Multifunctional Adsorbent with Antibacterial Properties Derived from Municipal Sludge for Synergistic Removal of Fluoride, Uranium, and Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of MS Powder
2.3. Preparation of MS/CID/ZrO2 Through Biomineralization
2.4. Characterization Techniques
3. Results and Discussion
3.1. Characterizations of MS/CID/ZrO2 Composites
3.2. Adsorption Experiment of High-Fluorine Uranium-Containing Wastewater
3.3. Dye Adsorption Performance
3.4. Antibacterial Performance
4. Sustainability Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 650. [Google Scholar] [CrossRef]
- Yang, W.; Li, W.; Lei, Y.; He, P.; Wei, G.; Guo, L. Functionalization of cellulose-based sponges: Design, modification, environmental applications, and sustainability analysis. Carbohydr. Polym. 2024, 348, 121175. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A.; Inamuddin, n.; Asiri, A.M. Exploring the Reusability of Synthetically Contaminated Wastewater Containing Crystal Violet Dye using Tectona grandis Sawdust as a Very Low-Cost Adsorbent. Sci. Rep. 2018, 8, 8314. [Google Scholar] [CrossRef] [PubMed]
- Al-Yaari, M.; Saleh, T.A. Mercury Removal from Water Using a Novel Composite of Polyacrylate-Modified Carbon. ACS Omega 2022, 7, 14820–14831. [Google Scholar] [CrossRef]
- Wang, P.; Dong, F.; He, D.; Liu, S.; Chen, N.; Huo, T. Organic acid mediated photoelectrochemical reduction of U(VI) to U(IV) in waste water: Electrochemical parameters and spectroscopy. RSC Adv. 2021, 11, 23241–23248. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shi, X.; Yang, M.; Tan, Q.; Xu, Z.; Ma, B.; Pan, D.; Wu, W. Phosphate and illite colloid pose a synergistic risk of enhanced uranium transport in groundwater: A challenge for phosphate immobilization remediation of uranium contaminated environmental water. Water Res. 2024, 255, 121514. [Google Scholar] [CrossRef]
- Badawy, S.M.; Sokker, H.H.; Othman, S.H.; Hashem, A. Cloth filter for recovery of uranium from radioactive waste. Radiat. Phys. Chem. 2005, 7, 125–130. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, J.; Liu, Z.; Wu, W. Environmentally Friendlier Approach to Nuclear Industry: Recovery of Uranium from Carbonate Solutions Using Ionic Liquids. Ind. Eng. Chem. Res. 2015, 54, 8624–8628. [Google Scholar] [CrossRef]
- Nizinski, C.A.; Olson, J.; Chalifoux, A.M.; Kurtyka, N.; Athon, M.T.; Tenner, T.; McDonald, L.W. Identification and Elemental Impurity Analysis of Heterogeneous Morphologies in Uranium Oxides Synthesized from Uranyl Fluoride Precursors. ACS Omega 2023, 54, 8624–8628. [Google Scholar] [CrossRef]
- Lin, T.; Chen, T.; Jiao, C.; Zhang, H.; Hou, K.; Jin, H.; Liu, Y.; Zhu, W.; He, R. Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater. Nat. Commun. 2024, 15, 4149. [Google Scholar] [CrossRef] [PubMed]
- Busquim e Silva, R.; Kazimi, M.S.; Hejzlar, P. Nuclear fuel recycling: National and regional options for the US nuclear energy system. Energy Environ. Sci. 2010, 3, 996–1010. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Zhu, X.; Meng, C.; Dong, Z.; Xiao, S.; Wang, Y.; Wang, Y.; Cao, X.; Liu, Y. Exciton dissociation and transfer behavior and surface reaction mechanism in Donor–Acceptor organic semiconductor photocatalytic separation of uranium. Appl. Catal. B Environ. Energy 2023, 332, 122751. [Google Scholar] [CrossRef]
- Wang, C.; Helal, A.S.; Wang, Z.; Zhou, J.; Yao, X.; Shi, Z.; Ren, Y.; Lee, J.; Chang, J.K.; Fugetsu, B.; et al. Uranium In Situ Electrolytic Deposition with a Reusable Functional Graphene-Foam Electrode. Adv. Mater. 2021, 33, 2102633. [Google Scholar] [CrossRef]
