Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = nanocarbon films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 7445 KiB  
Review
Research on the Application of Nano-Additives in Gel-like Lubricants
by Han Peng, Zihao Meng, Linjian Shangguan, Lei Liu, Can Yang and Lingxi Guo
Gels 2025, 11(7), 546; https://doi.org/10.3390/gels11070546 - 14 Jul 2025
Viewed by 403
Abstract
In the field of mechanical motion, friction loss and material wear are common problems. As one of the essential components for enhancing the lubricating performance of gel-like lubricants, nano-additives leverage their unique physical and chemical properties to form an efficient protective film on [...] Read more.
In the field of mechanical motion, friction loss and material wear are common problems. As one of the essential components for enhancing the lubricating performance of gel-like lubricants, nano-additives leverage their unique physical and chemical properties to form an efficient protective film on friction surfaces. This effectively reduces friction resistance and inhibits wear progression, thereby playing a significant role in promoting energy conservation, emissions reduction, and the implementation of green development principles. This study first introduces the physical and chemical preparation processes of gel-like lubricant nanoadditives. It then classifies them (mainly based on metal bases, metal oxides, nanocarbon materials, and other nanoadditives). Then, the performance of gel-like lubricant nano-additives is evaluated (mainly in terms of anti-wear, friction reduction, oxidation resistance, and load carrying capacity), and the surface analysis technology used is described. Finally, we summarize the application scenarios of gel-like lubricant nano-additives, identify the challenges faced, and discuss future prospects. This study provides new insights and directions for the design and synthesis of novel gel-like lubricants with significant lubricating and anti-wear properties in the future. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

28 pages, 8575 KiB  
Article
Binary and Ternary Nanocomposite Membranes for Gas Separation Incorporating Finely Dispersed Carbon Nanotubes in a Polyether Block Amide Matrix
by Danilo Vuono, Gabriele Clarizia, Daniela Clotilde Zampino and Paola Bernardo
Polymers 2025, 17(3), 314; https://doi.org/10.3390/polym17030314 - 24 Jan 2025
Viewed by 866
Abstract
This work addressed the fine dispersion of Multiwalled Carbon Nanotubes (MWCNTs) in a polymer matrix to obtain Mixed Matrix Membranes (MMMs) suited for gas separation. Not-purified MWCNTs were effectively loaded within a polyether block amide (Pebax®2533) matrix, up to 24 wt%, [...] Read more.
This work addressed the fine dispersion of Multiwalled Carbon Nanotubes (MWCNTs) in a polymer matrix to obtain Mixed Matrix Membranes (MMMs) suited for gas separation. Not-purified MWCNTs were effectively loaded within a polyether block amide (Pebax®2533) matrix, up to 24 wt%, using ultrasonication as well as a third component (polysorbate) in the dope solution. The obtained flexible thin films were investigated in terms of morphology, thermal properties, characterized by SEM, FT-IR, DSC, TGA, and gas permeation tests. The response to temperature variations of gas permeation through these nanocomposite specimens was also investigated in the temperature range of 25–55 °C. Defect-free samples were successfully obtained even at a significantly high loading of CNTs (up to 18 wt%), without a pre-treatment of the fillers. A remarkable enhancement of gas permeability upon the nanocarbons loading was reached, with a threshold value at a loading of ca. 7 wt%. The addition of polysorbates in the ternary MMMs further improves the dispersion of the filler, enhancing also the permselectivity of the membrane. Full article
Show Figures

