Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = myotonic dystrophy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1673 KB  
Review
Cardiac Involvement in Myotonic Dystrophy Type 1: Mechanisms, Clinical Perspectives, and Emerging Therapeutic Strategies
by Vamsi Krishna Murthy Ginjupalli, Jean-Baptiste Reisqs, Michael Cupelli, Mohamed Chahine and Mohamed Boutjdir
Int. J. Mol. Sci. 2025, 26(22), 10992; https://doi.org/10.3390/ijms262210992 - 13 Nov 2025
Abstract
Myotonic Dystrophy Type 1 (DM1) is a complex multisystemic genetic disorder caused by CTG repeat expansions in the DMPK gene, leading to RNA toxicity and widespread splicing defects. These splicing abnormalities affect multiple systems, including the respiratory, skeletal, cardiac, nervous, and endocrine systems, [...] Read more.
Myotonic Dystrophy Type 1 (DM1) is a complex multisystemic genetic disorder caused by CTG repeat expansions in the DMPK gene, leading to RNA toxicity and widespread splicing defects. These splicing abnormalities affect multiple systems, including the respiratory, skeletal, cardiac, nervous, and endocrine systems, resulting in aggressive symptoms that significantly impact quality of life and survival. Cardiac complications are the second leading cause of deaths in DM1, after respiratory insufficiency. Current research is largely focused on understanding cardiac pathology in DM1. This review highlights recent advancements in the clinical and pathological characterization of DM1 cardiac involvement, preclinical models used to study cardiac dysfunction, and emerging therapeutic strategies that target the molecular basis of DM1. Promising approaches include RNA-targeting strategies such as antisense oligonucleotides (ASOs), gene-editing tools like CRISPR-Cas9, and small molecules that modulate RNA splicing. ASOs aim to reduce toxic RNA accumulation, CRISPR-based approaches aim to excise or correct the expanded CTG repeats, and repurposed small-molecule drugs, such as vorinostat, tideglusib, and metformin, could serve as potential therapeutic agents for DM1 patients with cardiac complications. Despite this progress, several challenges remain: the heterogeneity of cardiac manifestations, unpredictable and often silent progression of arrhythmias, limited therapeutic options beyond implantable cardioverter-defibrillator (ICD)/pacemaker implantations, and complex interplay with the multisystemic nature of DM1. More research and well-designed clinical trials are urgently needed to translate these promising strategies into effective treatments for DM1-associated cardiac disease. Here, we discuss the current knowledge in DM1 cardiac pathology and preclinical models as well as the benefits and pitfalls of the available therapeutic approaches. Full article
(This article belongs to the Special Issue Antisense Oligonucleotides: Versatile Tools with Broad Applications)
Show Figures

Figure 1

22 pages, 7856 KB  
Article
Multiple Defects in Muscle Regeneration in the HSALR Mouse Model of RNA Toxicity
by Ramesh S. Yadava, Mira A. Zineddin and Mani S. Mahadevan
Int. J. Mol. Sci. 2025, 26(22), 10985; https://doi.org/10.3390/ijms262210985 - 13 Nov 2025
Abstract
Myotonic dystrophy type 1 (DM1) results from the toxicity of RNA produced from the mutant allele of the DMPK gene. The mechanism by which the toxic RNA causes muscular dystrophy in DM1 is unknown. Dystrophy in DM1 is associated with defective muscle regeneration [...] Read more.
Myotonic dystrophy type 1 (DM1) results from the toxicity of RNA produced from the mutant allele of the DMPK gene. The mechanism by which the toxic RNA causes muscular dystrophy in DM1 is unknown. Dystrophy in DM1 is associated with defective muscle regeneration and repair. Here, we used the BaCl2-induced damage model of muscle injury to study muscle regeneration in the HSALR mouse model of DM1. We have previously shown delayed muscle regeneration and deleterious effects on satellite cell numbers in another mouse model of RNA toxicity using similar experimental approaches. We found that HSALR mice show no apparent deleterious effects on satellite cell number or early markers of muscle regeneration. Further analysis at later time points after damage showed increased numbers of internal nuclei as compared to control mice undergoing the same protocol. Muscle fiber type analysis using immunostaining for type IIA and IIB fibers identified a switch to slower fibers (increased fraction of IIA and reduced fraction of IIB fibers) after regeneration in HSALR mice as compared to regenerated muscle from wildtype mice. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

