Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (128)

Search Parameters:
Keywords = municipal sludge management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2162 KiB  
Article
Simultaneous Decontamination for Ammonia Nitrogen and Phosphate Efficiently by Crystal Morphology MgO-Coated Functional Biochar Derived from Sludge and Sunflower Stalk
by Zhiwei Li, Jingxin Huang, Weizhen Zhang, Hao Yu and Yin Wang
Toxics 2025, 13(7), 577; https://doi.org/10.3390/toxics13070577 - 9 Jul 2025
Viewed by 378
Abstract
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed [...] Read more.
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed temperature-dependent adsorption performance, with optimal nutrient removal achieved at 600 °C pyrolysis. The Mg-MBC600 composite exhibited enhanced physicochemical properties, including a specific surface area of 156.08 m2/g and pore volume of 0.1829 cm3/g, attributable to magnesium-induced structural modifications. Advanced characterization confirmed the homogeneous dispersion of MgO nanoparticles (~50 nm) across carbon matrices, forming active sites for chemisorption via electron-sharing interactions. The maximum adsorption capacities of Mg-MBC600 for nitrogen and phosphorus reached 84.92 mg/L and 182.27 mg/L, respectively. Adsorption kinetics adhered to the pseudo-second-order model, indicating rate-limiting chemical bonding mechanisms. Equilibrium studies demonstrated hybrid monolayer–multilayer adsorption. Solution pH exerted dual-phase control: acidic conditions (pH 3–5) favored phosphate removal through Mg3(PO4)2 precipitation, while neutral–alkaline conditions (pH 7–8) promoted NH4+ adsorption via MgNH4PO4 crystallization. XPS analysis verified that MgO-mediated chemical precipitation and surface complexation dominated nutrient immobilization. This approach establishes a circular economy framework by converting waste biomass into multifunctional adsorbents, simultaneously addressing sludge management challenges and enabling eco-friendly wastewater remediation. Full article
(This article belongs to the Special Issue Environmental Study of Waste Management: Life Cycle Assessment)
Show Figures

Figure 1

22 pages, 2944 KiB  
Article
From Wastewater to Soil Amendment: A Case Study on Sewage Sludge Composting and the Agricultural Application of the Compost
by Csilla Almási, Zoltán Veres, Ibolya Demeter, Viktória Orosz, Tímea Tóth, Mostafa M. Mansour, István Henzsel, Zsolt Bogdányi, Tamás András Szegi and Marianna Makádi
Water 2025, 17(13), 2026; https://doi.org/10.3390/w17132026 - 5 Jul 2025
Viewed by 583
Abstract
The treatment of wastewater and the utilization of the by-products of these processes are an important part of the circular economy. The sewage sludge, a result of wastewater treatment, could be used as a material for plant nutrient supply and/or soil-improving products. The [...] Read more.
The treatment of wastewater and the utilization of the by-products of these processes are an important part of the circular economy. The sewage sludge, a result of wastewater treatment, could be used as a material for plant nutrient supply and/or soil-improving products. The city of Nyíregyháza, Hungary, with 120,000 citizens, has a well-planned water treatment plant operated by Nyírségvíz Ltd., which, in cooperation with the Research Institute of Nyíregyháza, developed a municipal sewage sludge compost (SSC). The closed loop of sewage water treatment and the agricultural utilization of its by-product has been developed and managed. The compost product called Nyírkomposzt was planned for acidic sandy soils. Beyond the agronomic benefits, the sustainable and environmentally sound utilization of SSC reduces sewage sludge disposal. This active involvement of a water utility company demonstrates the potential of cross-sectoral cooperation in solving environmental problems. The quality of the compost fits the Hungarian legislation. To study the effects of 0, 9, 18, and 27 t ha−1 doses of compost on acidic sandy soil, a long-term small plot experiment was started in 2003. The cumulative effects of the regular (every third year, last treatment before sampling in 2021) application of the SSC showed positive changes in basic soil properties, depending on the doses used. Increasing values were found in the case of pH from 4.5 to 6, plant available P2O5 from 240 to 690 ppm, and plant available K2O from 180 to 200 ppm. The plant-available zinc and copper content also increased. Soil organic matter and total N content stabilized at around 0.9% and 0.08%, respectively. The grain yields of winter rye also increased in both investigated years. The yields of 18 t ha−1 treatment were about two times higher compared to the control, but only in 2022 was the difference significant. Our findings underscore the potential of well-planned SSC applications to improve the fertility of ploughed, acidic sandy soil, taking into account the theory of the circular economy by utilizing wastes and decreasing landfilling. Full article
(This article belongs to the Special Issue Treatment and Resource Utilization of Urban Sewage Sludge)
Show Figures

