Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = nanoconjugates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3391 KiB  
Article
Near-Infrared and Sono-Enhanced Photodynamic Therapy of Prostate Cancer Cells Using Phyto-Second Harmonic Generation Nanoconjugates
by Efrat Hochma, Michael A. Firer and Refael Minnes
Polymers 2025, 17(13), 1831; https://doi.org/10.3390/polym17131831 - 30 Jun 2025
Viewed by 362
Abstract
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm [...] Read more.
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm pulses. Under CW NIR light, BT/rhein nanoconjugates reduced PC3 prostate cancer cell viability by 18% versus non-irradiated controls (p < 0.05), while BT/extract nanoconjugates exhibited 15% dark toxicity. The observed SHG signal matched theoretical predictions and previous CW laser studies. Reactive Oxygen Species (ROS) scavenger 1,3-diphenyl-isobenzofuran (DPBF) showed reduced absorbance at 410 nm upon NIR illumination, indirectly supporting SHG emission at 400 nm from nanoconjugates. Under fs-pulsed laser exposure, pronounced two-photon absorption (TPA) and SHG effects were observed in both nanoconjugate types. Our results demonstrate the effectiveness of BT/rhein nanoconjugates under both laser conditions, while the BT/extract nanoconjugates benefited from high-power pulsed excitation. These results highlight the potential of BT-based Phyto-SHG-PDT nanoconjugates for NIR and blue light applications, leveraging nonlinear optical effects for advanced photochemical cancer therapies. Full article
Show Figures

Graphical abstract

16 pages, 1998 KiB  
Article
Antifungal Action of Edible Coating Comprising Artichoke-Mediated Nanosilver and Chitosan Nanoparticles for Biocontrol of Citrus Blue Mold
by Mousa Abdullah Alghuthaymi
Polymers 2025, 17(12), 1671; https://doi.org/10.3390/polym17121671 - 16 Jun 2025
Viewed by 443
Abstract
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their [...] Read more.
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their nanoconjugates with chitosan nanoparticles (Cht) to eradicate the blue mold fungus (Penicillium italicum) and preserve oranges during storage via nanocomposite-based edible coatings (ECs). The biosynthesis and conjugation of nanomaterials were verified using UV and infrared (FTIR) spectroscopy, electron microscopy (TEM and SEM) analysis, and DLS assessments. Art could effectually biosynthesize/cap AgNPs with a mean size of 10.35 nm, whereas the average size of Cht was 148.67 nm, and the particles of their nanocomposites had average diameters of 203.22 nm. All nanomaterials/composites exhibited potent antifungal action toward P. italicum isolates; the Cht/Art/AgNP nanocomposite was the most effectual, with an inhibition zone of 31.1 mm and a fungicidal concentration of 17.5 mg/mL, significantly exceeding the activity of other compounds and the fungicide Enilconazole (24.8 mm and 25.0 mg/mL, respectively). The microscopic imaging of P. italicum mycelia treated with Cht/Art/AgNP nanocomposites emphasized their action for the complete destruction of mycelia within 24 h. The orange (Citrus sinensis) fruit coatings, with nanomaterial-based ECs, were highly effectual for preventing blue mold development and preserved fruits for >14 days without any infestation signs; when the control infected fruits were fully covered with blue mold, the infestation remarks covered 12.4%, 5.2%, and 0% of the orange coated with Cht Art/AgNPs and Cht/Art/AgNPs. The constructed Cht/Art/AgNP nanocomposites have potential as effectual biomaterials for protecting citrus fruits from fungal deterioration and preserving their quality. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Graphical abstract