18 pages, 11741 KB  
Article
HSALR Mice Exhibit Co-Expression of Proteostasis Genes Prior to Development of Muscle Weakness
by Dusan M. Lazic, Vladimir M. Jovanovic, Jelena Karanovic, Dusanka Savic-Pavicevic and Bogdan Jovanovic
Int. J. Mol. Sci. 2025, 26(21), 10793; https://doi.org/10.3390/ijms262110793 - 6 Nov 2025
Viewed by 325
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by a CTG repeat expansion in the DMPK gene. The toxic mutant mRNA sequesters MBNL proteins, disrupting global RNA metabolism. Although alternative splicing in DM1 skeletal muscle pathology has been extensively studied, [...] Read more.
Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by a CTG repeat expansion in the DMPK gene. The toxic mutant mRNA sequesters MBNL proteins, disrupting global RNA metabolism. Although alternative splicing in DM1 skeletal muscle pathology has been extensively studied, early-stage transcriptomic changes remained uncharacterized. To gain deeper and contextual insight into DM1 transcriptome, we performed the first Weighted Gene Co-expression Network Analysis (WGCNA) on skeletal muscle RNA sequencing data from the widely used DM1 mouse model HSALR (~250 CTG repeats). We identified 532 core genes using data from 16-week-old mice, an age before the onset of muscle weakness. Additional differential expression analysis across multiple HSALR datasets revealed 42 common up-regulated coding and non-coding genes. Within identified core genes, the pathway gene-pair signature analysis enabled contextual selection of functionally related genes involved in maintaining proteostasis, including endoplasmic reticulum (ER) protein processing, the ubiquitin-proteasome system (UPS), macroautophagy and mitophagy, and muscle contraction. The enrichment of ER protein processing with prevailing core genes related to ER-associated degradation suggests adaptive chaperone and UPS activation, while core genes such as Ambra1, Mfn2, and Usp30 indicate adaptations in mitochondrial quality control. Coordinated early alterations in processes maintaining protein homeostasis, critical for muscle mass and function, possibly reflect a response to cellular stress due to repeat expansion and appears before muscle weakness development. Although the study relies exclusively on transcriptomic analyses, it offers a comprehensive, hypothesis-generating perspective that pinpoints candidate pathways, preceding muscle weakness, for future mechanistic validation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 3932 KB  
Article
Elevated Levels of Active GSK3β in the Blood of Patients with Myotonic Dystrophy Type 1 Correlate with Muscle Weakness
by Katherine Jennings, Cuixia Tian, Rebeccah L. Brown, Paul S. Horn, Benedikt Schoser, Hani Kushlaf, Nikolai A. Timchenko and Lubov Timchenko
Int. J. Mol. Sci. 2025, 26(21), 10760; https://doi.org/10.3390/ijms262110760 - 5 Nov 2025
Viewed by 219
Abstract
Myotonic Dystrophy type 1 (DM1) is a complex disease affecting multiple tissues, including skeletal and cardiac muscles, the brain and the eyes. DM1 results from an expansion of CTG repeats in the 3′ UTR of the DMPK gene. Previously, we described that the [...] Read more.
Myotonic Dystrophy type 1 (DM1) is a complex disease affecting multiple tissues, including skeletal and cardiac muscles, the brain and the eyes. DM1 results from an expansion of CTG repeats in the 3′ UTR of the DMPK gene. Previously, we described that the small-molecule inhibitor of GSK3β, tideglusib (TG), reduces DM1 pathology in DM1 cell and mouse models by correcting the GSK3β-CUGBP1 pathway, decreasing the mutant CUG-containing RNA. Respectively, clinical trials using TG showed promising results for patients with congenital DM1 (CDM1). The drug development in DM1 human studies needs specific and noninvasive biomarkers. We examined the blood levels of active GSK3β in different clinical forms of DM1 and found an increase in active GSK3β in the peripheral blood mononuclear cells (PBMCs) in patients with CDM1, juvenile DM1 and adult-onset DM1 vs. unaffected patients. The blood levels of active GSK3β correlate with the length of CTG repeats and severity of muscle weakness. Thrombospondin and TGFβ, linked to the TG-GSK3β pathway in DM1, are also elevated in the DM1 patients’ blood. These findings show that the blood levels of active GSK3β might be developed as a potential noninvasive biomarker of muscle weakness in DM1. Full article
Show Figures

