This article belongs to the Special Issue Interplay between Nanomaterials and Plants)
Show Figures

Figure 1

11 pages, 2265 KiB  
Article
Graphene-Based, Flexible, Wearable Piezoresistive Sensors with High Sensitivity for Tiny Pressure Detection
by Rui Li, Jiahao Hu, Yalong Li, Yi Huang, Lin Wang, Mohan Huang, Zhikun Wang, Junlang Chen, Yan Fan and Liang Chen
Sensors 2025, 25(2), 423; https://doi.org/10.3390/s25020423 - 13 Jan 2025
Viewed by 2303
Abstract
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile [...] Read more.
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties. The microstructure has insulating polystyrene (PS) microspheres sandwiched between a graphene oxide (GO) film and a metallic nanocopper-graphene oxide (n-Cu/GO) film. The piezoresistive performance of the sensor can be modulated by controlling the size of the PS microspheres and doping degree of the copper nanoparticles. The sensor demonstrates a high sensitivity of 232.5 kPa−1 in a low-pressure range of 0 to 0.2 kPa, with a fast response of 45 ms and a recovery time of 36 ms, while also exhibiting excellent stability. The piezoresistive performance converts subtle laryngeal articulatory vibration into a stable, regular electrical signal; in addition, there is excellent real-time monitoring capability of human joint movements. This work provides a new idea for the development of wearable electronic devices, healthcare, and other fields. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

14 pages, 3916 KiB  
Article
The Impact of Composite Nanomaterials on Physiochemical and Durability of Asphalt Binders
by Baran Ramadhan Omer and Ganjeena J. Khoshnaw
Constr. Mater. 2025, 5(1), 1; https://doi.org/10.3390/constrmater5010001 - 11 Jan 2025
Viewed by 1223
Abstract
The inadequate resistance of traditional asphalt binders to aging, temperature fluctuations, and fatigue cracking underlines the necessity for innovative modifications to boost pavement durability. This study aims to state the inadequate exploration of the direct application of composite nanomaterials in asphalt binders by [...] Read more.
The inadequate resistance of traditional asphalt binders to aging, temperature fluctuations, and fatigue cracking underlines the necessity for innovative modifications to boost pavement durability. This study aims to state the inadequate exploration of the direct application of composite nanomaterials in asphalt binders by assessing their direct effects on physiochemical and durability properties without the inclusion of additional additives. The composite nanomaterials, combined with different amounts of Nano-Silica, Nano-Alumina, and Nano-Copper oxide, were incorporated into the binder at 2%, 4%, and 6% by weight. A series of conventional and rheological tests were conducted, including penetration, temperature susceptibility, Dynamic Shear Rheometer (DSR), Rolling Thin Film Oven Test (RTFOT), and Bending Beam Rheometer (BBR). The results demonstrated that the addition of 2% nanomaterials improved penetration by 34% and 41% for unaged and aged samples, respectively, while a 4% addition reduced temperature susceptibility by 64% for aged binders in a mix containing equal amounts of combined nanomaterials. DSR analysis indicated enhanced stiffness and viscoelastic properties, with increased complex shear modulus (G*) and reduced phase angle (δ). Aging resistance was enhanced as established by RTFOT, and acceptable low-temperature performance was attained per BBR results. These results found composite nanomaterials as a capable key for advancing asphalt binder performance. Full article
Show Figures