25 pages, 6878 KiB  
Article
Multifunctional Evaluation of Graphene Oxide–Sulfonamide Nanoconjugates: Antimicrobial, Antibiofilm, Cytocompatibility and Xenobiotic Metabolism Gene Expression Insight
by Irina Zarafu, Irina Mușat, Carmen Limban, Diana C. Nuță, Ioana Daniela Dulama, Cristiana Radulescu, Raluca Maria Stirbescu, Arnaud Tatibouet, Carmen M. Chifiriuc, Luminita Marutescu, Marcela Popa, Laura D. Dragu, Elena Radu, Ioana Nicolau, Coralia Bleotu and Petre Ionita
Molecules 2025, 30(12), 2585; https://doi.org/10.3390/molecules30122585 - 13 Jun 2025
Viewed by 510
Abstract
The clinical utility of sulfonamide antibiotics is increasingly challenged by antimicrobial resistance and pharmacokinetic limitations. In this study, we synthesized five graphene oxide–sulfonamide nanoconjugates (GO–S1 to GO–S5) via covalent functionalization, comprehensively characterized them by IR, Raman, SEM, EDS, etc., and evaluated their antimicrobial, [...] Read more.
The clinical utility of sulfonamide antibiotics is increasingly challenged by antimicrobial resistance and pharmacokinetic limitations. In this study, we synthesized five graphene oxide–sulfonamide nanoconjugates (GO–S1 to GO–S5) via covalent functionalization, comprehensively characterized them by IR, Raman, SEM, EDS, etc., and evaluated their antimicrobial, antibiofilm, cytotoxic, apoptotic, hemolytic and gene expression-modulating effects. While the free sulfonamides (S1–S5) exhibited superior antimicrobial activity in planktonic cultures (MICs as low as 19 μg/mL), their GO-functionalized counterparts demonstrated enhanced antibiofilm efficacy, particularly against Pseudomonas aeruginosa (MBIC: 78–312 μg/mL). Cytotoxicity studies using CellTiter assays and Incucyte live-cell imaging revealed low toxicity for all compounds below 250 μg/mL. Morphological and gene expression analyses indicated mild pro-apoptotic effects, predominantly via caspase-9 and caspase-7 activation, with minimal caspase-3 involvement. Hemolysis assays confirmed the improved blood compatibility of GO–Sx conjugates compared to GO alone. Furthermore, qRT-PCR analysis showed that GO–Sx modulated the expression of key xenobiotic metabolism genes (CYPs and NATs), highlighting potential pharmacokinetic implications. Among all tested formulations, GOS3, GOS4 and GOS5 emerged as the most promising candidates, balancing low cytotoxicity, high hemocompatibility and strong antibiofilm activity. These findings support the use of graphene oxide nanocarriers to enhance the therapeutic potential of sulfonamides, particularly in the context of biofilm-associated infections. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

17 pages, 11168 KiB  
Article
pH-Responsive Gold Nanoparticle/PVP Nanoconjugate for Targeted Delivery and Enhanced Anticancer Activity of Withaferin A
by Velmurugan Sekar, Amutha Santhanam and Paulraj Arunkumar
Processes 2025, 13(5), 1290; https://doi.org/10.3390/pr13051290 - 23 Apr 2025
Cited by 1 | Viewed by 699
Abstract
The development of advanced high-capacity nanoparticle-based drug loading, precise targeting, low toxicity, and excellent biocompatibility is critical for improving cancer therapeutics. Withaferin A, a natural steroidal lactone derived from Physalis minima, exhibits potential biological activity and holds promise as a therapeutic agent. [...] Read more.
The development of advanced high-capacity nanoparticle-based drug loading, precise targeting, low toxicity, and excellent biocompatibility is critical for improving cancer therapeutics. Withaferin A, a natural steroidal lactone derived from Physalis minima, exhibits potential biological activity and holds promise as a therapeutic agent. In this study, a novel nanoconjugate (NC) was developed using gold nanoparticles (AuNPs) functionalized with polyvinylpyrrolidone (PVP), Withaferin A drug, and folic acid for targeted drug delivery in cancer treatment. The AuNPs–PVP–Withaferin A–FA nanoconjugate was synthesized through a layer-by-layer assembly process and was confirmed using UV–visible and FTIR spectroscopy. The hydrodynamic radius, surface charge, and morphology of the NC were characterized using dynamic light scattering (DLS), zeta potential analysis, and electron microscopy, respectively. The nanoformulation demonstrated a pH-responsive drug release, with 92% of Withaferin A released at pH 5, mimicking the tumor microenvironment. In vitro cytotoxicity studies conducted on MCF-7 cells using MTT assays, dual dye staining, and protein expression analysis revealed that the nanoconjugate effectively induced apoptosis in cancer cells. These outcomes emphasize the prospect AuNPs–PVP–Withaferin A–FA nanoconjugate as a targeted and efficient Withaferin A delivery system for cancer therapy, leveraging the inherent anticancer properties of Withaferin A. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