Figure 1

32 pages, 1967 KiB  
Review
Energy Valorization and Resource Recovery from Municipal Sewage Sludge: Evolution, Recent Advances, and Future Prospects
by Pietro Romano, Adriana Zuffranieri and Gabriele Di Giacomo
Energies 2025, 18(13), 3442; https://doi.org/10.3390/en18133442 - 30 Jun 2025
Viewed by 524
Abstract
Municipal sewage sludge, a by-product of urban wastewater treatment, is increasingly recognized to be a strategic resource rather than a disposal burden. Traditional management practices, such as landfilling, incineration, and land application, are facing growing limitations due to environmental risks, regulatory pressures, and [...] Read more.
Municipal sewage sludge, a by-product of urban wastewater treatment, is increasingly recognized to be a strategic resource rather than a disposal burden. Traditional management practices, such as landfilling, incineration, and land application, are facing growing limitations due to environmental risks, regulatory pressures, and the underuse of the sludge’s energy and nutrient potential. This review examines the evolution of sludge management, focusing on technologies that enable energy recovery and resource valorization. The transition from linear treatment systems toward integrated biorefineries is underway, combining biological, thermal, and chemical processes. Anaerobic digestion remains the most widely used energy-positive method, but it is significantly improved by processes such as thermal hydrolysis, hydrothermal carbonization, and wet oxidation. Among these, hydrothermal carbonization stands out for its scalability, energy efficiency, and phosphorus-rich hydrochar production, although implementation barriers remain. Economic feasibility is highly context-dependent, being shaped by capital costs, energy prices, product markets, and policy incentives. This review identifies key gaps, including the need for standardized treatment models, decentralized processing hubs, and safe residual management. Supportive regulation and economic instruments will be essential to facilitate widespread adoption. In conclusion, sustainable sludge management depends on modular, integrated systems that recover energy and nutrients while meeting environmental standards. A coordinated approach across technology, policy, and economics is vital to unlock the full value of this critical waste stream. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 3365 KiB  
Article
Multifunctional Adsorbent with Antibacterial Properties Derived from Municipal Sludge for Synergistic Removal of Fluoride, Uranium, and Dyes
by Weiwei Yang, Xiaoxuan Fan, Wenfeng Li, Gang Wei and Lei Guo
Appl. Sci. 2025, 15(9), 4794; https://doi.org/10.3390/app15094794 - 25 Apr 2025
Viewed by 363
Abstract
With the continuous expansion of urban areas, the treatment of urban sewage is facing significant challenges. Tens of thousands of tons of municipal sludge (MS) are produced annually, which not only occupies substantial land resources but also poses potential environmental threats, thereby complicating [...] Read more.
With the continuous expansion of urban areas, the treatment of urban sewage is facing significant challenges. Tens of thousands of tons of municipal sludge (MS) are produced annually, which not only occupies substantial land resources but also poses potential environmental threats, thereby complicating wastewater treatment processes. Proper management of MS has thus become a critical issue requiring urgent attention. Meanwhile, water pollution continues to worsen, endangering both ecological systems and human health. MS contains a variety of organic compounds with active functional groups capable of forming strong coordination interactions with various waterborne pollutants. Building on this foundation, we successfully develop a multifunctional adsorbent using MS as the raw material through biomineralization. The synthesized adsorbent shows outstanding performance, exhibiting high adsorption capacity for fluoride (F) and hexavalent uranium (U(VI)) in high-fluorine uranium-containing wastewater, effectively reducing the concentrations of these harmful substances. Additionally, the adsorbent shows strong affinity for the cationic dye methylene blue, making it highly suitable for the treatment of wastewater from the printing and dyeing industries. Notably, the adsorbent also possesses antibacterial properties, demonstrating significant bactericidal activity against Gram-negative E. coli in wastewater. The multifunctional adsorbent not only offers a novel solution to enhancing water quality and safety, but also represents a promising strategy for sustainable wastewater treatment. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

