Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,655)

Search Parameters:
Keywords = multispectral indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3217 KiB  
Article
Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census
by Cássio Filipe Vieira Martins, Franciele Caroline Guerra, Anderson Targino da Silva Ferreira and Roger Dias Gonçalves
Earth 2025, 6(3), 87; https://doi.org/10.3390/earth6030087 (registering DOI) - 1 Aug 2025
Viewed by 180
Abstract
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a [...] Read more.
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a spatially explicit and low-cost proxy for urban tree census data. CBERS-4A provides medium-resolution multispectral data freely accessible across South America, yet remains underutilized in urban environmental applications. Focusing on Aracaju, a metropolitan region in northeastern Brazil, we compared NDVI-based classification results with official municipal tree census data from 2022. The analysis revealed a strong spatial correlation, supporting the use of NDVI as a reliable indicator of canopy presence at the urban block scale. In addition to mapping vegetation distribution, the NDVI results identified areas with insufficient canopy coverage, directly informing urban greening priorities. By validating remote sensing data against field inventories, this study demonstrates how CBERS-4A imagery and vegetation indices can support municipal tree management and serve as scalable tools for environmental planning and policy. Full article
Show Figures

Graphical abstract

19 pages, 5891 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 - 1 Aug 2025
Viewed by 88
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
Show Figures

Figure 1

22 pages, 8105 KiB  
Article
Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing
by Jie Han, Jinlei Zhu, Xiaoming Cao, Lei Xi, Zhao Qi, Yongxin Li, Xingyu Wang and Jiaxiu Zou
Remote Sens. 2025, 17(15), 2665; https://doi.org/10.3390/rs17152665 - 1 Aug 2025
Viewed by 174
Abstract
The unique characteristics of desert vegetation, such as different leaf morphology, discrete canopy structures, sparse and uneven distribution, etc., pose significant challenges for remote sensing-based estimation of fractional vegetation cover (FVC). The Unmanned Aerial Vehicle (UAV) system can accurately distinguish vegetation patches, extract [...] Read more.
The unique characteristics of desert vegetation, such as different leaf morphology, discrete canopy structures, sparse and uneven distribution, etc., pose significant challenges for remote sensing-based estimation of fractional vegetation cover (FVC). The Unmanned Aerial Vehicle (UAV) system can accurately distinguish vegetation patches, extract weak vegetation signals, and navigate through complex terrain, making it suitable for applications in small-scale FVC extraction. In this study, we selected the floodplain fan with Caragana korshinskii Kom as the constructive species in Hatengtaohai National Nature Reserve, Bayannur, Inner Mongolia, China, as our study area. We investigated the remote sensing extraction method of desert sparse vegetation cover by placing samples across three gradients: the top, middle, and edge of the fan. We then acquired UAV multispectral images; evaluated the applicability of various vegetation indices (VIs) using methods such as supervised classification, linear regression models, and machine learning; and explored the feasibility and stability of multiple machine learning models in this region. Our results indicate the following: (1) We discovered that the multispectral vegetation index is superior to the visible vegetation index and more suitable for FVC extraction in vegetation-sparse desert regions. (2) By comparing five machine learning regression models, it was found that the XGBoost and KNN models exhibited relatively lower estimation performance in the study area. The spatial distribution of plots appeared to influence the stability of the SVM model when estimating fractional vegetation cover (FVC). In contrast, the RF and LASSO models demonstrated robust stability across both training and testing datasets. Notably, the RF model achieved the best inversion performance (R2 = 0.876, RMSE = 0.020, MAE = 0.016), indicating that RF is one of the most suitable models for retrieving FVC in naturally sparse desert vegetation. This study provides a valuable contribution to the limited existing research on remote sensing-based estimation of FVC and characterization of spatial heterogeneity in small-scale desert sparse vegetation ecosystems dominated by a single species. Full article
Show Figures