30 pages, 7611 KiB  
Article
Design and Development of Natural-Product-Derived Nanoassemblies and Their Interactions with Alpha Synuclein
by Ipsita A. Banerjee, Amrita Das, Mary A. Biggs, Chau Anh N. Phan, Liana R. Cutter and Alexandra R. Ren
Biomimetics 2025, 10(2), 82; https://doi.org/10.3390/biomimetics10020082 - 28 Jan 2025
Viewed by 1468
Abstract
Biomimetic nanoassemblies derived from natural products are considered promising nanomaterials due to their self-assembling ability and their favorable interactions with biological molecules leading to their numerous applications as therapeutic agents or as molecular probes. In this work, we have created peptide nanoconjugates of [...] Read more.
Biomimetic nanoassemblies derived from natural products are considered promising nanomaterials due to their self-assembling ability and their favorable interactions with biological molecules leading to their numerous applications as therapeutic agents or as molecular probes. In this work, we have created peptide nanoconjugates of two natural products, β-Boswellic acid (BA) and β-glycyrrhetinic acid (GH). Both BA and GH are known for their medicinal value, including their role as strong antioxidants, anti-inflammatory, neuroprotective and as anti-tumor agents. To enhance the bioavailability of these molecules, they were functionalized with three short peptides (YYIVS, MPDAHL and GSGGL) to create six conjugates with amphiphilic structures capable of facile self-assembly. The peptides were also derived from natural sources and have been known to display antioxidant activity. Depending upon the conjugate, nanofibers, nanovesicles or a mixture of both were formed upon self-assembly. The binding interactions of the nanoconjugates with α-Synuclein, a protein implicated in Parkinson’s disease (PD) was examined through in silico studies and FTIR, circular dichroism and imaging studies. Our results indicated that the nanoassemblies interacted with alpha-synuclein fibrils efficaciously. Furthermore, the nanoassemblies were found to demonstrate high viability in the presence of microglial cells, and were found to enhance the uptake and interactions of α-Synuclein with microglial cells. The nanoconjugates designed in this work may be potentially utilized as vectors for peptide-based drug delivery or for other therapeutic applications. Full article
Show Figures

Figure 1

35 pages, 7016 KiB  
Review
Bioconjugation of Podophyllotoxin and Nanosystems: Approaches for Boosting Its Biopharmaceutical and Antitumoral Profile
by Carolina Miranda-Vera, Ángela-Patricia Hernández, Pilar García-García, David Díez, Pablo A. García and María Ángeles Castro
Pharmaceuticals 2025, 18(2), 169; https://doi.org/10.3390/ph18020169 - 26 Jan 2025
Cited by 1 | Viewed by 1316
Abstract
Podophyllotoxin is a natural compound belonging to the lignan family and is well-known for its great antitumor activity. However, it shows several limitations, such as severe side effects and some pharmacokinetics problems, including low water solubility, which hinders its application as an anticancer [...] Read more.
Podophyllotoxin is a natural compound belonging to the lignan family and is well-known for its great antitumor activity. However, it shows several limitations, such as severe side effects and some pharmacokinetics problems, including low water solubility, which hinders its application as an anticancer agent. Over the past few years, antitumor research has been focused on developing nanotechnology-based medicines or nanomedicines which allow researchers to improve the pharmacokinetic properties of anticancer compounds. Following this trend, podophyllotoxin nanoconjugates have been obtained to overcome its biopharmaceutical drawbacks and to enhance its antitumor properties. The objective of this review is to highlight the advances made over the past few years (2017–2023) regarding the inclusion of podophyllotoxin in different nanosystems. Among the huge variety of nanoconjugates of diverse nature, drug delivery systems bearing podophyllotoxin as cytotoxic payload are organic nanoparticles mainly based on polymer carriers, micelles, and liposomes. Along with the description of their pharmacological properties as antitumorals and the advantages compared to the free drug in terms of biocompatibility, solubility, and selectivity, we also provide insight into the synthetic procedures developed to obtain those podophyllotoxin-nanocarriers. Typical procedures in this regard are self-assembly techniques, nanoprecipitations, or ionic gelation methods among others. This comprehensive perspective aims to enlighten the medicinal chemistry community about the tendencies followed in the design of new podophyllotoxin-based drug delivery systems, their features and applications. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

