Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = muscle fatigue recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 (registering DOI) - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

16 pages, 2067 KiB  
Article
Ankle Joint Kinematics in Expected and Unexpected Trip Responses with Dual-Tasking and Physical Fatigue
by Sachini N. K. Kodithuwakku Arachchige, Harish Chander and Adam C. Knight
Biomechanics 2025, 5(3), 62; https://doi.org/10.3390/biomechanics5030062 - 6 Aug 2025
Abstract
Concurrent cognitive tasks, such as avoiding visual, auditory, chemical, and electrical hazards, and concurrent motor tasks, such as load carriage, are prevalent in ergonomic settings. Trips are extremely common in the workplace, leading to fatal and non-fatal fall-related injuries. Intrinsic factors, such as [...] Read more.
Concurrent cognitive tasks, such as avoiding visual, auditory, chemical, and electrical hazards, and concurrent motor tasks, such as load carriage, are prevalent in ergonomic settings. Trips are extremely common in the workplace, leading to fatal and non-fatal fall-related injuries. Intrinsic factors, such as attention, fatigue, and anticipation, as well as extrinsic factors, including tasks at hand, affect trip recovery responses. Objective: The purpose of this study was to investigate the ankle joint kinematics in unexpected and expected trip responses during single-tasking (ST), dual-tasking (DT), and triple-tasking (TT), before and after a physically fatiguing protocol among young, healthy adults. Methods: Twenty volunteers’ (10 females, one left leg dominant, age 20.35 ± 1.04 years, height 174.83 ± 9.03 cm, mass 73.88 ± 15.55 kg) ankle joint kinematics were assessed using 3D motion capture system during unperturbed gait (NG), unexpected trip (UT), and expected trip (ET), during single-tasking (ST), cognitive dual-tasking (CDT), motor dual-tasking (MDT), and triple-tasking (TT), under both PRE and POST fatigue conditions. Results: Greater dorsiflexion angles were observed during UT compared to NG, MDT compared to ST, and TT compared to ST. Significantly greater plantar flexion angles were observed during ET compared to NG and during POST compared to PRE. Conclusions: Greater dorsiflexion angles during dual- and triple-tasking suggest that divided attention affects trip recovery. Greater plantar flexion angles following fatigue are likely an anticipatory mechanism due to altered muscle activity and increased postural control demands. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

20 pages, 1386 KiB  
Systematic Review
Comparison of the Effects of Cold-Water Immersion Applied Alone and Combined Therapy on the Recovery of Muscle Fatigue After Exercise: A Systematic Review and Meta-Analysis
by Junjie Ma, Changfei Guo, Long Luo, Xiaoke Chen, Keying Zhang, Dongxue Liang and Dong Zhang
Life 2025, 15(8), 1205; https://doi.org/10.3390/life15081205 - 28 Jul 2025
Viewed by 556
Abstract
Cold-water immersion (CWI), as a common recovery method, has been widely used in the field of post-exercise fatigue recovery. However, there is still a lack of comprehensive and systematic scientific evaluation of the combined effects of cold-water immersion combined with other therapies (CWI [...] Read more.
Cold-water immersion (CWI), as a common recovery method, has been widely used in the field of post-exercise fatigue recovery. However, there is still a lack of comprehensive and systematic scientific evaluation of the combined effects of cold-water immersion combined with other therapies (CWI + Other). The aim of this study was to compare the effects of CWI and CWI + Other in post-exercise fatigue recovery and to explore the potential benefits of CWI + Other. We systematically searched PubMed, Embase, Web of Science, Cochrane Library and EBSCO databases to include 24 studies (475 subjects in total) and performed a meta-analysis using standardized mean difference (SMD) and 95% confidence intervals (CIs). The results showed that both CWI + Other (SMD = −0.68, 95% CI: −1.03 to −0.33) and CWI (SMD = −0.37, 95% CI: −0.65 to −0.10) were effective in reducing delayed-onset muscle soreness (DOMS). In subgroup analyses of athletes, both CWI + Other (SMD = −1.13, 95% CI: −1.76 to −0.49) and CWI (SMD = −0.47, 95% CI: −0.87 to −0.08) also demonstrated significant effects. In addition, CWI + Other significantly reduced post-exercise C-reactive protein (CRP) levels (SMD = −0.62, 95% CI: −1.12 to −0.13), and CWI with water temperatures higher than 10 °C also showed a CRP-lowering effect (MD = −0.18, 95% CI: −0.30 to −0.07), suggesting a potential benefit in anti-inflammation. There were no significant differences between the two interventions in the metrics of creatine kinase (CK; CWI: SMD = −0.01, 95% CI: −0.27 to 0.24; CWI + Other: SMD = 0.26, 95% CI: −0.51 to 1.03) or countermovement jump (CMJ; CWI: SMD = 0.22, 95% CI: −0.13 to 0.57; CWI + Other: SMD = 0.07, 95% CI: −0.70 to 0.85). Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