Graphical abstract

33 pages, 5113 KiB  
Review
Nanoparticle-Doped Antibacterial and Antifungal Coatings
by Devyani Thapliyal, George D. Verros and Raj Kumar Arya
Polymers 2025, 17(2), 247; https://doi.org/10.3390/polym17020247 - 20 Jan 2025
Cited by 10 | Viewed by 3746
Abstract
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and [...] Read more.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings, they will release metal ions with the combined effect of having bacteriostatic/bactericidal properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO2 NPs) and zinc oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV irradiation, these NPs show photocatalytic properties that lead to the production of reactive oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon materials were successfully developed over the past decade, they and their derivatives from graphite/nanotubes, and composite sheets have been receiving more attention because they share an extremely large surface area, excellent mechanical strength, etc. These NPs not only show the ability to cause oxidative stress but also have the ability to release antimicrobial chemicals under control, resulting in long-lasting antibacterial action. The effectiveness and life spans of the antifouling performance of a variety of polymeric materials have been improved by adding nano-sized particles to those coatings. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

12 pages, 5023 KiB  
Article
Carbon Nanotube–Carbon Nanocoil Hybrid Film Decorated by Amorphous Silicon as Anodes for Lithium-Ion Batteries
by Huan Chen, Chen Wang, Zeng Fan, Chuanhui Cheng, Liang Hao and Lujun Pan
J. Compos. Sci. 2024, 8(9), 350; https://doi.org/10.3390/jcs8090350 - 6 Sep 2024
Cited by 1 | Viewed by 1453
Abstract
Silicon (Si) as the anode material for lithium-ion batteries (LIBs) has attracted much attention due to its high theoretical specific capacity (4200 mAh/g). However, the specific capacity and cycle stability of the LIBs are reduced due to the pulverization caused by the expansion [...] Read more.
Silicon (Si) as the anode material for lithium-ion batteries (LIBs) has attracted much attention due to its high theoretical specific capacity (4200 mAh/g). However, the specific capacity and cycle stability of the LIBs are reduced due to the pulverization caused by the expansion of Si coated on Cu (copper) foil during cycles. In order to solve this problem, researchers have used an ultra-thin Si deposition layer as the electrode, which improves cyclic stability and obtains high initial coulomb efficiency of LIBs. However, suitable substrate selection is crucial to fabricate an ultrathin Si deposition layer electrode with excellent performance, and a substrate with a three-dimensional porous structure is desirable to ensure the deposition of an ultrathin Si layer on the whole surface of the substrate. In this paper, the Si thin layer has been deposited on a binder-free hybrid film of carbon nanotubes (CNTs) and carbon nanocoils (CNCs) by magnetron sputtering. Compared with densely packed CNT film and flat Cu foil, the loose and porous film provides a large surface area and space for Si deposition, and Si can be deposited not only on the surface but also in the interior part of the film. The film provides a large number of channels for the diffusion and transmission of Li+, resulting in the rapid diffusion rate of Li+, which improves the effective lithium storage utilization of Si. Furthermore, the CNC itself is super elastic, and film provides an elastic skeleton for the Si deposition layer, which eases its volume expansion during charge and discharge processes. Electrochemical tests have showed that the Si/CNT–CNC film electrode has excellent performance as anode for LIBs. After 200 cycles, the Si/CNT–CNC film electrode still had possessed a specific capacity of 2500 mAh/g, a capacity retention of 92.8% and a coulomb efficiency of 99%. This paper provides an effective way to fabricate high performance Si-nanocarbon composite electrodes for LIBs. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