24 pages, 4051 KiB  
Article
Gold Nanoparticles as a Platform for Delivery of Immunogenic Peptides to THP-1 Derived Macrophages: Insights into Nanotoxicity
by Eduardo Zúñiga, Braulio Contreras-Trigo, Jorge Buchert, Fabián Sáez-Ahumada, Leonardo Hernández, Víctor Fica-León, Estefania Nova-Lamperti, Bostjan Kobe, Fanny Guzmán, Víctor Diaz-García, Enrique Guzmán-Gutiérrez and Patricio Oyarzún
Vaccines 2025, 13(2), 119; https://doi.org/10.3390/vaccines13020119 - 24 Jan 2025
Cited by 1 | Viewed by 1198
Abstract
Background: Peptide-based nanovaccines have emerged as a promising strategy for combating infectious diseases, as they overcome the low immunogenicity that is inherent to short epitope-containing synthetic peptides. Gold nanoparticles (AuNPs) present several advantages as peptide nanocarriers, but a deeper understanding of the design [...] Read more.
Background: Peptide-based nanovaccines have emerged as a promising strategy for combating infectious diseases, as they overcome the low immunogenicity that is inherent to short epitope-containing synthetic peptides. Gold nanoparticles (AuNPs) present several advantages as peptide nanocarriers, but a deeper understanding of the design criteria is paramount to accelerate the development of peptide-AuNPs nanoconjugates (p-AuNPs). Methods: Herein, we synthesized and characterized p-AuNPs of 23 nm (p-Au23) and 68 nm (p-Au68) with varying levels of peptide surface coverage and different peptide designs, investigating their effect on the cell viability (cell death and mitochondrial activity), cellular uptake, and cathepsin B activity in THP-1 macrophages. Results: p-Au23 proved no negative effect in the cell viability and high levels of nanoconjugate uptake, but p-Au68 induced strong toxicity to the cell line. The peptide sequences were successfully designed with spacer regions and a cell-penetrating peptide (pTAT) that enhanced cellular uptake and cathepsin B activity for p-Au23, while pTAT induced severe effects in the THP-1 viability (~40–60% cell death). Conclusions: These findings provide valuable insight into the design criteria of AuNPs and immunogenic peptides, along with nanotoxicity effects associated with AuNP size and surface charge in human monocyte-derived macrophages. Full article
(This article belongs to the Special Issue Innovations in Vaccine Technology)
Show Figures