- Liu, M.; Wang, K.; Wang, H.; Lu, J.; Xu, S.; Zhao, L.; Wang, X.; Du, J. Simple and sensitive colorimetric sensors for the selective detection of Cu(ii). RSC Adv. 2021, 11, 11732–11738. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Gong, Y.; Wang, L. Potential trade-off between water consumption and water quality: Life cycle assessment of nonaqueous solvent dyeing. Water Res. 2022, 215, 118222. [Google Scholar] [CrossRef]
- Routoula, E.; Patwardhan, S.V. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Environ. Sci. Technol. 2020, 54, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Geng, Q.; Yang, J.; Liu, Y.; Liu, C. Hybrid System of Flocculation–Photocatalysis for the Decolorization of Crystal Violet, Reactive Red X-3B, and Acid Orange II Dye. ACS Omega 2020, 5, 31131–31145. [Google Scholar] [CrossRef]
- Kiani, A.; Haratipour, P.; Ahmadi, M.; Zare-Dorabei, R.; Mahmoodi, A. Efficient removal of some anionic dyes from aqueous solution using a polymer-coated magnetic nano-adsorbent. J. Water Supply Res. Technol. AQUA 2017, 66, 239–248. [Google Scholar] [CrossRef]
- Ghafourian, N.; Hosseini, S.N.; Mahmoodi, Z.; Masnabadi, N.; Thalji, M.R.; Abhari, A.R.; Al Zoubi, W.; Chong, K.F.; Ali, G.A.M.; Bakr, Z.H. TiO2-Mica 450 composite for photocatalytic degradation of methylene blue using UV irradiation. Emergent Mater. 2023, 6, 1527–1536. [Google Scholar] [CrossRef]
- Gunda, N.S.K.; Chavali, R.; Mitra, S.K. A hydrogel based rapid test method for detection of Escherichia coli (E. coli) in contaminated water samples†. Analyst 2016, 141, 2920–2929. [Google Scholar] [CrossRef] [PubMed]
- Aijuka, M.; Santiago, A.E.; Girón, J.A.; Nataro, J.P.; Buys, E.M. Enteroaggregative Escherichia coli is the predominant diarrheagenic E. coli pathotype among irrigation water and food sources in South Africa. Int. J. Food Microbiol. 2018, 278, 44–51. [Google Scholar] [CrossRef]
- Li, L.; Iqbal, J.; Zhu, Y.; Zhang, P.; Chen, W.; Bhatnagar, A.; Du, Y. Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants. Int. J. Biol. Macromol. 2018, 120, 1752–1759. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, H.; Zhang, Y.; Lichtfouse, E. Efficient phosphate recycling by adsorption on alkaline sludge biochar. Environ. Chem. Lett. 2022, 21, 21–30. [Google Scholar] [CrossRef]
- Zhang, Q.; Bolisetty, S.; Cao, Y.; Handschin, S.; Adamcik, J.; Peng, Q.; Mezzenga, R. Selective and Efficient Removal of Fluoride from Water: In Situ Engineered Amyloid Fibril/ZrO2 Hybrid Membranes. Angew. Chem. Int. Ed. 2019, 58, 6012–6016. [Google Scholar] [CrossRef]
- Yang, D.; Li, Y.; Wang, Y.; Jiang, Z. Bioinspired synthesis of mesoporous ZrO2 nanomaterials with elevated defluoridation performance in agarose gels. RSC Adv. 2014, 4, 49811–49818. [Google Scholar] [CrossRef]
- Varshney, N.; Sahi, A.K.; Poddar, S.; Vishwakarma, N.K.; Kavimandan, G.; Prakash, A.; Mahto, S.K. Freeze–Thaw-Induced Physically Cross-linked Superabsorbent Polyvinyl Alcohol/Soy Protein Isolate Hydrogels for Skin Wound Dressing: In Vitro and In Vivo Characterization. ACS Appl. Mater. Interfaces 2022, 14, 14033–14048. [Google Scholar] [CrossRef]
- Yan, W.; Han, Y.; Hou, Y.; Wang, D.; Yu, M. Effects of polyvinyl alcohol incorporation on the physical and antioxidant properties of soy protein isolate/Xanthoceras sorbifolia husk extract active films. Food Biosci. 2023, 55, 102962. [Google Scholar] [CrossRef]