Graphical abstract

11 pages, 588 KB  
Article
Adherence to Non-Invasive Ventilation in Steinert Disease: Clinical and Psychological Insights
by Anna Annunziata, Francesca Simioli, Giorgio Emanuele Polistina, Anna Michela Gaeta, Maria Cardone, Camilla Di Somma, Raffaella Manzo, Antonella Marotta, Cecilia Calabrese and Giuseppe Fiorentino
Brain Sci. 2025, 15(9), 968; https://doi.org/10.3390/brainsci15090968 - 6 Sep 2025
Viewed by 665
Abstract
Introduction: Myotonic dystrophies (DM) are progressive genetic disorders with multisystemic involvement, particularly affecting the muscular, respiratory, and neuropsychological systems. Myotonic dystrophy type 1 (DM1), or Steinert’s disease, may lead to severe respiratory complications, including sleep-disordered breathing and hypercapnia, often requiring noninvasive ventilation to [...] Read more.
Introduction: Myotonic dystrophies (DM) are progressive genetic disorders with multisystemic involvement, particularly affecting the muscular, respiratory, and neuropsychological systems. Myotonic dystrophy type 1 (DM1), or Steinert’s disease, may lead to severe respiratory complications, including sleep-disordered breathing and hypercapnia, often requiring noninvasive ventilation to manage respiratory failure. However, adherence to NIV remains a major challenge, often influenced by cognitive and psychological factors such as apathy and depression. This study aims to investigate the presence of depression and SDB in patients with DM1 initiating NIV, and to evaluate factors influencing adherence to ventilatory support. Materials and Methods: We selected 13 adult patients (≥18 years) with diagnosis of Steinert’s disease with respiratory impairment who needed to start respiratory support. Dysphagia was assessed in all patients at baseline by a videofluoroscopic swallow study. Beck’s Depression Inventory II was administered for measuring the severity of depression. The Montreal Cognitive Assessment was used as a screening tool to detect signs of neurocognitive disorders. We evaluated adherence to NIV. Results: The study population presented with sleep-disordered breathing, as indicated by a median apnea–hypopnea index (AHI) of 24 events per hour (IQR: 14.2–34.5) and an oxygen desaturation index (ODI) of 25 events per hour (IQR: 18–33). Adherence to NIV was obtained in seven patients. No difference in baseline lung function was observed. Adherent subjects had moderate hypercapnia at baseline; pCO2 was 52 vs. 49 mmHg. Non-adherent patients showed a higher prevalence of depression with a median BDI-II score of 18 vs. 6 in adherent patients. The findings highlight that psychological factors, especially depression, play a crucial role in adherence to NIV. Interestingly, depression was not linked to initial respiratory measurements but showed a significant association with nocturnal oxygen desaturation. This suggests that relying solely on clinical and respiratory assessments may not be adequate to predict or improve treatment adherence. Conclusions: Incorporating psychological evaluations and addressing mental health issues, such as depression, are essential steps to enhance NIV compliance and overall DM1 patient outcomes. A multidisciplinary approach combining respiratory and psycho-emotional interventions is crucial for effective disease management. Full article
(This article belongs to the Special Issue Diagnosis, Treatment, and Prognosis of Neuromuscular Disorders)
Show Figures