48 pages, 753 KiB  
Review
Shaping Training Load, Technical–Tactical Behaviour, and Well-Being in Football: A Systematic Review
by Pedro Afonso, Pedro Forte, Luís Branquinho, Ricardo Ferraz, Nuno Domingos Garrido and José Eduardo Teixeira
Sports 2025, 13(8), 244; https://doi.org/10.3390/sports13080244 - 25 Jul 2025
Viewed by 392
Abstract
Football performance results from the dynamic interaction between physical, tactical, technical, and psychological dimensions—each of which also influences player well-being, recovery, and readiness. However, integrated monitoring approaches remain scarce, particularly in youth and sub-elite contexts. This systematic review screened 341 records from PubMed, [...] Read more.
Football performance results from the dynamic interaction between physical, tactical, technical, and psychological dimensions—each of which also influences player well-being, recovery, and readiness. However, integrated monitoring approaches remain scarce, particularly in youth and sub-elite contexts. This systematic review screened 341 records from PubMed, Scopus, and Web of Science, with 46 studies meeting the inclusion criteria (n = 1763 players; age range: 13.2–28.7 years). Physical external load was reported in 44 studies using GPS-derived metrics such as total distance and high-speed running, while internal load was examined in 36 studies through session-RPE (rate of perceived exertion × duration), heart rate zones, training impulse (TRIMP), and Player Load (PL). A total of 22 studies included well-being indicators capturing fatigue, sleep quality, stress levels, and muscle soreness, through tools such as the Hooper Index (HI), the Total Quality Recovery (TQR) scale, and various Likert-type or composite wellness scores. Tactical behaviours (n = 15) were derived from positional tracking systems, while technical performance (n = 7) was assessed using metrics like pass accuracy and expected goals, typically obtained from Wyscout® or TRACAB® (a multi-camera optical tracking system). Only five studies employed multivariate models to examine interactions between performance domains or to predict well-being outcomes. Most remained observational, relying on descriptive analyses and examining each domain in isolation. These findings reveal a fragmented approach to player monitoring and a lack of conceptual integration between physical, psychological, tactical, and technical indicators. Future research should prioritise multidimensional, standardised monitoring frameworks that combine contextual, psychophysiological, and performance data to improve applied decision-making and support player health, particularly in sub-elite and youth populations. Full article
Show Figures