Graphical abstract

17 pages, 2404 KiB  
Article
Geographically Weighted Regression Enhances Spectral Diversity–Biodiversity Relationships in Inner Mongolian Grasslands
by Yu Dai, Huawei Wan, Longhui Lu, Fengming Wan, Haowei Duan, Cui Xiao, Yusha Zhang, Zhiru Zhang, Yongcai Wang, Peirong Shi and Xuwei Sun
Diversity 2025, 17(8), 541; https://doi.org/10.3390/d17080541 (registering DOI) - 1 Aug 2025
Viewed by 171
Abstract
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked [...] Read more.
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked these differences. We utilized species data from field surveys in Inner Mongolia and drone-derived multispectral imagery to establish a quantitative relationship between SD and biodiversity. A geographically weighted regression (GWR) model was used to describe the SD–biodiversity relationship and map the biodiversity indices in different experimental areas in Inner Mongolia, China. Spatial autocorrelation analysis revealed that both SD and biodiversity indices exhibited strong and statistically significant spatial autocorrelation in their distribution patterns. Among all spectral diversity indices, the convex hull area exhibited the best model fit with the Margalef richness index (Margalef), the coefficient of variation showed the strongest predictive performance for species richness (Richness), and the convex hull volume provided the highest explanatory power for Shannon diversity (Shannon). Predictions for Shannon achieved the lowest relative root mean square error (RRMSE = 0.17), indicating the highest predictive accuracy, whereas Richness exhibited systematic underestimation with a higher RRMSE (0.23). Compared to the commonly used linear regression model in SVH studies, the GWR model exhibited a 4.7- to 26.5-fold improvement in goodness-of-fit. Despite the relatively low R2 value (≤0.59), the model yields biodiversity predictions that are broadly aligned with field observations. Our approach explicitly considers the spatial heterogeneity of the SD–biodiversity relationship. The GWR model had significantly higher fitting accuracy than the linear regression model, indicating its potential for remote sensing-based biodiversity assessments. Full article
(This article belongs to the Special Issue Ecology and Restoration of Grassland—2nd Edition)
Show Figures

Figure 1

21 pages, 4657 KiB  
Article
A Semi-Automated RGB-Based Method for Wildlife Crop Damage Detection Using QGIS-Integrated UAV Workflow
by Sebastian Banaszek and Michał Szota
Sensors 2025, 25(15), 4734; https://doi.org/10.3390/s25154734 (registering DOI) - 31 Jul 2025
Viewed by 116
Abstract
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). [...] Read more.
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

29 pages, 5503 KiB  
Article
Feature Selection Framework for Improved UAV-Based Detection of Solenopsis invicta Mounds in Agricultural Landscapes
by Chun-Han Shih, Cheng-En Song, Su-Fen Wang and Chung-Chi Lin
Insects 2025, 16(8), 793; https://doi.org/10.3390/insects16080793 (registering DOI) - 31 Jul 2025
Viewed by 159
Abstract
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant [...] Read more.
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant mounds was evaluated in Fenlin Township, Hualien, Taiwan. A DJI Phantom 4 multispectral drone collected reflectance in five bands (blue, green, red, red-edge, and near-infrared), derived indices (normalized difference vegetation index, NDVI, soil-adjusted vegetation index, SAVI, and photochemical pigment reflectance index, PPR), and textural features. According to analysis of variance F-scores and random forest recursive feature elimination, vegetation indices and spectral features (e.g., NDVI, NIR, SAVI, and PPR) were the most significant predictors of ecological characteristics such as vegetation density and soil visibility. Texture features exhibited moderate importance and the potential to capture intricate spatial patterns in nonlinear models. Despite limitations in the analytics, including trade-offs related to flight height and environmental variability, the study findings suggest that UAVs are an inexpensive, high-precision means of obtaining multispectral data for RIFA monitoring. These findings can be used to develop efficient mass-detection protocols for integrated pest control, with broader implications for invasive species monitoring. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