Figure 1

19 pages, 2030 KB  
Article
Population Pharmacokinetics of Tideglusib in Congenital and Childhood Myotonic Dystrophy Type 1: Influence of Demographic and Clinical Factors on Systemic Exposure
by Alessandro Di Deo, Sean Oosterholt, Joseph Horrigan, Stuart Evans, Alison McMorn and Oscar Della Pasqua
Pharmaceutics 2025, 17(8), 1065; https://doi.org/10.3390/pharmaceutics17081065 - 16 Aug 2025
Viewed by 837
Abstract
Background: GSK3β is an intracellular regulatory kinase that is dysregulated in multiple tissues in Type 1 myotonic dystrophy (DM-1). Tideglusib inhibits GSK3β activity in preclinical models of DM-1 and promotes cellular maturation, normalising aberrant molecular and behavioural phenotypes. It is currently in [...] Read more.
Background: GSK3β is an intracellular regulatory kinase that is dysregulated in multiple tissues in Type 1 myotonic dystrophy (DM-1). Tideglusib inhibits GSK3β activity in preclinical models of DM-1 and promotes cellular maturation, normalising aberrant molecular and behavioural phenotypes. It is currently in clinical development for the treatment of paediatric and adult patients affected by congenital and juvenile-onset DM-1. Here, we summarise the development of a population pharmacokinetic model and subsequent characterisation of influential demographic and clinical factors on the systemic exposure to tideglusib. The availability of a population PK model will allow further evaluation of age-and weight-related changes in drug disposition, supporting the dose rationale and implementation of a paediatric extrapolation plan. Methods: Given the sparse pharmacokinetic sampling scheme in patients receiving tideglusib, model development was implemented in two steps. First, data from Phase I studies in healthy elderly subjects (i.e., 1832 plasma samples, n = 54) were used to describe the population pharmacokinetics of tideglusib in adults. Then, pharmacokinetic model parameter estimates obtained from healthy subjects were used as priors for the evaluation of the disposition of tideglusib in adolescent and adult DM-1 patients (51 plasma samples, n = 16), taking into account demographic and clinical baseline characteristics, as well as food intake. Secondary pharmacokinetic parameters (AUC, Cmax and Tmax) were derived and summarised by descriptive statistics. Results: Tideglusib pharmacokinetics was described by a two-compartment model with first-order elimination and dose-dependent bioavailability. There were no significant differences in disposition parameters between healthy subjects and DM-1 patients. Body weight was a significant covariate on clearance and volume of distribution. Median AUC(0–12) and Cmax were 1218.1 vs. 3145.7 ng/mL∙h and 513.5 vs. 1170.9 ng/mL, following once daily doses of 400 and 1000 mg tideglusib, respectively. In addition, the time of food intake post-dose or the type of meal appeared to affect the overall exposure to tideglusib. No accumulation, metabolic inhibition, or induction was observed during the treatment period. Conclusions: Even though clearance was constant over the dose range between 400 and 1000 mg, a less than proportional increase in systemic exposure appears to be caused by the dose-dependent bioavailability, which reflects the solubility properties of tideglusib. Despite large interindividual variability in the tideglusib concentration vs. time profiles, body weight was the only explanatory covariate for the observed differences. This finding suggests that the use of weight-banded or weight-normalised doses should be considered to ensure comparable exposure across the paediatric population, regardless of age or body weight. Full article
(This article belongs to the Special Issue Population Pharmacokinetics and Its Clinical Applications)
Show Figures

Graphical abstract

17 pages, 1907 KB  
Systematic Review
Pilomatricoma in Syndromic Contexts: A Literature Review and a Report of a Case in Apert Syndrome
by Gianmarco Saponaro, Elisa De Paolis, Mattia Todaro, Francesca Azzuni, Giulio Gasparini, Antonio Bosso, Giuliano Ascani, Angelo Minucci and Alessandro Moro
Dermatopathology 2025, 12(3), 24; https://doi.org/10.3390/dermatopathology12030024 - 1 Aug 2025
Viewed by 1273
Abstract
Pilomatricomas are benign tumors originating from hair follicle matrix cells and represent the most common skin tumors in pediatric patients. Pilomatricomas may be associated with genetic syndromes such as myotonic dystrophy, familial adenomatous polyposis (FAP), Turner syndrome, Rubinstein–Taybi syndrome, Kabuki syndrome, and Sotos [...] Read more.
Pilomatricomas are benign tumors originating from hair follicle matrix cells and represent the most common skin tumors in pediatric patients. Pilomatricomas may be associated with genetic syndromes such as myotonic dystrophy, familial adenomatous polyposis (FAP), Turner syndrome, Rubinstein–Taybi syndrome, Kabuki syndrome, and Sotos syndrome. This study reviews the literature on pilomatricomas occurring in syndromic contexts and presents a novel case linked to Apert syndrome. A systematic review was conducted using PubMed and Cochrane databases, focusing on case reports, case series, and reviews describing pilomatricomas associated with syndromes. A total of 1272 articles were initially screened; after removing duplicates and excluding articles without syndromic diagnoses or lacking sufficient data, 81 full-text articles were reviewed. Overall, 96 cases of pilomatricomas associated with genetic syndromes were identified. Reports of patients with Apert syndrome who do not develop pilomatricomas are absent in the literature. Pilomatricomas predominantly affect pediatric patients, with a slight female predominance, and are often the first manifestation of underlying genetic syndromes. Our study highlights previously unreported associations of pilomatricoma with Apert syndrome, providing molecular insights. This study contributes to understanding the clinical and molecular features of pilomatricomas in syndromic contexts and underscores the importance of genetic analysis for accurate diagnosis and management. Full article
Show Figures