19 pages, 8757 KiB  
Article
Preparation and Properties of Conductive Aluminum Powder (Al@Si@C) for Water-Borne Heavy-Duty Anticorrosive Coatings
by Qingpeng Li, Jiaxing Liu, Tiancheng Jiang, Xiaoyun An, Na Wang, Zhixiu Xu, Wanyuan Guo, Liang Zhang and Xiaofeng Liu
Coatings 2024, 14(9), 1082; https://doi.org/10.3390/coatings14091082 - 23 Aug 2024
Cited by 1 | Viewed by 1438
Abstract
To improve the storage stability and conductivity of aluminum powder in an aqueous environment, the surface of aluminum powder was treated to form silica film by the sol–gel method, then was treated with conductive modification to introduce nanocarbon black particles so that conductive [...] Read more.
To improve the storage stability and conductivity of aluminum powder in an aqueous environment, the surface of aluminum powder was treated to form silica film by the sol–gel method, then was treated with conductive modification to introduce nanocarbon black particles so that conductive aluminum powder could be prepared to solve the application bottleneck of aluminum powder in water-borne heavy-duty anticorrosive coatings. The structure, surface morphology, and composition of the modified aluminum powder were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). The corrosion resistance and electrochemical properties were measured using a hydrogen evolution test and an 2electrochemical test. The results showed that there was a compact SiO2 film formed on the surface of the prepared conductive aluminum powder, and the conductive filler nanocarbon black was uniformly grafted on the surface. According to the hydrogen evolution test at 100 h/50 °C, conductive aluminum powder with 5 wt% carbon black exhibited the best hydrogen evolution effect, with a hydrogen evolution amount of only 0.5 mL. The prepared conductive aluminum powder was applied to the water-borne coatings, and the storage stability test, electrochemical polarization test, and neutral salt spray test were further conducted. The water-borne coatings prepared with conductive aluminum powder still showed good performance and had no reaction after 6 months of storage. Compared with the coating containing SiO2-modified aluminum powder, the coating exhibited better corrosion resistance. Full article
Show Figures

Figure 1

18 pages, 5077 KiB  
Article
Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films
by Zoran M. Marković, Milica D. Budimir Filimonović, Dušan D. Milivojević, Janez Kovač and Biljana M. Todorović Marković
J. Funct. Biomater. 2024, 15(3), 73; https://doi.org/10.3390/jfb15030073 - 17 Mar 2024
Cited by 14 | Viewed by 2661
Abstract
The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria [...] Read more.
The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria can transfer from medical staff or contaminated surfaces to patients. In this paper, we focused our attention on the antibacterial and antibiofouling activities of two types of photodynamic polyurethane composite films doped with carbon polymerized dots (CPDs) and fullerene C60. Detailed atomic force, electrostatic force and viscoelastic microscopy revealed topology, nanoelectrical and nanomechanical properties of used fillers and composites. A relationship between the electronic structure of the nanocarbon fillers and the antibacterial and antibiofouling activities of the composites was established. Thorough spectroscopic analysis of reactive oxygen species (ROS) generation was conducted for both composite films, and it was found that both of them were potent antibacterial agents against nosocomial bacteria (Klebsiela pneumoniae, Proteus mirabilis, Salmonela enterica, Enterococcus faecalis, Enterococcus epidermis and Pseudomonas aeruginosa). Antibiofouling testing of composite films indicated that the CPDs/PU composite films eradicated almost completely the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus and about 50% of Escherichia coli biofilms. Full article
(This article belongs to the Special Issue Photodynamic Therapy of Cancer, Microbes and Viruses)
Show Figures

Figure 1

13 pages, 4147 KiB  
Article
Poly(vinyl chloride)/Nanocarbon Composites for Advanced Potentiometric Membrane Sensor Design
by Konstantin Yu. Zhizhin, Evgeniy S. Turyshev, Liliya K. Shpigun, Philipp Yu. Gorobtsov, Nikolay P. Simonenko, Tatiana L. Simonenko and Nikolay T. Kuznetsov
Int. J. Mol. Sci. 2024, 25(2), 1124; https://doi.org/10.3390/ijms25021124 - 17 Jan 2024
Cited by 6 | Viewed by 1874
Abstract
Polymer nanocomposites filled with carbon nanoparticles (CNPs) are a hot topic in materials science. This article discusses the current research on the use of these materials as interfacial electron transfer films for solid contact potentiometric membrane sensors (SC-PMSs). The results of a comparative [...] Read more.
Polymer nanocomposites filled with carbon nanoparticles (CNPs) are a hot topic in materials science. This article discusses the current research on the use of these materials as interfacial electron transfer films for solid contact potentiometric membrane sensors (SC-PMSs). The results of a comparative study of plasticized poly (vinyl chloride) (pPVC) matrices modified with single-walled carbon nanotubes (SWCNTs), fullerenes-C60, and their hybrid ensemble (SWCNTs-C60) are reported. The morphological characteristics and electrical conductivity of the prepared nanostructured composite films are reported. It was found that the specific electrical conductivity of the pPVC/SWCNTs-C60 polymer film was higher than that of pPVC filled with individual nanocomponents. The effectiveness of this composite material as an electron transfer film in a new potentiometric membrane sensor for detecting phenylpyruvic acid (in anionic form) was demonstrated. Screening for this metabolic product of phenylalanine in body fluids is of significant diagnostic interest in phenylketonuria (dementia), viral hepatitis, and alcoholism. The developed sensor showed a stable and fast Nernstian response for phenylpyruvate ions in aqueous solutions over the wide linear concentration range of 5 × 10−7–1 × 10−3 M, with a detection limit of 10−7.2 M. Full article
(This article belongs to the Special Issue Synthesis and Applications of Advanced Inorganic Materials)
Show Figures