16 pages, 7912 KiB  
Article
Valorization of Gold Mining Tailings Sludge from Vetas, Colombia as Partial Cement Replacement in Concrete Mixes
by Thailin Bueno-Gómez, Yariagna López-Bernier, Maya S. Caycedo-García, José Daniel Ardila-Rey, Juliana P. Rodríguez-Caicedo and Diego R. Joya-Cárdenas
Buildings 2025, 15(9), 1419; https://doi.org/10.3390/buildings15091419 - 23 Apr 2025
Cited by 1 | Viewed by 608
Abstract
The accumulation and improper management of mining tailings represent significant environmental and public health challenges globally, due to their potential for water contamination and the presence of heavy metals. In recent years, various studies have explored the feasibility of using mining wastes, such [...] Read more.
The accumulation and improper management of mining tailings represent significant environmental and public health challenges globally, due to their potential for water contamination and the presence of heavy metals. In recent years, various studies have explored the feasibility of using mining wastes, such as tailings sludge, as partial replacements for cement in concrete mixes. The literature highlights the pozzolanic properties of mining tailings attributable to their silica and alumina content, which contribute to the improved structural characteristics, chemical resistance, and enhanced durability of concrete. This research evaluates the specific potential of gold mining tailings sludge (REMI) from the municipality of Vetas, Santander, Colombia, as a sustainable substitute in cementitious materials. Characterization methodologies including X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed the pozzolanic behavior of REMI due to its high content of silica- and alumina-rich amorphous phases and verified negligible contamination levels (Hg and cyanide below detectable limits). Concrete mixes with varying cement substitution levels (0% to 50%) were formulated and systematically evaluated to determine optimal substitution ranges based on criteria such as density, workability, setting time, and compressive strength. Consistent with previous studies, the results revealed an optimal replacement rate between 10% and 20%, with a particular emphasis on the 20% substitution achieving mechanical strengths comparable to traditional concrete. These findings underscore the technical viability and environmental benefits of using mining tailings sludge, contributing both to sustainable waste management and the advancement of eco-efficient concrete technologies. Full article
(This article belongs to the Special Issue Eco-Friendly Building Materials)
Show Figures