Figure 1

14 pages, 3801 KiB  
Article
Cytotoxicity and Microbiological Properties of Ceramic CAD/CAM Materials Subjected to Surface Treatment with Nanometric Copper Layer
by Aleksandra Piszko, Wojciech Grzebieluch, Paweł J. Piszko, Agnieszka Rusak, Magdalena Pajączkowska, Joanna Nowicka, Magdalena Kobielarz, Marcin Mikulewicz and Maciej Dobrzyński
Appl. Sci. 2024, 14(20), 9224; https://doi.org/10.3390/app14209224 - 11 Oct 2024
Viewed by 1456
Abstract
The aim of this study is to present the characteristics and a comparison of four different commercial materials dedicated to the CAD/CAM technique in dentistry, all of which can be classified as ceramic materials. Its purpose is also to evaluate the impact of [...] Read more.
The aim of this study is to present the characteristics and a comparison of four different commercial materials dedicated to the CAD/CAM technique in dentistry, all of which can be classified as ceramic materials. Its purpose is also to evaluate the impact of surface treatment on the cytotoxicity and microbiological properties of the materials. The CAD/CAM technique has a perpetually growing role in modern reconstructive dentistry. It requires a material’s possession of peculiar characteristics, such as mechanical resistance, durability, functionality (similar to natural tissues), good aesthetics and biocompatibility. To critically evaluate a biomaterial, both manufacturer claims and in vitro tests should be considered. Further steps of evaluation may include animal tests and clinical trials. There are certain attributes of biomaterials that may be modified by surface treatment that can be crucial to the clinical success of the material. The evaluated materials were Vita Suprinity (VITA-Zahnfabrik, Germany), Vita Mark II (VITA-Zahnfabrik, Germany), Celtra Duo (Dentsply Sirona, USA) and Empress Cad (Ivoclar Vivadent, Liechtenstein). They are available in the form of prefabricated blocks of various diameters and are popular among operators performing clinical procedures using CAD/CAM. Standardized blocks of each material were prepared. Half of them had their surface polished. Further, half of all the samples were covered by a nano-copper layer. The samples were evaluated for cytotoxicity, presented on a 0–4 scale, adhesion susceptibility and potential of forming a biofilm on their surface. Physicochemical properties such as the water contact angle (WCA) were evaluated for the tested materials. The influence of copper coating on cytotoxicity cannot be unequivocally stated or denied. Surface polishing did not affect the materials’ cytotoxicity, but it increased the WCA of all materials and, therefore, their hydrophobicity. Different degrees of adhesion ability and biofilm formation were dependent on the species of microorganisms and properties of the dental materials. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

14 pages, 6935 KiB  
Article
Electroless Deposition for Robust and Uniform Copper Nanoparticles on Electrospun Polyacrylonitrile (PAN) Microfiltration Membranes
by Temitope Q. Aminu, Hamid Fattahi Juybari, David M. Warsinger and David F. Bahr
Membranes 2024, 14(9), 198; https://doi.org/10.3390/membranes14090198 - 20 Sep 2024
Cited by 1 | Viewed by 2059
Abstract
Filtration membranes coated in metals such as copper have dramatically improved biofouling resistance and pathogen destruction. However, existing coating methods on polymer membranes impair membrane performance, lack uniformity, and may detach from their substrate, thus contaminating the permeate. To solve these challenges, we [...] Read more.
Filtration membranes coated in metals such as copper have dramatically improved biofouling resistance and pathogen destruction. However, existing coating methods on polymer membranes impair membrane performance, lack uniformity, and may detach from their substrate, thus contaminating the permeate. To solve these challenges, we developed the first electroless deposition protocol to immobilize copper nanoparticles on electrospun polyacrylonitrile (PAN) fibers for the design of antimicrobial membranes. The deposition was facilitated by prior silver seeding. Distinct mats with average fiber diameters of 232 ± 36 nm, 727 ± 148 nm and 1017 ± 80 nm were evaluated for filtration performance. Well-dispersed copper nanoparticles were conformal to the fibers, preserving the open-cell architecture of the membranes. The copper particle sizes ranged from 20 to 140 nm. Infrared spectroscopy revealed the PAN fiber mats’ relative chemical stability/resistance to the copper metallization process. In addition, the classical cyclization of the cyano functional group in PAN was observed. For model polystyrene beads with average sizes of 3 μm, Cu NP–PAN fiber mats had high water flux and separation efficiency with negligible loss of Cu NP from the fibers during flow testing. Fiber size increased flux and somewhat decreased separation efficiency, though the efficiency values were still high. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