Figure 1

17 pages, 1656 KiB  
Article
Acute Effect of Normobaric Hypoxia on Performance in Repeated Wingate Tests with Longer Recovery Periods and Neuromuscular Fatigue in Triathletes: Sex Differences
by Víctor Toro-Román, Pol Simón-Sánchez, Víctor Illera-Domínguez, Carla Pérez-Chirinos, Sara González-Millán, Lluís Albesa-Albiol, Sara Ledesma, Vinyet Solé, Oriol Teruel and Bruno Fernández-Valdés
J. Funct. Morphol. Kinesiol. 2025, 10(3), 282; https://doi.org/10.3390/jfmk10030282 - 22 Jul 2025
Viewed by 338
Abstract
Background: Repeated high-intensity intervals under normoxic (NOR) and hypoxic (HYP) conditions is a training strategy used by athletes. Although different protocols have been used, the effect of longer recovery between repetitions is unclear. In addition, information on the effect of repeated high-intensity [...] Read more.
Background: Repeated high-intensity intervals under normoxic (NOR) and hypoxic (HYP) conditions is a training strategy used by athletes. Although different protocols have been used, the effect of longer recovery between repetitions is unclear. In addition, information on the effect of repeated high-intensity intervals on HYP in women is scarce. Aims: To analyse the differences between sexes and between conditions (NOR and HYP) in Repeated Wingate (RW) performance and neuromuscular fatigue in triathletes. Methods: A total of 12 triathletes (men: n = 7, 23.00 ± 4.04 years; women: n = 5, 20.40 ± 3.91) participated in this randomised, blinded, crossover study. In two separate sessions over seven days, participants performed 3 × 30” all out with 7′ of recovery in randomised NOR (fraction of inspired oxygen: ≈20%; ≈300 m altitude) and HYP (fraction of inspired oxygen: ≈15.5%; ≈2500 m altitude) conditions. Before and after RW, vertical jump tests were performed to assess neuromuscular fatigue. Oxygen saturation, power, perceived exertion, muscle soreness and heart rate parameters were assessed. Results: Significant differences were reported between sexes in the parameters of vertical jump, oxygen saturation, RW performance and heart rate (p < 0.05). However, between conditions (NOR and HYP), only differences in oxygen saturation were reported (p < 0.05). No significant differences were reported between conditions (NOR and HYP) in RW performance, neuromuscular fatigue, muscle soreness and perception of exertion. Conclusions: A 3 × 30” RW protocol with 7′ recovery in HYP could have no negative consequences on performance, neuromuscular fatigue and perception of exertion in triathletes compared to NOR, independently of sex. Full article
(This article belongs to the Special Issue Physical Training in Hypoxia: Physiological Changes and Performance)
Show Figures

Figure 1

17 pages, 2244 KiB  
Article
Associations Between Daily Heart Rate Variability and Self-Reported Wellness: A 14-Day Observational Study in Healthy Adults
by James Hannon, Adrian O’Hagan, Rory Lambe, Ben O’Grady and Cailbhe Doherty
Sensors 2025, 25(14), 4415; https://doi.org/10.3390/s25144415 - 15 Jul 2025
Viewed by 950
Abstract
Heart rate variability (HRV), particularly the root mean square of successive differences (RMSSD), is widely used as a non-invasive indicator of autonomic nervous system activity and physiological recovery. This study examined whether daily short-term HRV, measured under standardised morning conditions, was associated with [...] Read more.
Heart rate variability (HRV), particularly the root mean square of successive differences (RMSSD), is widely used as a non-invasive indicator of autonomic nervous system activity and physiological recovery. This study examined whether daily short-term HRV, measured under standardised morning conditions, was associated with self-reported wellness in a non-clinical adult population. Over a 14-day period, 41 participants completed daily five-minute HRV recordings using a Polar H10 chest sensor and the Kubios mobile app, followed by ratings of sleep quality, fatigue, stress, and physical recovery. Bayesian ordinal mixed-effects models revealed that higher RMSSD values were associated with better self-reported sleep (β = 0.510, 95% HDI: 0.239 to 0.779), lower fatigue (β = 0.281, 95% HDI: 0.020 to 0.562), and reduced stress (β = 0.353, 95% HDI: 0.059 to 0.606), even after adjusting for covariates. No association was found between RMSSD and perceived muscle soreness. These findings support the interpretability of RMSSD as a physiological marker of daily recovery and stress in real-world settings. While the effect sizes were modest and individual variability remained substantial, results suggest that consistent HRV monitoring may offer meaningful insight into subjective wellness—particularly when contextualised and tracked over time. Full article
Show Figures