Figure 1

20 pages, 1917 KiB  
Article
Potential of Lipids from Polymer-Based Dewatered Sewage Sludge as Feedstock for Biodiesel Production
by Nor Afifah Khalil, Mohd Faizar Banjar, Fatin Najwa Joynal Abedin, Ahmad Noor Syimir Fizal, Norkhairi Ahmad, Muzafar Zulkifli, Wirach Taweepreda, Md Sohrab Hossain and Ahmad Naim Ahmad Yahaya
Sustainability 2025, 17(7), 2991; https://doi.org/10.3390/su17072991 - 27 Mar 2025
Viewed by 791
Abstract
Municipal wastewater treatment plants produce vast amounts of sewage sludge as waste, with more than 80% dewatered sludge (DS). DS is a polymer-based sludge containing flocculant and extracellular polymeric substances, including lipids. Lipids can be converted into biodiesel as an alternative energy that [...] Read more.
Municipal wastewater treatment plants produce vast amounts of sewage sludge as waste, with more than 80% dewatered sludge (DS). DS is a polymer-based sludge containing flocculant and extracellular polymeric substances, including lipids. Lipids can be converted into biodiesel as an alternative energy that reduces dependency on fossil fuels while helping cities manage waste more sustainably. Past studies explored the potential of lipids from various sewage sludges in biodiesel production. However, the potential of DS remains largely unexplored. This study evaluates the lipid extracted from DS and the potential of its fatty acid methyl ester (FAME) to be used as biodiesel. Lipid extraction was conducted under varying parameters, including temperatures of 70, 80, and 90 °C, extraction time of 2, 4, 6, and 8 h, and sludge-to-solvent (S/L) ratios of 0.05, 0.075, 0.1, 0.125, 0.15, and 0.175 g/mL. The optimal extraction conditions of 70 °C for 4 h at S/L of 0.175 g/mL yielded 1.71 ± 0.10% lipid. FTIR and TGA revealed that the DS lipids contain triglycerides, fatty acids, glycerol, and proteins. Transesterification of DS lipids produced DS FAME with a fatty acid profile ranging from C4:0 to C22:0. The evaluation of DS FAME revealed a high ester content (94.7%) of fatty acids ranging from C14:0 to C24:1, surpassing the minimum standard of 90% for biodiesel. The elevated proportion of unsaturated fatty acids in DS FAME is expected to result in a low melting point, reducing the solidifying effect and enhancing its performance as biodiesel. Full article
Show Figures

Figure 1

24 pages, 623 KiB  
Review
Municipal Sewage Sludge Disposal in the Republic of Poland
by Izabela Płonka, Edyta Kudlek and Barbara Pieczykolan
Appl. Sci. 2025, 15(6), 3375; https://doi.org/10.3390/app15063375 - 19 Mar 2025
Cited by 3 | Viewed by 1002
Abstract
This paper reviews methods of municipal sewage sludge (MSS) disposal in the Republic of Poland. The MSS amount produced in 2022 in sewage treatment plants is 580.7 thousand tons of total solids. This is related to the increase in the amount of treated [...] Read more.
This paper reviews methods of municipal sewage sludge (MSS) disposal in the Republic of Poland. The MSS amount produced in 2022 in sewage treatment plants is 580.7 thousand tons of total solids. This is related to the increase in the amount of treated sewage and the use of the co-digestion of sewage sludge with waste. MSS generated in municipal sewage treatment plants constitutes waste with code 19 08 05—stabilized MSS. It is subjected to the rules of conduct specified in the Act on Waste. According to data from the Central Statistical Office, in 2022, the most popular disposal method was its use in agriculture (27.1%). Approximately 18% of the MSS from treatment plants was thermally treated. A significant part of MSS is also used for crops, compost production, and reclamation. MSS management requires an individual approach from sewage treatment plant operators and the use of effective disposal methods. Considering the assumption of the circular economy, it is necessary to consider the possibility of recovering valuable raw materials from MSS and producing products for reuse. One of the possibilities of reusing MSS is to generate porous materials. Moreover, MSS can be transformed into multiple types of soil improvers and fertilizers. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