14 pages, 9712 KiB  
Article
Study on the Technology and Properties of Green Laser Sintering Nano-Copper Paste Ink
by Pengkun Li, Zilin Tang, Kaibo Guo, Guifeng Luo, Xihuai Wang, Shengbin Zhao and Mingdi Wang
Nanomaterials 2024, 14(17), 1426; https://doi.org/10.3390/nano14171426 - 31 Aug 2024
Cited by 1 | Viewed by 2204
Abstract
With the rapid development of integrated circuits, glass substrates are frequently utilized for prototyping various functional electronic circuits due to their superior stability, transparency, and signal integrity. In this experiment, copper wire was printed on a glass substrate using inkjet printing, and the [...] Read more.
With the rapid development of integrated circuits, glass substrates are frequently utilized for prototyping various functional electronic circuits due to their superior stability, transparency, and signal integrity. In this experiment, copper wire was printed on a glass substrate using inkjet printing, and the electronic circuit was sintered through laser irradiation with a 532 nm continuous green laser. The relationship between resistivity and microstructure was analyzed after laser sintering at different intensities, scanning speeds, and iterations. The experimental results indicate that the conductivity of the sintered lines initially increases and then decreases with an increase in laser power and scanning speed. At the same power level, multiple sintering runs at a lower scanning speed pose a risk of increased porosity leading to reduced conductivity. Conversely, when the scanning speed exceeds the optimal sintering speed, multiple sintering runs have minimal impact on porosity and conductivity without altering the power. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser Nanofabrication)
Show Figures

Figure 1

14 pages, 3436 KiB  
Article
Additive Manufacturing of Electrically Conductive Multi-Layered Nanocopper in an Air Environment
by David Pervan, Anil Bastola, Robyn Worsley, Ricky Wildman, Richard Hague, Edward Lester and Christopher Tuck
Nanomaterials 2024, 14(9), 753; https://doi.org/10.3390/nano14090753 - 25 Apr 2024
Cited by 1 | Viewed by 2252
Abstract
The additive manufacturing (AM) of functional copper (Cu) parts is a major goal for many industries, from aerospace to automotive to electronics, because Cu has a high thermal and electrical conductivity as well as being ~10× cheaper than silver. Previous studies on AM [...] Read more.
The additive manufacturing (AM) of functional copper (Cu) parts is a major goal for many industries, from aerospace to automotive to electronics, because Cu has a high thermal and electrical conductivity as well as being ~10× cheaper than silver. Previous studies on AM of Cu have concentrated mainly on high-energy manufacturing processes such as Laser Powder Bed Fusion, Electron Beam Melting, and Binder Jetting. These processes all require high-temperature heat treatment in an oxygen-free environment. This paper shows an AM route to multi-layered microparts from novel nanoparticle (NP) Cu feedstocks, performed in an air environment, employing a low-power (<10 W) laser sintering process. Cu NP ink was deposited using two mechanisms, inkjet printing, and bar coating, followed by low-power laser exposure to induce particle consolidation. Initial parts were manufactured to a height of approximately 100 µm, which was achieved by multi-layer printing of 15 (bar-coated) to 300 (inkjetted) layers. There was no evidence of oxidised copper in the sintered material, but they were found to be low-density, porous structures. Nonetheless, electrical resistivity of ~28 × 10−8 Ω m was achieved. Overall, the aim of this study is to offer foundational knowledge for upscaling the process to additively manufacture Cu 3D parts of significant size via sequential nanometal ink deposition and low-power laser processing. Full article
Show Figures