Figure 1

15 pages, 903 KiB  
Article
Neuromuscular Fatigue Profile of Prepubertal and Adult Female Handball Players
by Anastasia Papavasileiou, Eleni Bassa, Anthi Xenofondos, Panagiotis Meletakos, Konstantinos Noutsos and Dimitrios A. Patikas
Sports 2025, 13(7), 230; https://doi.org/10.3390/sports13070230 - 11 Jul 2025
Viewed by 300
Abstract
The investigation of the neuromuscular components of fatigue in team sports, especially in developmental ages, is limited. This study aimed to examine the neuromuscular fatigue and recovery patterns in prepubertal and adult female handball players, focusing on the soleus (SOL) and tibialis anterior [...] Read more.
The investigation of the neuromuscular components of fatigue in team sports, especially in developmental ages, is limited. This study aimed to examine the neuromuscular fatigue and recovery patterns in prepubertal and adult female handball players, focusing on the soleus (SOL) and tibialis anterior (TA) muscles. Fifteen prepubertal (11.1 ± 0.9 years) and fourteen adult (22.0 ± 3.4 years) females performed a sustained isometric plantar flexion at 25% of maximal voluntary contraction (MVC) until exhaustion. The electromyographic (EMG) activity of the SOL and TA, torque, and central activation ratio (CAR) were recorded throughout the experiment. Endurance time was similar between groups (girls: 104 ± 93.5 s; women: 94.4 ± 30.2 s, p > 0.05), and both demonstrated progressive increases in muscle activation, without significant group differences for SOL and TA EMG (p > 0.05). Following fatigue, the torque and soleus (SOL) EMG activity decreased significantly compared to the pre-fatigue values in both groups (p < 0.001) and recovered (p > 0.05) in prepubertal and adult females within the first 3 and 6 min, respectively. The CAR remained unchanged over time, without significant differences observed between age groups (p > 0.05). These findings suggest that neuromuscular responses to fatigue are comparable between prepubertal and adult females, but recovery is significantly faster in prepubertal girls. Consequently, these findings underscore the need for age-specific recovery strategies in training programs, with tailored exercise-to-rest ratios to enhance performance and reduce fatigue during handball-specific activities. Full article
Show Figures

Figure 1

21 pages, 557 KiB  
Review
Antioxidant Defense and Redox Signaling in Elite Soccer Players: Insights into Muscle Function, Recovery, and Training Adaptations
by Qing Meng and Chun-Hsien Su
Antioxidants 2025, 14(7), 815; https://doi.org/10.3390/antiox14070815 - 2 Jul 2025
Viewed by 626
Abstract
Elite soccer places significant neuromuscular and metabolic stress on athletes, leading to elevated production of reactive oxygen and nitrogen species (RONS), particularly in skeletal muscle, where intense contractile activity and increased oxygen flux drive oxidative processes. These reactive species play a dual role [...] Read more.
Elite soccer places significant neuromuscular and metabolic stress on athletes, leading to elevated production of reactive oxygen and nitrogen species (RONS), particularly in skeletal muscle, where intense contractile activity and increased oxygen flux drive oxidative processes. These reactive species play a dual role in skeletal muscle, supporting adaptive signaling at controlled levels while causing oxidative damage when poorly regulated. This paper presents an integrated synthesis of current knowledge on redox biology in elite soccer players, focusing on the origins and regulation of RONS, the functions of enzymatic and non-enzymatic antioxidant systems, and how both RONS and antioxidant responses influence muscle performance, fatigue, recovery, and long-term physiological adaptation. Drawing on studies conducted between 2000 and 2025, the discussion underscores the seasonal fluctuations in oxidative stress, individual variability in redox responses, and the potential adverse effects of unsystematic antioxidant supplementation. The analysis also emphasizes the value of using biomarker-guided, periodized antioxidant interventions tailored to training demands. Future directions include longitudinal tracking and the use of AI-assisted monitoring to enable personalized strategies for maintaining redox balance and optimizing performance in elite sport. Full article
(This article belongs to the Special Issue Antioxidant Response in Skeletal Muscle)
Show Figures