- Xuyan, D.; Yanlong, L.; Guoqing, H.; Junxia, X.; Liping, G.; Liang, L. Preparation and characterization of soybean Protein isolate/chitosan/sodium alginate ternary complex coacervate phase. LWT Food Sci. Technol. 2021, 150, 112081. [Google Scholar]
- Peng, L.; Bai, H.; Rong, L.; Liu, J.; Wang, G.; Wang, J.; Xian, H. Efficient Separation of Uranium in Solution by ZnFe2O4 Doped with ZrO2: Adsorption Behaviors and Mechanism Study. Water Air Soil Pollut. 2024, 235, 228. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Z.-Y.; Wang, X.; Ding, C.; Cheng, W.; Yu, S.-H.; Wang, X. Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers. Environ. Sci. Technol. 2016, 50, 4459–4467. [Google Scholar] [CrossRef]
- Monier, M.; Elsayed, N.H. Selective extraction of uranyl ions using ion-imprinted chelating microspheres. J. Colloid Interface Sci. 2014, 423, 113–122. [Google Scholar] [CrossRef]
- Majeed, M.D.; Roushani, M. Synthesis and Characterization of Novel Chitosan/Graphene Oxide/Poly (Vinyl Alcohol) Aerogel Nanocomposite for High Efficiency Uranium (VI) Removal from Wastewaters. J. Cluster Sci. 2023, 35, 903–914. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, E.; Verma, J.; Dalal, J.; Kumar, A. Structural and photoluminescence properties of Dy-doped nanocrystalline ZrO2 for optoelectronics application. Ceram. Int. 2023, 49, 20185–20192. [Google Scholar] [CrossRef]
- Li, W.P.; Han, X.Y.; Wang, X.Y.; Wang, Y.Q.; Wang, W.X.; Xu, H.; Tan, T.S.; Wu, W.S.; Zhang, H.X. Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite. Chem. Eng. J. 2015, 279, 735–746. [Google Scholar] [CrossRef]
- Heisbourg, G.; Hubert, S.; Dacheux, N.; Purans, J. Kinetic and thermodynamic studies of the dissolution of thoria-urania solid solutions. J. Nucl. Mater. 2004, 335, 5–13. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Q.; Zhang, H.; Lu, Z.; Liu, J.; Chen, R.; Li, R.; Li, Z.; Liu, P.; Wang, J. Efficient removal of uranium(VI) from simulated seawater using amidoximated polyacrylonitrile/FeOOH composites. Dalton Trans. 2017, 46, 15746–15756. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Y.; Li, L.; Wang, Y. Preparation of amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) from coal fly ash for the removal of U(VI). Sci. Total Environ. 2018, 626, 219–227. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Wang, X.; Liu, D.; Liu, D. Preparation of amidoxime functionalized titanate nanosheets for efficient extraction of uranium from aqueous solution. J. Solid State Chem. 2020, 290, 121562. [Google Scholar] [CrossRef]
- Dou, X.; Mohan, D.; Pittman, C.U.; Yang, S. Remediating fluoride from water using hydrous zirconium oxide. Chem. Eng. J. 2012, 198, 236–245. [Google Scholar] [CrossRef]
- Parashar, K.; Ballav, N.; Debnath, S.; Pillay, K.; Maity, A. Hydrous ZrO2 decorated polyaniline nanofibres: Synthesis, characterization and application as an efficient adsorbent for water defluoridation. J. Colloid Interface Sci. 2017, 508, 342–358. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Zhang, Y.; Liu, X.; Sun, S.; Qin, S.; Huang, J.; Chen, B. Construction of amidoxime-functionalized magnetic hydroxyapatite with enhanced uranium extraction performance from aqueous solution and seawater. Chemosphere 2023, 346, 140257. [Google Scholar] [CrossRef]
- Negm, S.H.; Abd El-Magied, M.O.; El Maadawy, W.M.; Abdel Aal, M.M.; Abd El Dayem, S.M.; Taher, M.A.; Abd El-Rahem, K.A.; Rashed, M.N.; Cheira, M.F. Appreciatively Efficient Sorption Achievement to U(VI) from the El Sela Area by ZrO2/Chitosan. Separations 2022, 9, 311. [Google Scholar] [CrossRef]