Figure 1

21 pages, 6343 KiB  
Review
Nanocellulose/Nanodiamond Hybrids: A Review
by Cătălina Diana Uşurelu and Denis Mihaela Panaitescu
Macromol 2023, 3(2), 400-420; https://doi.org/10.3390/macromol3020024 - 15 Jun 2023
Cited by 5 | Viewed by 2453
Abstract
Nanocellulose can be obtained from low-cost sources and has been extensively studied in the last decades due to its biodegradability, biocompatibility, low weight, large specific surface area, and good mechanical and optical properties. The nanocellulose properties palette can be greatly expanded by incorporating [...] Read more.
Nanocellulose can be obtained from low-cost sources and has been extensively studied in the last decades due to its biodegradability, biocompatibility, low weight, large specific surface area, and good mechanical and optical properties. The nanocellulose properties palette can be greatly expanded by incorporating different metals, metal oxides or carbon nanomaterials, with the formation of multifunctional hybrids. Nanocellulose–nanocarbon hybrids are emerging nanomaterials that can respond to many current challenges in areas such as water purification, energy storage and conversion, or biomedicine for drug delivery, tissue engineering, antitumor and antimicrobial therapies, and many others. Although nanocellulose–nanodiamonds hybrids are still in their infancy, these nanomaterials are extremely promising for applications requiring good thermal conductivity and mechanical strength along with optical transparency. A strong increase in the thermal conductivity of a nanocellulose film of about 150 times was obtained after the addition of 90 wt% single-crystal nanodiamonds and a 70% increase in the Young’s modulus of nanocellulose films was produced by the addition of 5 wt% nanodiamonds. Therefore, in this review, data related to the manufacturing routes, main properties, and applications of nanocellulose–nanodiamonds hybrids are presented and discussed. This review paves the way for new methods and procedures to obtain nanocellulose–nanodiamonds hybrids better adapted to practical needs. Full article
Show Figures

Figure 1

18 pages, 17345 KiB  
Article
Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles
by Mohammed Es-Souni
Micromachines 2023, 14(6), 1141; https://doi.org/10.3390/mi14061141 - 28 May 2023
Viewed by 1715
Abstract
Noble metal nanoparticles and multi-materials thereof are processed on a substrate from aqueous solutions of the metallic ions, precluding any chemical additives/catalysts. The methods reported here take advantage of interactions between collapsing bubbles and the substrate that result in the generation of reducing [...] Read more.
Noble metal nanoparticles and multi-materials thereof are processed on a substrate from aqueous solutions of the metallic ions, precluding any chemical additives/catalysts. The methods reported here take advantage of interactions between collapsing bubbles and the substrate that result in the generation of reducing radicals at the substrate surface and leading to the reduction of the metal ions on those sites, followed by nucleation and growth. Two selected substrates where these phenomena take place are nanocarbon and TiN. By either using ultrasonic radiation of the substrate in ionic solution or quenching the substrate in a solution from temperatures above the Leidenfrost temperature, a high density of nanoparticles of Au, Au/Pt, Au/Pd and Au/Pd/Pt are synthesized on the substrate surface. The sites where the reducing radicals are generated determine the self-assembly of the nanoparticles. The methods yield highly adherent surface films and nanoparticles; they are materials efficient and cost effective because only the surface is modified with costly materials. The formation mechanisms of these green multi-material NPs are described. Outstanding electrocatalytic performances in acidic solutions of methanol and formic acid are demonstrated. Full article
(This article belongs to the Special Issue Self-Assembly of Nanoparticles)
Show Figures