Figure 1

14 pages, 2132 KB  
Article
Measuring Myotonia: Normative Values and Comparison with Myotonic Dystrophy Type 1
by Andrea Sipos, Milán Árvai, Dávid Varga, Brigitta Ruszin-Perecz, József Janszky, Nándor Hajdú and Endre Pál
Neurol. Int. 2025, 17(8), 118; https://doi.org/10.3390/neurolint17080118 - 31 Jul 2025
Viewed by 618
Abstract
Introduction: Myotonia is a rare neuromuscular condition characterized by impaired muscle relaxation. In this study, we provide normative values for clinical tests related to myotonia in the Hungarian population and compare them to patients with myotonic dystrophy type 1 (DM1). Methods: Relaxation tests [...] Read more.
Introduction: Myotonia is a rare neuromuscular condition characterized by impaired muscle relaxation. In this study, we provide normative values for clinical tests related to myotonia in the Hungarian population and compare them to patients with myotonic dystrophy type 1 (DM1). Methods: Relaxation tests (10 eye openings, tongue extension, and palm openings), handgrip strength, and the nine-hole peg test were conducted on 139 healthy individuals and 31 patients with DM1. Results: We observed non-significant declines in handgrip strength and relaxation tests with age (p < 0.05). Significant differences were found between controls (n:139) and patients with DM1 (n = 31) in all tests (p < 0.05). Sex differences were noted in the healthy population: men (n:68/139) had stronger handgrip (mean of men 42.45 ± 1.15 vs. women 24.3 ± 0.9) and slower relaxation tests (mean of eye openings in men 3.6 ± 0.2 vs. in women 4.2 ± 0.2, tongue extensions in men 3.7 ± 0.2 vs. in women 4.2 ± 0.2, palm openings in men 4 ± 0.2 vs. in women 4.9 ± 0.2 However, these differences were not present among patients with DM1. Discussion: Normal values for relaxation tests across different age groups were established. These results might be useful for further clinical investigations. Our study supports the usage of averages of healthy population instead of age groups of relaxation tests and their clinical relevance in the evaluation of patients with myotonia. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Figure 1