Figure 1

16 pages, 3750 KiB  
Article
Synergistic Effect of Carbon Nanotubes, Zinc, and Copper Oxides on Rheological Properties of Fracturing Fluid: A Comparative Study
by Fatma Yehia, Walaa Gado, Abdalrahman G. Al-Gamal, Nishu, Chao Yang, Lihua Liu and Khalid I. Kabel
Processes 2024, 12(3), 611; https://doi.org/10.3390/pr12030611 - 19 Mar 2024
Cited by 3 | Viewed by 1753
Abstract
Nanomaterials play a beneficial role in enhancing the rheological behavior of fracturing (frac) fluid by reacting with intermolecular structures. The inclusion of these materials into the fluid improves its stability, increases the viscosity of polymers, and enhances its resistance to high temperature and [...] Read more.
Nanomaterials play a beneficial role in enhancing the rheological behavior of fracturing (frac) fluid by reacting with intermolecular structures. The inclusion of these materials into the fluid improves its stability, increases the viscosity of polymers, and enhances its resistance to high temperature and pressure. In this investigation, multi-walled carbon nanotubes (CNTs), nano-zinc oxides (N-ZnO), and nano-copper oxides (N-CuO) have been utilized to ameliorate the rheological properties of water-based fracturing fluid. Different concentrations of these aforementioned nanomaterials were prepared to determine their effects on the rheological behavior of the fluid. The results revealed that the size of nanoparticles ranged from 10 to 500 nm, 300 nm, and 295 nm for CNTs, N-ZnO, and N-CuO, respectively. Moreover, employing CNTs exhibited a resistance of 550 cp at 25 °C and reached 360 cp at 50 °C with a CNT concentration of 0.5 g/L. In contrast, N-CuO and N-ZnO showed a resistance of 206 cp at 25 °C and significantly decreased to 17 cp and 16 cp with higher concentrations of 10 g/L and 1 g/L, respectively. Based on these findings, this study recommends utilizing CNTs to enhance fracking fluid’s chemical and physical properties, which need to be highly viscous and stable under reservoir conditions. Full article
Show Figures

Figure 1

15 pages, 8373 KiB  
Article
Manufacturing of Aluminum Nano-Composites Reinforced with Nano-Copper and High Graphene Ratios Using Hot Pressing Technique
by Hossam M. Yehia, Reham A. H. Elmetwally, Abdelhalim M. Elhabak, Omayma A. El-Kady and Ahmed Yehia Shash
Materials 2023, 16(22), 7174; https://doi.org/10.3390/ma16227174 - 15 Nov 2023
Cited by 6 | Viewed by 2589
Abstract
In this study, the nano-aluminum powder was reinforced with a hybrid of copper and graphene nanoplatelets (GNPs). The ratios of GNPs were 0 wt%, 0.4 wt%, 0.6 wt%, 1.2 wt% and 1.8 wt%. To avoid the reaction between aluminum and graphene and, consequently, [...] Read more.
In this study, the nano-aluminum powder was reinforced with a hybrid of copper and graphene nanoplatelets (GNPs). The ratios of GNPs were 0 wt%, 0.4 wt%, 0.6 wt%, 1.2 wt% and 1.8 wt%. To avoid the reaction between aluminum and graphene and, consequently, the formation of aluminum carbide, the GNP was first metalized with 5 wt% Ag and then coated with the predetermined 15 wt% Cu by the electroless coating process. In addition, the coating process was performed to improve the poor wettability between metal and ceramic. The Al/(GNPs-Ag)Cu nanocomposites with a high relative density of 99.9% were successfully prepared by the powder hot-pressing techniques. The effects of (GNPs/Ag) and Cu on the microstructure, density, hardness, and compressive strength of the Al-Cu nanocomposite were studied. As a result of agitating the GNPs during the cleaning and silver and Cu-plating, a homogeneous distribution was achieved. Some layers formed nano-tubes. The Al4C3 phase was not detected due to coating GNPs with Cu. The Cu9Al4 intermetallic was formed during the sintering process. The homogeneous dispersion of Cu and different ratios of GNs, good adhesion, and the formation of the new Cu9Al4 intermetallic improved in hardness. The pure aluminum sample recorded 216.2 HV, whereas Al/Cu reinforced with 1.8 GNs recorded 328.42 HV with a 51.9% increment. The compressive stress of graphene samples was improved upon increasing the GNPs contents. The Al-Cu/1.8 GNs sample recorded 266.99 MPa. Full article
(This article belongs to the Special Issue Advanced 2D Nanomaterials: Characterization and Application)
Show Figures