Figure 1

20 pages, 10813 KiB  
Article
Advanced Cellulose–Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators
by Jaime González, Ali Ghaffarinejad, Maxim Ivanov, Paula Ferreira, Paula M. Vilarinho, Ana Borrás, Harvey Amorín and Bernd Wicklein
Nanomaterials 2023, 13(7), 1206; https://doi.org/10.3390/nano13071206 - 28 Mar 2023
Cited by 16 | Viewed by 3155
Abstract
Natural polymers such as cellulose have interesting tribo- and piezoelectric properties for paper-based energy harvesters, but their low performance in providing sufficient output power is still an impediment to a wider deployment for IoT and other low-power applications. In this study, different types [...] Read more.
Natural polymers such as cellulose have interesting tribo- and piezoelectric properties for paper-based energy harvesters, but their low performance in providing sufficient output power is still an impediment to a wider deployment for IoT and other low-power applications. In this study, different types of celluloses were combined with nanosized carbon fillers to investigate their effect on the enhancement of the electrical properties in the final nanogenerator devices. Cellulose pulp (CP), microcrystalline cellulose (MCC) and cellulose nanofibers (CNFs) were blended with carbon black (CB), carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The microstructure of the nanocomposite films was characterized by scanning electron and probe microscopies, and the electrical properties were measured macroscopically and at the local scale by piezoresponse force microscopy. The highest generated output voltage in triboelectric mode was obtained from MCC films with CNTs and CB, while the highest piezoelectric voltage was produced in CNF-CNT films. The obtained electrical responses were discussed in relation to the material properties. Analysis of the microscopic response shows that pulp has a higher local piezoelectric d33 coefficient (145 pC/N) than CNF (14 pC/N), while the macroscopic response is greatly influenced by the excitation mode and the effective orientation of the crystals relative to the mechanical stress. The increased electricity produced from cellulose nanocomposites may lead to more efficient and biodegradable nanogenerators. Full article
(This article belongs to the Special Issue Advances in Polymer Nanocomposite Films)
Show Figures

Figure 1

18 pages, 6216 KiB  
Article
Superhydrophobic and Electrochemical Performance of CF2-Modified g-C3N4/Graphene Composite Film Deposited by PECVD
by Dayu Li, Yuling Lu and Chao Zhang
Nanomaterials 2022, 12(24), 4387; https://doi.org/10.3390/nano12244387 - 9 Dec 2022
Cited by 5 | Viewed by 2037
Abstract
The physicochemical properties of functional graphene are regulated by compositing with other nano-carbon materials or modifying functional groups on the surface through plasma processes. The functional graphene films with g-C3N4 and F-doped groups were produced by controlling the deposition steps [...] Read more.
The physicochemical properties of functional graphene are regulated by compositing with other nano-carbon materials or modifying functional groups on the surface through plasma processes. The functional graphene films with g-C3N4 and F-doped groups were produced by controlling the deposition steps and plasma gases via radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The first principles calculation and electrochemistry characteristic of the functional graphene films were performed on Materials Studio software and an electrochemical workstation, respectively. It is found that the nanostructures of functional graphene films with g-C3N4 and F-doped groups were significantly transformed. The introduction of fluorine atoms led to severe deformation of the g-C3N4 nanostructure, which created gaps in the electrostatic potential of the graphene surface and provided channels for electron transport. The surface of the roving fabric substrate covered by pure graphene is hydrophilic with a static contact angle of 79.4°, but the surface is transformed to a hydrophobic state for the g-C3N4/graphene film with an increased static contact angle of 131.3° which is further improved to 156.2° for CF2-modified g-C3N4/graphene film exhibiting the stable superhydrophobic property. The resistance of the electron movement of CF2-modified g-C3N4/graphene film was reduced by 2% and 76.7%, respectively, compared with graphene and g-C3N4/graphene. Full article
(This article belongs to the Special Issue Thin Film-Electrode Based on Nanomaterials)
Show Figures