26 pages, 5115 KiB  
Article
Facile Recovery of Polycationic Metals from Acid Mine Drainage and Their Subsequent Valorisation for the Treatment of Municipal Wastewater
by Khathutshelo Lilith Muedi, Job Tatenda Tendenedzai, Vhahangwele Masindi, Nils Hendrik Haneklaus and Hendrik Gideon Brink
Sustainability 2025, 17(6), 2701; https://doi.org/10.3390/su17062701 - 18 Mar 2025
Cited by 1 | Viewed by 540
Abstract
The presence of toxic and hazardous chemical species in municipal wastewater poses a significant environmental and public health challenge, necessitating innovative, sustainable, and cost-effective treatment solutions. This study pioneers the recovery and valorisation of polycationic metals from real acid mine drainage (AMD) for [...] Read more.
The presence of toxic and hazardous chemical species in municipal wastewater poses a significant environmental and public health challenge, necessitating innovative, sustainable, and cost-effective treatment solutions. This study pioneers the recovery and valorisation of polycationic metals from real acid mine drainage (AMD) for municipal wastewater treatment, demonstrating a novel approach that integrates resource recovery with wastewater remediation. A key strength of this study is the use of real municipal wastewater (authentic MWW) in the treatment phase, ensuring that the findings accurately reflect real-world conditions. Advanced analytical techniques were employed to characterise both aqueous and solid samples, and batch experiments were conducted to assess the removal efficiency of polycationic metals for key contaminants: ammonium (NH4+), sulphate (SO42−), phosphate (PO43−), and nitrate (NO3). The optimised conditions are 2 g of polycationic metals per 100 mL, 90 min of contact time, and 35 °C. The yielded exceptional removal efficiencies are PO43− (>99.9%), NH4+ (>99.7%), NO3 (>99%), and SO42− (>96%), achieving final concentrations of <0.5 mg/L for PO43− and NH4+, 2.1 mg/L for NO3, and 9.1 mg/L for SO42−. Adsorption kinetics followed a pseudo-first-order model, indicating physisorption, while the Two-Surface Langmuir model suggested a combination of homogeneous and heterogeneous adsorption mechanisms. FTIR, SEM-EDX mapping, and XRF analyses confirmed the retention of P, S, and N in the product sludge, validating the adsorption process. This study is the first of its kind to recover Al-rich Fe species from real AMD and activate them for municipal wastewater remediation using authentic MWW, bridging the gap between laboratory-scale research and real-world applications. By simultaneously addressing AMD pollution and municipal wastewater treatment, this research advances circular economy principles, promotes sustainable water management, and contributes to national and global efforts toward water security and environmental protection. Full article
Show Figures