Figure 1

15 pages, 966 KiB  
Article
Foam Rolling or Percussive Massage for Muscle Recovery: Insights into Delayed-Onset Muscle Soreness (DOMS)
by Sebastian Szajkowski, Jarosław Pasek and Grzegorz Cieślar
J. Funct. Morphol. Kinesiol. 2025, 10(3), 249; https://doi.org/10.3390/jfmk10030249 - 29 Jun 2025
Viewed by 1797
Abstract
Background: Pain manifestations as well as increased muscle tone and stiffness noted in the course of delayed-onset muscle soreness (DOMS) are reflected in altered values of the biomechanical and visco-elastic parameters of muscles. This study aimed to compare the effects of soft tissue [...] Read more.
Background: Pain manifestations as well as increased muscle tone and stiffness noted in the course of delayed-onset muscle soreness (DOMS) are reflected in altered values of the biomechanical and visco-elastic parameters of muscles. This study aimed to compare the effects of soft tissue mobilization with foam rolling and percussive massage on symptoms of DOMS induced by a standardized muscle fatigue protocol. Methods: Healthy volunteers (n = 60) were divided into three groups: FR group—foam rolling (n = 20), PM group—percussive massage (n = 20) and CON group—control/passive rest (n = 20). The fatigue protocol for the gastrocnemius muscle was carried out for development of DOMS in subsequent days. Therapeutic procedures were applied to participants for 3 consecutive days. The results of therapy were assessed by means of myotonometry, performed five times (before, three times during the treatment procedure, and after the end of the procedure). Results: Foam rolling significantly reduced the onset and duration of increased muscle tone (p = 0.006) and stiffness (p < 0.001), unlike percussive massage. The control group exhibited higher tone and stiffness after 48 h, at the peak of DOMS-related pain symptoms. Only foam rolling improved elasticity (decrement, p < 0.001), while visco-elastic properties (relaxation, creep) varied inversely with tone and stiffness. Foam rolling led to significantly lower stiffness (day 2) and reduced decrement and relaxation (day 4) compared to the control. Neither therapy was more effective than passive rest for pain relief during the observation period. Conclusions: Foam rolling and percussive massage accelerate recovery of muscle tone, stiffness, and elasticity after DOMS as compared to passive rest but offer no added benefit for pain relief. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
Show Figures

Figure 1

16 pages, 2917 KiB  
Article
Impact of Four-Match Congestion on the Well-Being of Under-16 Male Soccer Players
by Francisco Tomás González-Fernández, Luis Manuel Martínez-Aranda, Manuel Sanz-Matesanz, Yarisel Quiñones-Rodríguez and Alfonso Castillo-Rodríguez
Sports 2025, 13(7), 209; https://doi.org/10.3390/sports13070209 - 26 Jun 2025
Viewed by 348
Abstract
The assessment of player well-being through questionnaires is vital for managing training and match demands in soccer, aiming to mitigate injury and overtraining risks. This study investigates the impact of Four-Match Congestion on the well-being of under-16 male soccer players. An observational study [...] Read more.
The assessment of player well-being through questionnaires is vital for managing training and match demands in soccer, aiming to mitigate injury and overtraining risks. This study investigates the impact of Four-Match Congestion on the well-being of under-16 male soccer players. An observational study design was implemented, focusing on the well-being of eighteen male soccer players throughout a championship. Players were monitored daily for indicators such as muscle soreness, stress levels, mood, fatigue, sleep quality, and an overall well-being index. Data collection was conducted by research team staff without interfering with established training plans. Preliminary findings indicate significant fluctuations in well-being indicators throughout the championship, with lower well-being scores correlating with higher match intensity. Specifically, it was indicated that the athletes’ fatigue increased, while their stress levels gradually decreased (p < 0.05). Furthermore, muscle soreness, mood, and sleep quality metrics fluctuated throughout the study, with significant differences found between matches 1 and 3. These results highlight the importance of monitoring well-being to inform coaches about necessary adjustments in training loads during congested match schedules. Understanding the relationship between match demands and player well-being can lead to effective recovery strategies, enhancing performance and reducing injury risks. Future research should explore the long-term impacts of well-being monitoring and its integration into training regimens to optimize athlete management in competitive settings. Full article
Show Figures