Figure 1

7 pages, 1993 KiB  
Article
Light-Driven Flying Balloons Based on Hybrids of Carbon Nanotubes and Cellulose Nanofibers
by Takashi Ikuno, Kazuki Takahashi and Akari Kadogawa
Materials 2022, 15(21), 7739; https://doi.org/10.3390/ma15217739 - 3 Nov 2022
Cited by 1 | Viewed by 1384
Abstract
We have fabricated nanocarbon-based palm-sized cubic paper balloons that can be levitated by light irradiation. These paper balloons are composed of carbon nanotube (CNT) freestanding films and cellulose nanofiber (CNF) freestanding films. The number of CNT freestanding films (NCNT) and [...] Read more.
We have fabricated nanocarbon-based palm-sized cubic paper balloons that can be levitated by light irradiation. These paper balloons are composed of carbon nanotube (CNT) freestanding films and cellulose nanofiber (CNF) freestanding films. The number of CNT freestanding films (NCNT) and the number of CNF freestanding films (6-NCNT) among the six walls of the cube were varied. We investigated the effect of NCNT on the levitation behaviors under light irradiation. We found that the balloons were levitated when NCNT was greater than or equal to two. The levitation height was found to be increased by increasing NCNT. Full article
Show Figures

Figure 1

12 pages, 4478 KiB  
Article
Highly Sensitive Electrochemical Detection of Paraquat in Environmental Water Samples Using a Vertically Ordered Mesoporous Silica Film and a Nanocarbon Composite
by Weiran Zheng, Ruobing Su, Guoguang Yu, Lin Liu and Fei Yan
Nanomaterials 2022, 12(20), 3632; https://doi.org/10.3390/nano12203632 - 16 Oct 2022
Cited by 29 | Viewed by 2810
Abstract
Herein, we demonstrate a sensitive and rapid electrochemical method for the detection of paraquat (PQ) using a glassy carbon electrode (GCE) modified with vertically ordered mesoporous silica films (VMSF) and a nanocarbon composite. The three-dimensional graphene-carbon nanotube (3DG-CNT) nanocarbon composite has a 3D [...] Read more.
Herein, we demonstrate a sensitive and rapid electrochemical method for the detection of paraquat (PQ) using a glassy carbon electrode (GCE) modified with vertically ordered mesoporous silica films (VMSF) and a nanocarbon composite. The three-dimensional graphene-carbon nanotube (3DG-CNT) nanocarbon composite has a 3D network structure, a large electroactive area and oxygen-containing groups, promoting electron transfer between PQ and the underlying electrode and providing a suitable microenvironment for the stable growth of VMSF. This VMSF/3DG-CNT nanocomposite film could be prepared on the GCE’s surface by a two-step electrochemical method with good controllability and convenience. Owing to the synergistic effect of the electrocatalytic ability of 3DG-CNT and the electrostatically enriched capacity of VMSF, the proposed VMSF/3DG-CNT/GCE has superior analytical sensitivity compared with the bare GCE. Furthermore, VMSF has excellent anti-fouling ability that makes the fabricated sensor exhibit satisfactory performance for direct analysis of PQ in environmental water samples. Full article
(This article belongs to the Special Issue Functional Graphene-Based Nanodevices)
Show Figures