Figure 1

14 pages, 285 KiB  
Article
The Effect of Waste Organic Matter on the Soil Chemical Composition After Three Years of Miscanthus × giganteus Cultivation in East-Central Poland
by Elżbieta Malinowska and Paweł Kania
Sustainability 2025, 17(6), 2532; https://doi.org/10.3390/su17062532 - 13 Mar 2025
Cited by 1 | Viewed by 534
Abstract
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped [...] Read more.
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped into a landfill decomposes and emits greenhouse gases. This can be reduced through its application to energy crops, which not only has a positive impact on the environment but also improves the soil quality and increases yields. However, organic waste with increased content of heavy metals, when applied to the soil, can also pose a threat. Using Miscanthus × giganteus M 19 as a test plant, an experiment with a randomized block design was established in four replications in Central–Eastern Poland in 2018. Various combinations of organic waste (municipal sewage sludge and spent mushroom substrate) were applied, with each dose containing 170 kg N ha−1. After three years (in 2020), the soil content of total nitrogen (Nt) and carbon (Ct) was determined by elemental analysis, with the total content of P, K, Ca, Mg, S, Na, Fe, Mn, Mo, Zn, Ni, Pb, Cr, Cd, and Cu determined by optical emission spectrometry, after wet mineralization with aqua regia. For the available forms of P and K, the Egner–Riehm method was used, and the Schachtschabel method was used for the available forms of Mg. The total content of bacteria, actinomycetes, and fungi was also measured. The application of municipal sewage sludge (SS) alone and together with spent mushroom substrate (SMS) improved the microbiological composition of the soil and increased the content of Nt and Ct and the available forms of P2O5 and Mg more than the application of SMS alone. SMS did not contaminate the soil with heavy metals. In the third year, their content was higher after SS than after SMS application, namely for Cd by 12.2%, Pb by 18.7%, Cr by 25.3%, Zn by 16.9%, and Ni by 14.7%. Full article
5 pages, 165 KiB  
Editorial
Integrated Waste Management in the Circular Economy Era: Insights from Research and Practice
by Charisios Achillas and Christos Vlachokostas
Energies 2025, 18(3), 728; https://doi.org/10.3390/en18030728 - 5 Feb 2025
Cited by 1 | Viewed by 1196
Abstract
This Special Issue on integrated waste management explores innovative approaches and multifaceted strategies aimed at addressing the critical challenges facing modern waste management systems. The featured eight original research articles cover diverse topics, including sewage sludge valorization, municipal waste biodrying, recyclables collection optimization, [...] Read more.
This Special Issue on integrated waste management explores innovative approaches and multifaceted strategies aimed at addressing the critical challenges facing modern waste management systems. The featured eight original research articles cover diverse topics, including sewage sludge valorization, municipal waste biodrying, recyclables collection optimization, biomass-to-energy policies, and the management of compostable packaging waste. Technological advancements, such as AI-driven waste sorting and route optimization algorithms, are highlighted alongside policy frameworks supporting circular economy principles. The studies also address barriers to implementation, including public awareness gaps, technological disparities, and financial constraints, while emphasizing the importance of stakeholder collaboration across governments, industries, and communities. Additionally, environmental risks associated with waste management practices, such as nanoparticle contamination and leachate emissions from ashes, are critically analyzed. This Special Issue provides a holistic perspective on waste management, combining technical innovations, environmental stewardship, and policy integration. The insights of the works published in this Special Issue aim to guide researchers, policy-makers, and practitioners toward building resilient, sustainable, and resource-efficient waste management systems in alignment with global sustainability goals. Full article
(This article belongs to the Special Issue Integrated Waste Management)
13 pages, 1354 KiB  
Article
An Effective Energetic Application of Orange Waste in Multi-Component Co-Digestion with Municipal Sewage Sludge
by Aleksandra Szaja, Joanna Czarnota, Adam Masłoń and Magdalena Lebiocka
Appl. Sci. 2025, 15(3), 1537; https://doi.org/10.3390/app15031537 - 3 Feb 2025
Cited by 2 | Viewed by 1104
Abstract
A strategy allowing for the application of orange waste (OW) in anaerobic co-digestion with municipal sewage sludge (MSS) has been proposed. For this purpose, the introduction of an additional component represented by ice-cream processing waste (IPW) has been chosen. The experiment was conducted [...] Read more.
A strategy allowing for the application of orange waste (OW) in anaerobic co-digestion with municipal sewage sludge (MSS) has been proposed. For this purpose, the introduction of an additional component represented by ice-cream processing waste (IPW) has been chosen. The experiment was conducted in batch mode at a temperature of 37 °C. Four series were conducted: S1—the mono-digestion of MSS; S2—two-component co-digestion of MSS and 1.5 g of OW; S3—two-component co-digestion of MSS and 1.0 g of IPW; and S4—three-component co-digestion of MSS, 1.0 g of IPW, and 1.5 g of OW. The obtained results indicate that the highest methane production was achieved in the presence of IPW in two- and three-component mixtures (S3 and S4). It was also accompanied by improved kinetics, enhanced organic removal, and stable process performance. The related methane yields were 407.6 and 401.6 mL/g VS in S3 and S4, respectively. In turn, in S1 and S2, this parameter was established at the level of 351.3 and 344.3 mL/g VS. Additionally, as compared to MSS mono-digestion (S1), the energy profit was enhanced by 54 and 62% in S3 and S4, respectively. The obtained results indicate the possibility of effective management of OW with energy recovery in the anaerobic digestion process (AD). Full article
(This article belongs to the Special Issue Novel Technologies for Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 6013 KiB  
Article
Sustainable Utilization of Dewatering Sludge for the Development of Reinforcement Grouting Materials in Downhole Applications
by Xianxiang Zhu, Yanhui Du and Song Li
Water 2025, 17(2), 192; https://doi.org/10.3390/w17020192 - 12 Jan 2025
Viewed by 975
Abstract
The mining and processing of coal resources generate substantial coal-based solid wastes, such as coal gangue and slag, which pose environmental challenges, occupy land, and are difficult to manage. However, utilizing these wastes for the stabilization and solidification (S/S) of municipal sludge containing [...] Read more.
The mining and processing of coal resources generate substantial coal-based solid wastes, such as coal gangue and slag, which pose environmental challenges, occupy land, and are difficult to manage. However, utilizing these wastes for the stabilization and solidification (S/S) of municipal sludge containing chromium (Cr) and nickel (Ni) offers an effective solution for mitigating environmental and groundwater pollution while enabling sustainable waste treatment and resource utilization. This study applied an alkali-activated coal gangue–S95 granulated blast furnace slag-based binder (CGS) to the S/S treatment of municipal sludge. The effects of the liquid-to-solid ratio, alkali activator dosage, sludge content, and incineration on compressive strength and the leaching of Cr and Ni were analyzed. The results showed that compressive strength decreased with increases in the sludge content and liquid-to-solid ratio, while incinerated sludge (ESA) samples exhibited better strength than raw sludge (ES). Incineration decomposed the calcite (CaCO3) into CaO, which facilitated the oxidation of Cr(III) to Cr(VI) and increased Cr leaching in the ESA. However, the ESA samples demonstrated superior heavy metal stabilization, as CGS reduced Cr(VI) to Cr(III) and immobilized it through the formation of chromite phases. Using ESA as a binder in CGS provides a safe, efficient approach for resource recovery and heavy metal stabilization, offering a novel solution for the environmental management and utilization of coal-based solid wastes. Full article
(This article belongs to the Special Issue Engineering Hydrogeology Research Related to Mining Activities)
Show Figures