37 pages, 1970 KB  
Review
Multisystem Symptoms in Myotonic Dystrophy Type 1: A Management and Therapeutic Perspective
by Dhvani H. Kuntawala, Rui Vitorino, Ana C. Cruz, Filipa Martins and Sandra Rebelo
Int. J. Mol. Sci. 2025, 26(11), 5350; https://doi.org/10.3390/ijms26115350 - 2 Jun 2025
Cited by 1 | Viewed by 5975
Abstract
Myotonic dystrophy type 1 (DM1) is a complex, multisystemic neuromuscular disorder with several pathological phenotypes, disease severities and ages of onset. DM1 presents significant challenges in clinical management due to its multisystemic nature, affecting multiple organs and systems beyond skeletal muscle. Tackling this [...] Read more.
Myotonic dystrophy type 1 (DM1) is a complex, multisystemic neuromuscular disorder with several pathological phenotypes, disease severities and ages of onset. DM1 presents significant challenges in clinical management due to its multisystemic nature, affecting multiple organs and systems beyond skeletal muscle. Tackling this condition requires a comprehensive approach that goes beyond symptom management, particularly considering the complexity of its manifestations and in the delayed diagnosis. In this review we will discuss the multisystem symptoms of DM1 and how this understanding is guiding the development of potential therapies for the improvement of patient outcomes and quality of life. This review aims to explore the available treatments and potential novel disease-modifying therapies targeting DM1 molecular mechanisms to address the broad multisystem symptoms of DM1. Effective strategies to manage symptoms remain crucial, such as physical therapy, medications for myotonia and diligent cardiac care. Metabolic management and hormonal therapies play crucial roles in addressing endocrine and metabolic abnormalities. Nevertheless, promising targeted therapies that include antisense oligonucleotides (ASOs) for RNA degradation, small molecules to disrupt protein-RNA interactions and gene editing offer a prospective approach to the underlying mechanisms of DM1 and improve patient outcomes across the different organ systems. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 5253 KB  
Article
Comparative Analysis of MBNL1 Antibodies: Characterization of Recognition Sites and Detection of RNA Foci Colocalization
by Yoshitaka Aoki, Ai Ohki, Motoaki Yanaizu and Yoshihiro Kino
Genes 2025, 16(6), 658; https://doi.org/10.3390/genes16060658 - 29 May 2025
Viewed by 1172
Abstract
Background/Objectives: MBNL1 is an RNA-binding protein involved in RNA metabolism, including splicing. It colocalizes with RNA foci, a pathological hallmark of myotonic dystrophy, and plays a central role in its disease mechanism. Moreover, MBNL1 has been implicated in other neuromuscular disorders and cancers. [...] Read more.
Background/Objectives: MBNL1 is an RNA-binding protein involved in RNA metabolism, including splicing. It colocalizes with RNA foci, a pathological hallmark of myotonic dystrophy, and plays a central role in its disease mechanism. Moreover, MBNL1 has been implicated in other neuromuscular disorders and cancers. In these pathological and biochemical studies, the detection of MBNL1 using antibodies is essential. Given that MBNL1 has multiple splicing-derived isoforms, different antibodies may recognize distinct isoforms. This study aims to compare six commercially available antibodies regarding their specificity in Western blotting, colocalization with RNA foci, and suitability for immunoprecipitation. Methods: Western blot analysis was performed using MBNL1 isoforms and deletion mutants expressed in HEK293 cells, as well as endogenous MBNL1 from various cell lines. RNA fluorescence in situ hybridization (FISH) and immunofluorescence (IF) were conducted in DM1 model cells and patient-derived fibroblasts to assess MBNL1 colocalization with RNA foci. Immunoprecipitation experiments were performed in HEK293 cells to evaluate antibody suitability for protein isolation. Results: Western blot analysis revealed that different antibodies target distinct regions of MBNL1, with three recognizing exon 3 and the remaining antibodies recognizing exon 4, exon 5, and exon 6, respectively. In the FISH-IF experiments, the clarity of RNA foci colocalization varied depending on the antibody used, with some antibodies failing to detect colocalization. The immunoprecipitation analysis showed that four antibodies were able to isolate endogenous MBNL1. Conclusions: This study clarifies the recognition properties and application suitability of MBNL1 antibodies, providing a valuable resource for research on MBNL1-related diseases and RNA metabolism. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

15 pages, 886 KB  
Article
Evaluation of Sleep-Disordered Breathing and Respiratory Dysfunction in Children with Myotonic Dystrophy Type 1—A Retrospective Cross-Sectional Study
by Mihail Basa, Jovan Pesovic, Dusanka Savic-Pavicevic, Stojan Peric, Giovanni Meola, Alessandro Amaddeo, Gordana Kovacevic, Slavica Ostojic and Aleksandar Sovtic
Biomedicines 2025, 13(4), 966; https://doi.org/10.3390/biomedicines13040966 - 15 Apr 2025
Cited by 1 | Viewed by 1364
Abstract
Background/Objectives: Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disorder characterized by respiratory dysfunction that significantly impacts quality of life and longevity. This study aimed to explore the outcomes of pulmonary function tests and sleep-disordered breathing (SDB) workups in children with [...] Read more.
Background/Objectives: Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disorder characterized by respiratory dysfunction that significantly impacts quality of life and longevity. This study aimed to explore the outcomes of pulmonary function tests and sleep-disordered breathing (SDB) workups in children with DM1 and to identify the factors contributing to SDB. Methods: A retrospective study examined patients’ medical records, including genetic analyses, clinical characteristics, and noninvasive pulmonary function testing (PFT), when possible. The Pediatric Sleep Questionnaire (PSQ), arterial blood gases, polygraphy, and overnight transcutaneous capnometry (PtcCO2) were used to assess SDB. Results: The size of CTG expansion in the DMPK gene directly correlated with the severity of respiratory complications and the need for early tracheostomy tube insertion in 7/20 (35%) patients. A total of 13/20 (65%) children were available for respiratory evaluation during spontaneous breathing. While moderate/severe obstructive sleep apnea syndrome (OSAS) and hypoventilation were confirmed in 4/13 (31%) children, none of the patients had mixed or dominantly central sleep apnea syndrome. There was no correlation between apnea–hypopnea index (AHI) or PtcCO2 and the presence of SDB-related symptoms or the PSQ score. Although a significant correlation between AHI and PtcCO2 was not confirmed (p = 0.447), the oxygen desaturation index directly correlated with PtcCO2 (p = 0.014). Conclusions: While SDB symptoms in children with DM1 may not fully correlate with observed respiratory events or impaired gas exchange during sleep, a comprehensive screening for SDB should be considered for all patients with DM1. Further research into disease-specific recommendations encompassing the standardization of PFT, as well as overnight polygraphic and capnometry recordings, could help to guide timely, personalized treatment. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Treatment of Muscular Dystrophy)
Show Figures