Figure 1

19 pages, 3244 KiB  
Article
An Advanced Sensing Approach to Biological Toxins with Localized Surface Plasmon Resonance Spectroscopy Based on Their Unique Protein Quaternary Structures
by Hirotaka Uzawa, Satoshi Kondo, Takehiro Nagatsuka, Yasuo Seto and Yoshihiro Nishida
Int. J. Mol. Sci. 2024, 25(24), 13352; https://doi.org/10.3390/ijms252413352 - 12 Dec 2024
Viewed by 1220
Abstract
Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies [...] Read more.
Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits. In practice, an IgG antibody against the A-subunit of a target toxin is selected from commercially available sources and immobilized on the surface of Au nanoparticles to constitute a multivalent IgG/Au nanoconjugate. The derived IgG/Au conjugate is used in the pretreatment process of test samples for deactivating biological toxins in the form of a ternary toxin/antibody/Au complex. This process is implemented in advance to reduce the risk of handling biological toxins in laboratory work. On the other hand, the human glycolipid is immobilized on a tiny glass plate and used as a biosensor chip. The biosensor chip is set in the chamber of a flow sensing system using localized surface plasmon resonance (LSPR) spectrometry available in portable size at relatively low cost. In principle, the LSPR sensing system enables us to perform a rapid and selective detection for different kinds of biological toxins if the human glycolipid is correctly selected and installed in the sensing system. In the present LSPR sensing approach, a target AB toxin may have been deactivated during the pretreatment process. The test sample containing the deactivated AB toxin becomes a real target to be analyzed by the sensing system. In the present, we describe the concept of employing the commercially available IgG antibody in the pretreatment process followed by a typical procedure for converting it into the multivalent antibody/Au nanoconjugate and its preliminary applications in the LSPR detection of a ricin homologue (RCA120) and BoNTs in different serotypes. The tested LSPR sensing approach has worked very well for the ricin homologue and certain serotypes of botulinum neurotoxins like BoNT/A, indicating that the prior deactivation process at their A-domains causes no significant damage to the function of their B-domains with respect to determining the host cell-membrane glycolipid. The experimental results also indicated that LSPR responses from these pretreated AB toxins are significantly amplified. That is obviously thanks to the presence of Au nanoparticles in the multivalent IgG/Au nanoconjugate. We suggest in conclusion that the proposed LSPR sensing approach will provide us with a safe and useful tool for the study of biological AB toxins based on their unique quaternary protein structures. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Figure 1

14 pages, 4866 KiB  
Article
Synthesis of Conjugates of PEG-RGD Derivatives with Fe3O4 Magnetic Nanoparticles for Cell Labelling
by Alexander M. Demin, Alexander V. Vakhrushev, Alexandra G. Pershina, Alexandra A. Syomchina, Lina V. Efimova, Maksim S. Karabanalov, Mikhail A. Uimin, Iliya V. Byzov, Artem S. Minin and Victor P. Krasnov
J. Compos. Sci. 2024, 8(12), 486; https://doi.org/10.3390/jcs8120486 - 22 Nov 2024
Viewed by 1243
Abstract
The purpose of this research is to design nanocomposite materials for biomedical applications. New conjugates of PEG derivatives of RGD peptides and magnetic nanoparticles, based on Fe3O4 (MNPs) with silica coating covalently labelled with fluorescent dye Cyanine5, were obtained. It [...] Read more.
The purpose of this research is to design nanocomposite materials for biomedical applications. New conjugates of PEG derivatives of RGD peptides and magnetic nanoparticles, based on Fe3O4 (MNPs) with silica coating covalently labelled with fluorescent dye Cyanine5, were obtained. It was shown that a higher loading level of RGD peptides occurred in the case of MNPs with SiO2/aminopropylsilane coating, synthesised using N-(phosphonomethyl)iminodiacetic acid (PMIDA) as a surfactant. To confirm the structure and chemical purity of the new RGD-PEG conjugate, a number of methods were used, including 1H NMR, HRMS, and RP-HPLC. The characterisation of MNPs was carried out using the following physical methods: TEM, FTIR, EDX, CHN analysis, DLS, fluorescence spectrometry, vibration magnetometry, and relaxometry. Samples obtained from PMIDA-stabilised MNPs contained a greater amount of the peptide and possessed better hydrodynamic characteristics than samples obtained from non-stabilised MNPs. A comparative study of the MNP cytotoxicity was carried out towards 4T1 and MDA-MB231 cell lines (MTT test), and the possibility of cell labelling was assessed. The cellular uptake was more efficient for nanoconjugates obtained without PMIDA. The data obtained can be used for the design of materials for cell labelling and visualisation. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