Figure 1

12 pages, 5206 KiB  
Article
Study on Drying of Municipal Sludge and Pollutants Release Characteristics
by Yun Xu, Qian Zhang, Jingxin Xu, Xueli Sun and Heng Chen
Processes 2025, 13(1), 53; https://doi.org/10.3390/pr13010053 - 30 Dec 2024
Cited by 4 | Viewed by 1223
Abstract
With the rapid development of China’s economy, urban domestic sewage and industrial wastewater treatment efficiency has improved, resulting in a significant increase in sludge production. Thermal drying is essential for reducing, safely disposing of, and resourcefully utilizing sludge. However, this drying process inevitably [...] Read more.
With the rapid development of China’s economy, urban domestic sewage and industrial wastewater treatment efficiency has improved, resulting in a significant increase in sludge production. Thermal drying is essential for reducing, safely disposing of, and resourcefully utilizing sludge. However, this drying process inevitably releases harmful pollutants, posing potential environmental risks that necessitate careful management. This work focused on the thermal drying of municipal sludge at five temperature intervals (90–210 °C) and examined the impact of calcium oxide on sludge drying properties. The results indicated that higher temperatures increased sludge drying rates, with optimal efficiency achieved at a 15% calcium oxide addition. Online detection of NH3, H2S, CO, and CH4 in the exhaust gas revealed that pollutant generation was temperature-dependent. While calcium oxide addition had no significant effect on CH4 and CO emissions, it significantly inhibited the generation of H2S and NH3. This work provided crucial insights into optimizing sludge treatment, which improved drying efficiency and mitigated the release of hazardous pollutants, thereby reducing potential environmental and health risks associated with sludge disposal. Full article
(This article belongs to the Special Issue Sustainable Management of Wastewater and Sludge)
Show Figures