Figure 1

27 pages, 22222 KB  
Review
Cardiomyopathies and Arrythmias in Neuromuscular Diseases
by Giuseppe Sgarito, Calogero Volpe, Stefano Bardari, Raimondo Calvanese, Paolo China, Giosuè Mascioli, Martina Nesti, Carlo Pignalberi, Manlio Cipriani and Massimo Zecchin
Cardiogenetics 2025, 15(1), 7; https://doi.org/10.3390/cardiogenetics15010007 - 3 Mar 2025
Viewed by 2858
Abstract
Neuromuscular diseases (NMDs) encompass various hereditary conditions affecting motor neurons, the neuromuscular junction, and skeletal muscles. These disorders are characterized by progressive muscle weakness and can manifest at different stages of life, from birth to adulthood. NMDs, such as Duchenne and Becker muscular [...] Read more.
Neuromuscular diseases (NMDs) encompass various hereditary conditions affecting motor neurons, the neuromuscular junction, and skeletal muscles. These disorders are characterized by progressive muscle weakness and can manifest at different stages of life, from birth to adulthood. NMDs, such as Duchenne and Becker muscular dystrophies, myotonic dystrophy, and limb–girdle muscular dystrophies, often involve cardiac complications, including cardiomyopathies and arrhythmias. Underlying genetic mutations contribute to skeletal and cardiac muscle dysfunction, particularly in the DMD, EMD, and LMNA genes. The progressive nature of muscle deterioration significantly reduces life expectancy, mainly due to respiratory and cardiac failure. The early detection of cardiac involvement through electrocardiography (ECG) and cardiac imaging is crucial for timely intervention. Pharmacological treatment focuses on managing cardiomyopathies and arrhythmias, with an emerging interest in gene therapies aimed at correcting underlying genetic defects. Heart transplantation, though historically controversial in patients with muscular dystrophies, is increasingly recognized as a viable option for individuals with advanced heart failure and moderate muscle impairment, leading to improved survival rates. Careful patient selection and management are critical to optimizing outcomes in these complex cases. Full article
(This article belongs to the Section Rare Disease-Neuromuscular Diseases)
Show Figures

Figure 1

14 pages, 1765 KB  
Article
Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies
by Vanessa Todorow, Stefan Hintze, Benedikt Schoser and Peter Meinke
Biomedicines 2025, 13(3), 606; https://doi.org/10.3390/biomedicines13030606 - 1 Mar 2025
Viewed by 1603
Abstract
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare [...] Read more.
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare the expressional misregulation of splicing factors and the resulting splicing profiles between three different hereditary myopathies. Methods: We used publicly available RNA-sequencing datasets for the three muscular dystrophies—DM1, facioscapulohumeral muscular dystrophy (FSHD) and Emery–Dreifuss muscular dystrophy (EDMD)—to compare the splicing factor expression and missplicing genome-wide using DESeq2 and MAJIQ. Results: Upregulation of alternative splicing factors and downregulation of constitutive splicing factors were detected for all three myopathies, but to different degrees. Correspondingly, the missplicing events were mostly alternative exon usage and skipping events. In DM1, most events were alternative exon usage and intron retention, while exon skipping was prevalent in FSHD, with EDMD being in between the two other myopathies in terms of splice factor regulation as well as missplicing. Accordingly, the missplicing events were only partially shared between these three myopathies, sometimes with the same locus being spliced differently. Conclusions: This indicates a combination of primary (toxic RNA) and more downstream effects (splicing factor expression) resulting in the DM1 missplicing phenotype. Furthermore, this analysis allows the distinction between disease-specific missplicing and general myopathic splicing alteration to be used as biomarkers. Full article
Show Figures