Figure 1

17 pages, 6295 KiB  
Article
Aspartic Acid-Based Nano-Copper Induces Resilience in Zea mays to Applied Lead Stress Via Conserving Photosynthetic Pigments and Triggering the Antioxidant Biosystem
by Rehman Ullah, Zakir Ullah, Javed Iqbal, Wadie Chalgham and Ajaz Ahmad
Sustainability 2023, 15(16), 12186; https://doi.org/10.3390/su151612186 - 9 Aug 2023
Cited by 20 | Viewed by 2027
Abstract
Heavy metal stress, including lead, adversely affects the growth and yield of several economically important crops, leading to food challenges and significant economic losses. Ameliorating plant responses to various environmental stresses is one of the promising areas of research for sustainable agriculture. In [...] Read more.
Heavy metal stress, including lead, adversely affects the growth and yield of several economically important crops, leading to food challenges and significant economic losses. Ameliorating plant responses to various environmental stresses is one of the promising areas of research for sustainable agriculture. In this study, we evaluated the effect of aspartic acid-functionalized copper nanoparticles on the photosynthetic efficiency and antioxidation system of maize plants under Pb toxicity. The ion reduction method was employed for the synthesis of CuNPs, using ascorbic acid as the reducing agent and aspartic acid as the surface functionalizing agent. Isolated experiments under laboratory and field conditions were performed using a randomized complete block design (RCBD). Seeds primed in water, 1.0, 5.0, and 10 µg/mL of Asp-CuNPs were sown under 0, 500, and 1000 mg/L Pb stress in laboratory conditions, while primed seeds along with foliar-applied Asp-CuNP plants were grown in a field under applied Pb stress, and the obtained data were statistically analyzed using TWANOVA. The laboratory experiment shows that Asp-CuNPs act both as a plant growth regulator (PGR) and plant growth inhibitor (PGI), depending upon their concentration, whereby Asp-CuNPs act as a PGR at a concentration of 1 µg/mL ≤ X ≤10 µg/mL. The field experiment confirms that seed priming and foliar spraying with Asp-CuNPs activate embryos and enhance plant growth in a dose-dependent manner. In addition, Asp-CuNPs (10 µg/mL) significantly increase chlorophyll content to 0.87 mg/g from 0.53 mg/g (untreated) when plants were exposed to Pb toxicity at 1000 mg/kg of soil. It is noteworthy that Asp-CuNPs induce resilience to Pb toxicity (1000 mg/kg of soil) in plants by reducing its root absorption from 3.68 mg/kg (0 µg/mL Asp-CuNPs) to 1.72 mg/kg with the application of 10 µg/mL Asp-CuNPs. Additionally, histochemical analyses with NBT and hydrogen peroxide revealed that ROS accretion in plants treated with Asp-CuNPs declined because of the augmentation of antioxidant enzyme (POD, SOD, APOX, etc.) activities under Pb toxicity. Our findings suggest that amino acid-functionalized copper nanoparticles regulate plant defensive mechanisms related to lead tolerance, which is a promising approach for the induction of resistivity to heavy metal stress. Full article
Show Figures

Figure 1

19 pages, 30122 KiB  
Article
Effect of Nanoparticles on Rheological Properties of Water-Based Drilling Fluid
by Yuan Lin, Qizhong Tian, Peiwen Lin, Xinghui Tan, Huaitao Qin and Jiawang Chen
Nanomaterials 2023, 13(14), 2092; https://doi.org/10.3390/nano13142092 - 18 Jul 2023
Cited by 15 | Viewed by 3179
Abstract
Nano-water-based drilling fluids (NWBDFs) are prepared using nano-copper oxide (CuO) and multiwalled carbon nanotubes (MWCNTs) as modification materials. The effects of the temperature and concentration of the nanoparticles (NPs) on the rheological properties are studied using a rotational rheometer and viscometer. Also, the [...] Read more.
Nano-water-based drilling fluids (NWBDFs) are prepared using nano-copper oxide (CuO) and multiwalled carbon nanotubes (MWCNTs) as modification materials. The effects of the temperature and concentration of the nanoparticles (NPs) on the rheological properties are studied using a rotational rheometer and viscometer. Also, the influence of two NPs on the filtration properties is studied using a low-pressure and low-temperature filtration apparatus, as well as a scanning electron microscope (SEM). It is found that MWCNTs with a concentration of 0.05 w/v% have the most obvious influence on the NWBDFs, which improve the stability of the gel structure against temperature and also decrease the filtration rate. Finally, a theoretical model predicating the yield point (YP) and the plastic viscosity (PV) as a function of the temperature considering the influence of the NPs is developed based on DLVO theory. Full article
Show Figures

Figure 1

Back to TopTop