Figure 1

16 pages, 5453 KiB  
Article
Quasipaa spinosa-Derived Parvalbumin Attenuates Exercise-Induced Fatigue via Calcium Homeostasis and Oxidative Stress Modulation in Exhaustively Trained Mice
by Kai Sang, Congfei Lu, Yangfan Zhang and Qi Chen
Nutrients 2025, 17(12), 2043; https://doi.org/10.3390/nu17122043 - 19 Jun 2025
Viewed by 502
Abstract
Background: Quasipaa spinosa crude extract (QSce), a natural source rich in proteins such as parvalbumin (PV), has been traditionally used to promote physical recovery. However, its mechanisms in mitigating exercise-induced fatigue remain unclear. Methods: Using a murine treadmill exhaustion model, we evaluated [...] Read more.
Background: Quasipaa spinosa crude extract (QSce), a natural source rich in proteins such as parvalbumin (PV), has been traditionally used to promote physical recovery. However, its mechanisms in mitigating exercise-induced fatigue remain unclear. Methods: Using a murine treadmill exhaustion model, we evaluated the effects of QS-derived Parvalbumin (QsPV) (30 and 150 mg/kg/day) on endurance capacity, oxidative stress, tissue injury, and muscle function. Indicators measured included time to exhaustion, intracellular calcium levels, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)], lipid peroxidation (malondialdehyde, MDA), injury markers [creatine kinase (CK), lactate dehydrogenase (LDH), cardiac troponin I (cTnI)], renal function (blood urea), and muscle force. Results: QsPV-150 significantly increased time to exhaustion by 34.6% compared to the exercise-only group (p < 0.01). It reduced MDA by 41.2% in skeletal muscle and increased SOD and GSH-Px levels by 35.4% and 28.1%, respectively. Serum CK, LDH, and cTnI were reduced by 39.5%, 31.7%, and 26.8%, respectively, indicating protection against muscle and cardiac injury. QsPV also decreased blood urea by 22.3% and improved renal histology, with reduced glomerular damage and tubular lesions. At the molecular level, QsPV restored calcium balance and downregulated calpain-1/2 and atrophy-related genes (MuRF-1, MAFbx-32). Muscle contractile force (GAS and SOL) improved by 12.2–20.3%. Conclusions: QsPV attenuates exercise-induced fatigue through multi-organ protection involving calcium buffering, oxidative stress reduction, and anti-atrophy effects. These findings support its potential as a natural recovery-enhancing supplement, pending further clinical and pharmacokinetic studies. Full article
Show Figures

Figure 1

16 pages, 908 KiB  
Article
Melatonin Supplementation Enhances Next-Day High-Intensity Exercise Performance and Recovery in Trained Males: A Placebo-Controlled Crossover Study
by Nourhène Mahdi, Slaheddine Delleli, Arwa Jebabli, Khouloud Ben Maaoui, Juan Del Coso, Hamdi Chtourou, Luca Paolo Ardigò and Ibrahim Ouergui
Sports 2025, 13(6), 190; https://doi.org/10.3390/sports13060190 - 19 Jun 2025
Viewed by 1562
Abstract
Background/Objectives: Sleep and recovery are critical for optimising exercise performance. However, the efficacy of melatonin supplementation in improving sleep quality and next-day physical performance remains unclear. This study examined the effects of melatonin ingestion on sleep and performance-related outcomes the following day in [...] Read more.
Background/Objectives: Sleep and recovery are critical for optimising exercise performance. However, the efficacy of melatonin supplementation in improving sleep quality and next-day physical performance remains unclear. This study examined the effects of melatonin ingestion on sleep and performance-related outcomes the following day in trained males. Methods: In a randomised, double-blind, placebo-controlled crossover study, 12 trained males (age: 21.92 ± 2.84 years) ingested 6 mg of melatonin (MEL) or a placebo (PLA) the night before performing the 5 m shuttle test (5mSRT). Before and after the 5mSRT, blood samples were collected. Peak heart rate (HRpeak) and rating of perceived exertion (RPE) were recorded throughout the test. Perceived recovery status (PRS) and delayed onset muscle soreness (DOMS) were measured before, 5 min, 24 h, 48 h, and 72 h after the test. The sleep/wake cycle was monitored during the night after ingestion. Results: Data were analysed using paired t-tests, Wilcoxon tests, and two-way ANOVAs, with significance set at p < 0.05. Compared to PLA, MEL did not modify any sleep parameters or blood markers (all p > 0.05). However, MEL improved total distance, fatigue index, the percentage decrement between sprints, and HRpeak (all p < 0.05) in the 5mSRT compared to PLA. MEL also enhanced PRS values up to 72 h post-exercise and reduced DOMS (all p < 0.05). Conclusion: In summary, 6 mg of melatonin taken at night enhanced next-day high-intensity exercise performance and improved perceived recovery up to 72 h post-exercise. Full article
(This article belongs to the Special Issue Current Research in Applied Sports Nutrition)
Show Figures