Figure 1

13 pages, 5151 KiB  
Article
Probe-Integrated Label-Free Electrochemical Immunosensor Based on Binary Nanocarbon Composites for Detection of CA19-9
by Zhengzheng Yan, Jun Xing, Ruochong He, Qinping Guo and Ji Li
Molecules 2022, 27(20), 6778; https://doi.org/10.3390/molecules27206778 - 11 Oct 2022
Cited by 5 | Viewed by 2658
Abstract
Convenient and sensitive detection of tumor biomarkers is crucial for the early diagnosis and treatment of cancer. Herein, we present a probe-integrated and label-free electrochemical immunosensor based on binary nanocarbon composites and surface-immobilized methylene blue (MB) redox probes for detection of carbohydrate antigen [...] Read more.
Convenient and sensitive detection of tumor biomarkers is crucial for the early diagnosis and treatment of cancer. Herein, we present a probe-integrated and label-free electrochemical immunosensor based on binary nanocarbon composites and surface-immobilized methylene blue (MB) redox probes for detection of carbohydrate antigen 199 (CA19-9), which is closely associated with gastric malignancies. Nanocarbon composites consisting of electrochemically reduced graphene oxides and carbon nanotubes (ErGO-CNT) are electrodeposited onto an indium tin oxide (ITO) electrode surface to form a 3D nanocomposite film, which could provide high surface area to immobilize abundant MB probes, facilitate the electron transfer of MB, and therefore, improve sensitivity. Polydopamine (PDA) served as a bifunctional linker is able to immobilize anti-CA19-9 antibodies and stabilize the inner probe, conferring the sensing interface with specific recognition capacity. Electrochemical detection of CA19-9 is achieved based on the decrease of the redox signal of MB after specific binding of CA19-9 with a wide linear range of 0.1 mU/mL to 100 U/mL and a limit of detection (LOD) of 0.54 nU/mL (S/N = 3). The constructed electrochemical immunosensor has good selectivity, repeatability, reproducibility, and stability. Furthermore, determination of CA19-9 in human serum samples is also realized. Full article
Show Figures

Figure 1

11 pages, 3738 KiB  
Article
Thin Film Coatings from Aqueous Dispersion of Graphene-Based Nanocarbon and Its Hybrids with Metal Nanoparticles
by Natalia Rozhkova, Anna Kovalchuk, Andrei Goryunov, Alexandra Borisova, Anton Osipov, Alexey Kucherik and Sergei Rozhkov
Coatings 2022, 12(5), 600; https://doi.org/10.3390/coatings12050600 - 28 Apr 2022
Cited by 2 | Viewed by 1997
Abstract
Shungite carbon (ShC) nanoparticles in the form of stable aqueous dispersions represent a promising solution for optical and biomedical applications. The dispersion is an interesting phenomenon from the point of view of stabilization of ShC nanoparticles and their structural constituents up to the [...] Read more.
Shungite carbon (ShC) nanoparticles in the form of stable aqueous dispersions represent a promising solution for optical and biomedical applications. The dispersion is an interesting phenomenon from the point of view of stabilization of ShC nanoparticles and their structural constituents up to the basic structural unit, namely a graphene fragment. Herein, we used these aqueous dispersions with easily released structural components to study laser irradiation with various durations and obtain hybrids of ShC with Ag and Au nanoparticles. The main role in the stabilization of ShC nanoparticles belongs to the graphene fragments and their stacks, which display a considerable dipole moment. Newly prepared aqueous dispersions of ShC–metal hybrid nanoparticles retained the stability inherent in the original nanoparticles both of ShC and metals. Changes in the size distribution pattern of nanoparticles in dispersions upon ablation were studied by dynamic light scattering (DLS). Raman with UV-Vis spectroscopy methods were applied to trace structural changes in ShC upon the formation of hybrid nanoparticles. Films obtained by condensation of the dispersions on glass substrates display periodic structures, as was revealed by SEM microscopy. There, the conditions under which nanoparticles lose their ability to disperse in water and retain a graphene-like structure in a film were revealed. Full article
(This article belongs to the Special Issue Perspective Coatings for Optical Materials Modifications)
Show Figures

Graphical abstract

Back to TopTop