- Lei, Y.; Li, W.; Han, Y.; Wang, L.; Wu, H.; He, P.; Wei, G.; Guo, L. Biomimetic ZrO2-modified seaweed residue with excellent fluorine/ bacteria removal and uranium extraction properties for wastewater purification. Water Res. 2024, 252, 121219. [Google Scholar] [CrossRef]
- Mohan, S.; Singh, D.K.; Kumar, V.; Hasan, S.H. Effective removal of Fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: Fixed bed column adsorption modelling and its adsorption mechanism. J. Fluor. Chem. 2016, 194, 40–50. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Liu, B.; Kong, H.; Xiong, Z.; Guo, L.; Wei, G. Biomineralization of ZrO2 nanoparticles on graphene oxide-supported peptide/cellulose binary nanofibrous membranes for high-performance removal of fluoride ions. Chem. Eng. J. 2021, 430, 132721. [Google Scholar] [CrossRef]
- Bulut, Y.; Karaer, H. Removal of Methylene Blue from Aqueous Solution by Crosslinked Chitosan-g-Poly(Acrylic Acid)/Bentonite Composite. Chem. Eng. Commun. 2014, 202, 1635–1644. [Google Scholar] [CrossRef]
- Manna, S.; Roy, D.; Saha, P.; Gopakumar, D.; Thomas, S. Rapid methylene blue adsorption using modified lignocellulosic materials. Process Saf. Environ. Prot. 2017, 107, 346–356. [Google Scholar] [CrossRef]
- Cheng, D.M.; Kuhn, P.; Poulev, A.; Rojo, L.E.; Lila, M.A.; Raskin, I. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix. Food Chem. 2012, 135, 2994–3002. [Google Scholar] [CrossRef]
- Duan, X.; Qin, D.; Li, H.; Zhang, T.; Han, Y.; Huang, Y.Q.; He, D.; Wu, K.; Chai, X.; Chen, C. Study of antimicrobial activity and mechanism of vapor-phase cinnamaldehyde for killing Escherichia coli based on fumigation method. Front. Nutr. 2022, 9, 1040152. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Mat Yajid, M.A.; Kumar Gupta, R.; Mohd Yusof, N.; Bakhsheshi-Rad, H.R.; Ghandvar, H.; Ghasemi, E. Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy. Trans. Nonferrous Met. Soc. China 2018, 28, 1571–1581. [Google Scholar] [CrossRef]
- Tabassum, N.; Kumar, D.; Verma, D.; Bohara, R.A.; Singh, M.P. Zirconium oxide (ZrO2) nanoparticles from antibacterial activity to cytotoxicity: A next-generation of multifunctional nanoparticles. Mater. Today Commun. 2021, 26, 102156. [Google Scholar] [CrossRef]
- Peydayesh, M.; Mezzenga, R. Protein nanofibrils for next generation sustainable water purification. Nat. Commun. 2021, 12, 3248. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Fan, X.; Li, W.; Wei, G.; Guo, L. Multifunctional Adsorbent with Antibacterial Properties Derived from Municipal Sludge for Synergistic Removal of Fluoride, Uranium, and Dyes. Appl. Sci. 2025, 15, 4794. https://doi.org/10.3390/app15094794
Yang W, Fan X, Li W, Wei G, Guo L. Multifunctional Adsorbent with Antibacterial Properties Derived from Municipal Sludge for Synergistic Removal of Fluoride, Uranium, and Dyes. Applied Sciences. 2025; 15(9):4794. https://doi.org/10.3390/app15094794
Chicago/Turabian StyleYang, Weiwei, Xiaoxuan Fan, Wenfeng Li, Gang Wei, and Lei Guo. 2025. "Multifunctional Adsorbent with Antibacterial Properties Derived from Municipal Sludge for Synergistic Removal of Fluoride, Uranium, and Dyes" Applied Sciences 15, no. 9: 4794. https://doi.org/10.3390/app15094794
APA StyleYang, W., Fan, X., Li, W., Wei, G., & Guo, L. (2025). Multifunctional Adsorbent with Antibacterial Properties Derived from Municipal Sludge for Synergistic Removal of Fluoride, Uranium, and Dyes. Applied Sciences, 15(9), 4794. https://doi.org/10.3390/app15094794