14 pages, 1953 KiB  
Article
In Vivo Efficacy of a Nanoconjugated Glycopeptide Antibiotic in Silkworm Larvae Infected by Staphylococcus aureus
by Aurora Montali, Francesca Berini, Federica Gamberoni, Ilaria Armenia, Alessio Saviane, Silvia Cappellozza, Rosalba Gornati, Giovanni Bernardini, Flavia Marinelli and Gianluca Tettamanti
Insects 2024, 15(11), 886; https://doi.org/10.3390/insects15110886 - 13 Nov 2024
Viewed by 1096
Abstract
To contrast the rapid spread of antibiotic resistance in bacteria, new alternative therapeutic options are urgently needed. The use of nanoparticles as carriers for clinically relevant antibiotics represents a promising solution to potentiate their efficacy. In this study, we used Bombyx mori larvae [...] Read more.
To contrast the rapid spread of antibiotic resistance in bacteria, new alternative therapeutic options are urgently needed. The use of nanoparticles as carriers for clinically relevant antibiotics represents a promising solution to potentiate their efficacy. In this study, we used Bombyx mori larvae for the first time as an animal model for testing a nanoconjugated glycopeptide antibiotic (teicoplanin) against Staphylococcus aureus infection. B. mori larvae might thus replace the use of mammalian models for preclinical tests, in agreement with the European Parliament Directive 2010/63/EU. The curative effect of teicoplanin (a last resort antibiotic against Gram-positive bacterial pathogens) conjugated to iron oxide nanoparticles was assessed by monitoring the survival rate of the larvae and some immunological markers (i.e., hemocyte viability, phenoloxidase system activation, and lysozyme activity). Human physiological conditions of infection were reproduced by performing the experiments at 37 °C. In this condition, nanoconjugated teicoplanin cured the bacterial infection at the same antibiotic concentration of the free counterpart, blocking the insect immune response without causing mortality of silkworm larvae. These results demonstrate the value and robustness of the silkworm as an infection model for testing the in vivo efficacy of nanoconjugated antimicrobial molecules. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

19 pages, 2662 KiB  
Review
Nano-Encapsulation and Conjugation Applied in the Development of Lipid Nanoparticles Delivering Nucleic Acid Materials to Enable Gene Therapies
by Linh Dinh, Lanesa Mahon and Bingfang Yan
Appl. Nano 2024, 5(3), 143-161; https://doi.org/10.3390/applnano5030011 - 29 Aug 2024
Cited by 7 | Viewed by 4564
Abstract
Nano-encapsulation and conjugation are the main strategies employed for drug delivery. Nanoparticles help improve encapsulation and targeting efficiency, thus optimizing therapeutic efficacy. Through nanoparticle technology, replacement of a defective gene or delivery of a new gene into a patient’s genome has become possible. [...] Read more.
Nano-encapsulation and conjugation are the main strategies employed for drug delivery. Nanoparticles help improve encapsulation and targeting efficiency, thus optimizing therapeutic efficacy. Through nanoparticle technology, replacement of a defective gene or delivery of a new gene into a patient’s genome has become possible. Lipid nanoparticles (LNPs) loaded with genetic materials are designed to be delivered to specific target sites to enable gene therapy. The lipid shells protect the fragile genetic materials from degradation, then successfully release the payload inside of the cells, where it can integrate into the patient’s genome and subsequently express the protein of interest. This review focuses on the development of LNPs and nano-pharmaceutical techniques for improving the potency of gene therapies, reducing toxicities, targeting specific cells, and releasing genetic materials to achieve therapeutic effects. In addition, we discuss preparation techniques, encapsulation efficiency, and the effects of conjugation on the efficacy of LNPs in delivering nucleic acid materials. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