Figure 1

18 pages, 3838 KB  
Article
Natural Antioxidants Reduce Oxidative Stress and the Toxic Effects of RNA-CUG(exp) in an Inducible Glial Myotonic Dystrophy Type 1 Cell Model
by Fernando Morales, Dayana Vargas, Melissa Palma-Jiménez, Esteban J. Rodríguez, Gabriela Azofeifa and Oscar Hernández-Hernández
Antioxidants 2025, 14(3), 260; https://doi.org/10.3390/antiox14030260 - 25 Feb 2025
Viewed by 1137
Abstract
The toxic gain-of-function of RNA-CUG(exp) in DM1 has been largely studied in skeletal muscle, with little focus on its effects on the central nervous system (CNS). This study aimed to study if oxidative stress is present in DM1, its relationship with the [...] Read more.
The toxic gain-of-function of RNA-CUG(exp) in DM1 has been largely studied in skeletal muscle, with little focus on its effects on the central nervous system (CNS). This study aimed to study if oxidative stress is present in DM1, its relationship with the toxic RNA gain-of-function and if natural antioxidants can revert some of the RNA-CUG(exp) toxic effects. Using an inducible glial DM1 model (MIO-M1 cells), we compared OS in expanded vs. unexpanded cells and investigated whether antioxidants can mitigate OS and RNA-CUG(exp) toxicity. OS was measured via superoxide anion and lipid peroxidation assays. RNA foci were identified using FISH, and the mis-splicing of selected exons was analyzed using semi-quantitative RT-PCR. Cells were treated with natural antioxidants, and the effects on OS, foci formation, and mis-splicing were compared between treated and untreated cells. The results showed significantly higher superoxide anion and lipid peroxidation levels in untreated DM1 cells, which decreased after antioxidant treatment (ANOVA, p < 0.001). Foci were present in 51% of the untreated cells but were reduced in a dose-dependent manner following treatment (ANOVA, p < 0.001). Antioxidants also improved the splicing of selected exons (ANOVA, p < 0.001), suggesting OS plays a role in DM1, and antioxidants may offer therapeutic potential. Full article
Show Figures

Graphical abstract

19 pages, 1738 KB  
Review
Mosaicism in Short Tandem Repeat Disorders: A Clinical Perspective
by Rose M. Doss, Susana Lopez-Ignacio, Anna Dischler, Laurel Hiatt, Harriet Dashnow, Martin W. Breuss and Caroline M. Dias
Genes 2025, 16(2), 216; https://doi.org/10.3390/genes16020216 - 13 Feb 2025
Cited by 4 | Viewed by 2527
Abstract
Fragile X, Huntington disease, and myotonic dystrophy type 1 are prototypical examples of human disorders caused by short tandem repeat variation, repetitive nucleotide stretches that are highly mutable both in the germline and somatic tissue. As short tandem repeats are unstable, they can [...] Read more.
Fragile X, Huntington disease, and myotonic dystrophy type 1 are prototypical examples of human disorders caused by short tandem repeat variation, repetitive nucleotide stretches that are highly mutable both in the germline and somatic tissue. As short tandem repeats are unstable, they can expand, contract, and acquire and lose epigenetic marks in somatic tissue. This means within an individual, the genotype and epigenetic state at these loci can vary considerably from cell to cell. This somatic mosaicism may play a key role in clinical pathogenesis, and yet, our understanding of mosaicism in driving clinical phenotypes in short tandem repeat disorders is only just emerging. This review focuses on these three relatively well-studied examples where, given the advent of new technologies and bioinformatic approaches, a critical role for mosaicism is coming into focus both with respect to cellular physiology and clinical phenotypes. Full article
(This article belongs to the Special Issue Genomic Mosaicism in Human Development and Diseases)
Show Figures

Figure 1

Back to TopTop