Figure 1

22 pages, 1230 KiB  
Review
Bioconversion of Poultry Litter into Insect Meal and Organic Frasstilizer Using Black Soldier Fly Larvae as a Circular Economy Model for the Poultry Industry: A Review
by Anand Raj Kumar Kullan, Arumuganainar Suresh, Hong Lim Choi, Elke Gabriel Neumann and Fatima Hassan
Insects 2025, 16(1), 12; https://doi.org/10.3390/insects16010012 - 27 Dec 2024
Cited by 3 | Viewed by 3438
Abstract
Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel [...] Read more.
Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer). Black soldier flies have the capacity to consume any organic waste material (ranging from livestock litter, food scraps, fruit and vegetable residues, sewage, sludge, municipal solid waste, carcasses, and defatted seed meal) and convert it into valuable BSFL insect meal (suitable for animal feed) and frass (serving as an organic fertilizer). The bioconversion of poultry litter by black soldier flies offers numerous advantages over traditional methods, notably in terms of reduced land and water requirements, lower emissions, cost-effectiveness, swift processing, and the production of both animal feeds and organic fertilizers. This review focuses on the existing knowledge of BSFL, their potential in bioconverting poultry litter into BSFL meal and frass, and the utilization of BSFL in poultry nutrition, emphasizing the necessity for further innovation to enhance this sustainable circular economy approach. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

52 pages, 1083 KiB  
Review
A Review of Renewable Energy Technologies in Municipal Wastewater Treatment Plants (WWTPs)
by Derick Lima, Li Li and Gregory Appleby
Energies 2024, 17(23), 6084; https://doi.org/10.3390/en17236084 - 3 Dec 2024
Cited by 9 | Viewed by 2663
Abstract
The global trend towards sustainable development has included the implementation of renewable energy recovery technologies in municipal wastewater treatment plants (WWTPs). WWTPs are energy-intensive consumers with high operational costs and often are dependent from the electricity supplied by the main grid. In this [...] Read more.
The global trend towards sustainable development has included the implementation of renewable energy recovery technologies in municipal wastewater treatment plants (WWTPs). WWTPs are energy-intensive consumers with high operational costs and often are dependent from the electricity supplied by the main grid. In this context, the integration of renewable energy recovery technologies into WWTPs emerges as an environment-friendly strategy that enhances energy efficiency, sustainability and reduces energy operating costs. Renewable energy recovery technologies, such as anaerobic digestion, microbial fuel cells, and sludge gasification, can offer multiple benefits for a WWTP. Anaerobic digestion is the most widely adopted technology due to its efficiency in treating sewage sludge and its ability to generate biogas—a valuable renewable energy source. The use of biogas can offset the energy demands of the wastewater treatment process, potentially leading to energy self-sufficiency for the WWTP and a reduction in reliance from the electricity supply from the main grid. Similarly, microbial fuel cells harness the electrochemical activity of bacteria to produce electricity directly from wastewater, presenting a promising alternative for low-energy processes for sustainable power generation. Gasification of sewage sludge is a promising technology for managing municipal sewage sludge, offering key advantages, especially by generating a renewable energy production (sludge is converted into syngas), which further decreases the sludge volume and operating costs with sludge management, helps to eliminate odour associated with sewage sludge, and effectively destroys the pathogens. Adoption of renewable energy sources in WWTPs can be a great alternative to overcome issues of high operating costs and high dependency of electricity from the main grid, but their successful integration requires addressing challenges such as technological maturity, economic feasibility, and regulatory frameworks. This study aims to comprehensively explore the significance of different renewable energy technologies in municipal WWTPs, including site-specific and non-site-specific sources, evaluating their impact on sustainability, energy efficiency, and overall operational effectiveness. This review also highlights some studies in which different strategies were adopted to generate extra revenue and/or reduce operating costs. Through a comprehensive review of current practices and emerging technologies, this study underscores the transformative potential of these innovations in advancing low-emission wastewater management. Full article
(This article belongs to the Special Issue Advances in Wastewater Treatment 2024)
Show Figures

Figure 1

Back to TopTop