12 pages, 1233 KiB  
Communication
How Does the Concentration of Technetium-99m Radiolabeled Gold Nanoparticles Affect Their In Vivo Biodistribution?
by Adamantia Apostolopoulou, Evangelia-Alexandra Salvanou, Aristeidis Chiotellis, Nektarios N. Pirmettis, Ioannis C. Pirmettis, Stavros Xanthopoulos, Przemysław Koźmiński and Penelope Bouziotis
Appl. Sci. 2024, 14(10), 4324; https://doi.org/10.3390/app14104324 - 20 May 2024
Cited by 1 | Viewed by 1649
Abstract
Gold nanoparticles (AuNPs) radiolabeled with therapeutic and diagnostic radioisotopes have been broadly studied as a promising platform for early diagnosis and treatment of many diseases including cancer. Our main goal for this study was the comparison of the biodistribution profiles of four different [...] Read more.
Gold nanoparticles (AuNPs) radiolabeled with therapeutic and diagnostic radioisotopes have been broadly studied as a promising platform for early diagnosis and treatment of many diseases including cancer. Our main goal for this study was the comparison of the biodistribution profiles of four different concentrations of gold nanoconjugates radiolabeled with Technetium-99m (99mTc). More specifically, AuNPs with an average diameter of 2 nm were functionalized with a tridentate thiol ligand. Four different concentrations were radiolabeled with 99mTc-tricarbonyls with high radiolabeling yields (>85%) and were further purified, leading to radiochemical purity of >95%. In vitro stability of the radiolabeled nanoconstructs was examined in cysteine and histidine solutions as well as in human serum, exhibiting robust radiolabeling up to 24 h post-preparation. Moreover, in vitro cytotoxicity studies were carried out in 4T1 murine mammary cancer cells. In vivo tracking of the radiolabeled nanoconjugates at both concentrations was examined in normal mice in order to examine the effect of AuNPs’ concentration on their in vivo kinetics. Our work demonstrates that varying concentrations of radiolabeled AuNPs lead to notably different biodistribution profiles. Full article
(This article belongs to the Special Issue Nanomaterials in Medical Diagnosis and Therapy)
Show Figures

Figure 1

17 pages, 3627 KiB  
Article
Encapsulation of Nanoparticles with Statistical Copolymers with Different Surface Charges and Analysis of Their Interactions with Proteins and Cells
by Saad Megahed, Nicole Wutke, Yang Liu, Markus Klapper, Florian Schulz, Neus Feliu and Wolfgang J. Parak
Int. J. Mol. Sci. 2024, 25(10), 5539; https://doi.org/10.3390/ijms25105539 - 19 May 2024
Cited by 1 | Viewed by 1924
Abstract
Encapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case [...] Read more.
Encapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case in complex media which are relevant for intended applications in medicine and nanobiotechnology. Here, we studied the encapsulation of gold nanoparticles and quantum dots with amphiphilic copolymers differing in their charge and molecular structure. Protein adsorption to the nanoconjugates was studied with fluorescence correlation spectroscopy, and their surface activity was studied with dynamic interfacial tensiometry. Encapsulation of the nanoparticles without affecting their characteristic properties was possible with all tested polymers and provided good stabilization. However, the interaction with proteins and cells significantly depended on structural details. We identified statistical copolymers providing strongly reduced protein adsorption and low unspecific cellular uptake. Interestingly, different zwitterionic amphiphilic copolymers showed substantial differences in their resulting bio-repulsive properties. Among the polymers tested herein, statistical copolymers with sulfobetaine and phosphatidylcholine sidechains performed better than copolymers with carboxylic acid- and dimethylamino-terminated sidechains. Full article
(This article belongs to the Special Issue Molecular Research on Nanotoxicology)
Show Figures