Figure 1

13 pages, 476 KiB  
Systematic Review
Effects of Vibration Foam Rolling on Pain, Fatigue, and Range of Motion in Individuals with Muscle Fatigue: A Systematic Review
by Seju Park and Byeonggeun Kim
Healthcare 2025, 13(12), 1391; https://doi.org/10.3390/healthcare13121391 - 11 Jun 2025
Viewed by 1534
Abstract
Background/Objectives: Vibration foam rolling (VFR) has emerged as a popular intervention in sports and rehabilitation settings to enhance recovery and flexibility. This systematic review aimed to evaluate the effects of VFR on pain, fatigue, and range of motion (ROM) in individuals experiencing exercise-induced [...] Read more.
Background/Objectives: Vibration foam rolling (VFR) has emerged as a popular intervention in sports and rehabilitation settings to enhance recovery and flexibility. This systematic review aimed to evaluate the effects of VFR on pain, fatigue, and range of motion (ROM) in individuals experiencing exercise-induced muscle fatigue and to assess its clinical applicability. Methods: A systematic literature search was conducted across five databases: PubMed, Cochrane Library, Embase, Web of Science, and CINAHL. Studies were included if they involved participants with muscle fatigue, applied VFR as an intervention, and measured outcomes related to pain, fatigue, or ROM. Methodological quality was assessed using the Joanna Briggs Institute critical appraisal tools. Results: Eight studies published between 2019 and 2024 met the inclusion criteria. VFR showed beneficial effects in reducing delayed onset muscle soreness, improving pressure pain threshold, and lowering subjective fatigue. Several studies also reported increased ROM in specific joints, including the hip and knee. However, findings across studies were inconsistent, particularly in physiological markers such as muscle oxygen saturation and blood flow parameters, where statistically significant differences were not always observed. Conclusions: VFR may offer potential benefits for pain relief, fatigue recovery, and ROM improvement in fatigued individuals. Nonetheless, its effects remain difficult to isolate from those of mechanical pressure and friction associated with foam rolling. Future studies with standardized intervention protocols and long-term follow-up are needed to clarify the independent role of vibration in recovery outcomes. Full article
(This article belongs to the Special Issue Physical Fitness—Effects on Muscle Function and Sports Performance)
Show Figures

Figure 1

21 pages, 3591 KiB  
Article
The Influence of Competition Day Loads on the Metabolic and Immune Response of Olympic Female Beach Volleyball Athletes: A Sportomics Analysis
by Renan Muniz-Santos, Adriana Bassini, P. C. B. Alexandre, Igor Jurisica, Vinod Chandran and L. C. Cameron
Nutrients 2025, 17(11), 1924; https://doi.org/10.3390/nu17111924 - 4 Jun 2025
Viewed by 907
Abstract
Background: Beach volleyball (BVb) is a highly demanding Olympic sport characterized by intense physical activity and unique environmental challenges, including varying weather conditions and sandy, unstable court surfaces. Despite its popularity, there is a notable lack of scientific research addressing the metabolic and [...] Read more.
Background: Beach volleyball (BVb) is a highly demanding Olympic sport characterized by intense physical activity and unique environmental challenges, including varying weather conditions and sandy, unstable court surfaces. Despite its popularity, there is a notable lack of scientific research addressing the metabolic and immune responses of elite female athletes in this sport. This study aims to address this gap by investigating two world-class Olympic medalists, female BVb players, who represent a country with a rich history in the sport. Methods: Two athletes underwent a simulated competition day consisting of two matches. A standardized protocol was utilized to collect blood and urine samples at seven time points, allowing for analysis throughout the competition and recovery phases. The analysis included various electrolytes, as well as hematological, metabolic, and inflammatory markers. Additionally, we assessed selected hormones, such as insulin, serotonin, ACTH, and cortisol, along with amino acids related to energy metabolism and neurotransmitter synthesis. Results: Both athletes presented a trend toward electrolyte disturbances, especially hypokalemia, with a mean decrease of 15% and individual values reaching as low as 3.3 mmol/L post-match. This indicates that BVb may pose a risk for such disturbances. Additionally, the matches led to 20% to 60% increases in muscle injury markers, with incomplete recovery even after a day of rest, signaling persistent physiological stress post-competition. This increase was matched by stimulating stress hormones (ACTH and cortisol rose up to 4-fold and 3-fold, respectively), and markers of exercise intensity, such as lactate and ammonium. Moreover, the simulated BVb competition day impacted the amino acid response, with the Fischer ratio (BCAA/AAA) and blood tryptophan decreasing to a minimum of 60% of the initial levels and blood serotonin increasing by up to 180%, which are signs of an increased risk of central fatigue onset, according to the Fischer and Newsholme theory. Conclusions: The responses examined in this exploratory study contribute to a deeper understanding of the metabolic and immune demands placed on elite female BVb players, suggesting practical applications. By addressing the similar physiological responses observed among the athletes and emphasizing their unique individual responses—despite following the same protocol under identical conditions and sharing similar life habits for an extended period—this study highlights the critical necessity for the n-of-1 monitoring of athletes. Full article
(This article belongs to the Special Issue Nutritional Supports for Sport Performance)
Show Figures