Figure 1

16 pages, 5418 KiB  
Article
Neurospora sp. Mediated Synthesis of Naringenin for the Production of Bioactive Nanomaterials
by Jitendra Dattatray Salunkhe, Indra Neel Pulidindi, Vikas Sambhaji Patil and Satish Vitthal Patil
Bioengineering 2024, 11(5), 510; https://doi.org/10.3390/bioengineering11050510 - 18 May 2024
Cited by 1 | Viewed by 2449
Abstract
The application of Neurospora sp., a fungus that commonly thrives on complex agricultural and plant wastes, has proven successful in utilizing citrus peel waste as a source of naringin. A UV-Vis spectrophotometric method proved the biotransformation of naringin, with an absorption maximum (λ [...] Read more.
The application of Neurospora sp., a fungus that commonly thrives on complex agricultural and plant wastes, has proven successful in utilizing citrus peel waste as a source of naringin. A UV-Vis spectrophotometric method proved the biotransformation of naringin, with an absorption maximum (λmax) observed at 310 nm for the biotransformed product, naringenin (NAR). Further verification of the conversion of naringin was provided through thin layer chromatography (TLC). The Neurospora crassa mediated biotransformation of naringin to NAR was utilized for the rapid (within 5 min) synthesis of silver (Ag) and gold (Au) nanoconjugates using sunlight to accelerate the reaction. The synthesized NAR-nano Ag and NAR-nano Au conjugates exhibited monodispersed spherical and spherical as well as polygonal shaped particles, respectively. Both of the nanoconjugates showed average particle sizes of less than 90 nm from TEM analysis. The NAR-Ag and NAR-Au nanoconjugates displayed potential enhancement of the antimicrobial activities, including antibacterial and nematicidal properties over either standalone NAR or Ag or Au NPs. This study reveals the potential of naringinase-producing Neurospora sp. for transforming naringin into NAR. Additionally, the resulting NAR-Ag and NAR-Au nanoconjugates showed promise as sustainable antibiotics and biochemical nematicides. Full article
(This article belongs to the Topic Advances in Biomaterials)
Show Figures

Graphical abstract

12 pages, 7008 KiB  
Article
Nanoscale Evaluation of the Degradation Stability of Black Phosphorus Nanosheets Functionalized with PEG and Glutathione-Stabilized Doxorubicin Drug-Loaded Gold Nanoparticles in Real Functionalized System
by Thisari Maleesha Gunathilaka and Masaru Shimomura
Molecules 2024, 29(8), 1746; https://doi.org/10.3390/molecules29081746 - 12 Apr 2024
Cited by 4 | Viewed by 1497
Abstract
Two-dimensional black phosphorus (2D BP) has attracted significant research interest in the field of biomedical applications due to its unique characteristics, including high biocompatibility, impressive drug-loading efficiency, phototherapeutic ability, and minimal side effects. However, its puckered honeycomb lattice structure with lone-pair electrons of [...] Read more.
Two-dimensional black phosphorus (2D BP) has attracted significant research interest in the field of biomedical applications due to its unique characteristics, including high biocompatibility, impressive drug-loading efficiency, phototherapeutic ability, and minimal side effects. However, its puckered honeycomb lattice structure with lone-pair electrons of BP leads to higher sensitivity and chemical reactivity towards H2O and O2 molecules, resulting in the degradation of the structure with physical and chemical changes. In our study, we synthesize polyethylene glycol (PEG) and glutathione-stabilized doxorubicin drug-assembled Au nanoparticle (Au-GSH-DOX)-functionalized BP nanosheets (BP-PEG@Au-GSH-DOX) with improved degradation stability, biocompatibility, and tumor-targeting ability. Transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy indicate the nanoscale degradation behavior of synthesized nanoconjugates in three different environmental exposure conditions, and the results demonstrate the remarkable nanoscale stability of BP-PEG@Au-GSH-DOX against the degradation of BP, which provides significant interest in employing 2D BP-based nanotherapeutic agents for tumor-targeted cancer phototherapy. Full article
(This article belongs to the Special Issue 2D Nanosheets and Their Nanohybrids)
Show Figures

Figure 1

Back to TopTop