Figure 1

18 pages, 2777 KiB  
Article
Sports Massage and Blood Flow Restriction Combined with Cold Therapy Accelerate Muscle Recovery After Fatigue in Mixed Martial Arts Athletes: A Randomized Controlled Trial
by Robert Trybulski, Robert Roczniok, Gracjan Olaniszyn, Yaroslav Svyshch, Andryi Vovkanych and Michał Wilk
J. Funct. Morphol. Kinesiol. 2025, 10(2), 194; https://doi.org/10.3390/jfmk10020194 - 28 May 2025
Viewed by 1421
Abstract
Objectives: The purpose of this study is to quantitatively evaluate the combined effects of sports massage, blood flow restriction (BFR), and cold therapy on quadriceps recovery in mixed martial arts (MMA) athletes following eccentric exercise, focusing on muscle biomechanical properties, pain, and strength. [...] Read more.
Objectives: The purpose of this study is to quantitatively evaluate the combined effects of sports massage, blood flow restriction (BFR), and cold therapy on quadriceps recovery in mixed martial arts (MMA) athletes following eccentric exercise, focusing on muscle biomechanical properties, pain, and strength. Methods: This randomized, single-blind clinical trial involved 36 men and women MMA-trained participants, divided into three groups: massage (n = 12) received massage, BFR/cool (n = 12) received combined BFR and cooling, and control (n = 12) received passive rest as a control. The fatigue protocol involved MMA fighters performing five sets of plyometric jumps on a 50 cm box until exhaustion, with 1-min breaks between sets. After that, the massage group received a 20-min massage overall using standardized techniques; BFR/cool underwent a 20-min alternating blood flow restriction (200 mmHg) and cooling treatment with ice bags on the quadriceps; and the final group served as the control group with passive rest and no intervention. Participants were assessed four times—before exercise, immediately after exercise, 24 h post-exercise (after two recovery sessions), and 48 h post-exercise (after four recovery sessions)—for perfusion unit (PU), muscle elasticity, pressure pain threshold (PPT), reactive strength index (RSI), and total quality recovery (TQR). Results: The statistical analysis revealed significant effects of both massage and BFR/cooling interventions across key recovery outcomes, with large effect sizes for time-related changes in RSI (p < 0.0001; η2 = 0.87), elasticity (p < 0.0001; η2 = 0.84), and PPT (p < 0.0001; η2 = 0.66). Notably, post-exercise 48 h values for RSI, elasticity, PU, and TQR were significantly improved in both the massage and BFR/cool groups compared to control (p < 0.05)), while no significant group differences were observed for PPT. Conclusions: The study concludes that both massage and combined blood flow restriction with cooling interventions significantly enhance post-exercise recovery—improving muscle perfusion, elasticity, reactive strength, and perceived recovery—compared to passive rest. Full article
(This article belongs to the Special Issue Perspectives and Challenges in Sports Medicine for Combat Sports)
Show Figures

Figure 1

Back to TopTop