31 pages, 10410 KiB  
Article
Integrated Prospectivity Mapping for Copper Mineralization in the Koldar Massif, Kazakhstan
by Dinara Talgarbayeva, Andrey Vilayev, Elmira Serikbayeva, Elmira Orynbassarova, Hemayatullah Ahmadi, Zhanibek Saurykov, Nurmakhambet Sydyk, Aigerim Bermukhanova and Berik Iskakov
Minerals 2025, 15(8), 805; https://doi.org/10.3390/min15080805 - 30 Jul 2025
Viewed by 340
Abstract
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament [...] Read more.
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament analysis and density mapping confirmed the high permeability of the Koldar massif, indicating its structural prospectivity. Hyperspectral and multispectral data (ASTER, PRISMA, WorldView-3) were applied for detailed mapping of hydrothermal alteration (phyllic, propylitic, argillic zones), which are critical for discovering porphyry copper deposits. In particular, WorldView-3 imagery facilitated the identification of new prospective zones. The transformation of magnetic and gravity data successfully delineated geological features and structural boundaries, confirming the fractured nature of the massif, a key structural factor for mineralization. The resulting map of prospective zones, created by normalizing and integrating four evidential layers (lineament density, PRISMA-derived hydrothermal alteration, magnetic, and gravity anomalies), is thoroughly validated, successfully outlining the known Aktogay, Aidarly, and Kyzylkiya deposits. Furthermore, new, previously underestimated prospective areas were identified. This work fills a significant knowledge gap concerning the Koldar massif, which had not been extensively studied using satellite methods previously. The key advantage of this research lies in its comprehensive approach and the successful application of high-quality hyperspectral imagery for mapping new prospective zones, offering a cost-effective and efficient alternative to traditional ground-based investigations. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

36 pages, 9354 KiB  
Article
Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction
by Marcos A. Bosques-Perez, Naphtali Rishe, Thony Yan, Liangdong Deng and Malek Adjouadi
Remote Sens. 2025, 17(15), 2632; https://doi.org/10.3390/rs17152632 - 29 Jul 2025
Viewed by 142
Abstract
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such [...] Read more.
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

22 pages, 12611 KiB  
Article
Banana Fusarium Wilt Recognition Based on UAV Multi-Spectral Imagery and Automatically Constructed Enhanced Features
by Ye Su, Longlong Zhao, Huichun Ye, Wenjiang Huang, Xiaoli Li, Hongzhong Li, Jinsong Chen, Weiping Kong and Biyao Zhang
Agronomy 2025, 15(8), 1837; https://doi.org/10.3390/agronomy15081837 - 29 Jul 2025
Viewed by 138
Abstract
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and [...] Read more.
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and vegetation indices (VIs)—collectively referred to as basic features (BFs)—which are prone to noise during the early stages of infection and struggle to capture subtle spectral variations, thus limiting the recognition accuracy. To address this limitation, this study proposes a discretized enhanced feature (EF) construction method, the automated kernel density segmentation-based feature construction algorithm (AutoKDFC). By analyzing the differences in the kernel density distributions between healthy and diseased samples, the AutoKDFC automatically determines the optimal segmentation threshold, converting continuous BFs into binary features with higher discriminative power for early-stage recognition. Using UAV-based multi-spectral imagery, BFW recognition models are developed and tested with the random forest (RF), support vector machine (SVM), and Gaussian naïve Bayes (GNB) algorithms. The results show that EFs exhibit significantly stronger correlations with BFW’s presence than original BFs. Feature importance analysis via RF further confirms that EFs contribute more to the model performance, with VI-derived features outperforming BR-based ones. The integration of EFs results in average performance gains of 0.88%, 2.61%, and 3.07% for RF, SVM, and GNB, respectively, with SVM achieving the best performance, averaging over 90%. Additionally, the generated BFW distribution map closely aligns with ground observations and captures spectral changes linked to disease progression, validating the method’s practical utility. Overall, the proposed AutoKDFC method demonstrates high effectiveness and generalizability for BFW recognition. Its core concept of “automatic feature enhancement” has strong potential for broader applications in crop disease monitoring and supports the development of intelligent early warning systems in plant health management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

25 pages, 5776 KiB  
Article
Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery
by Russell Main, Mark Jayson B. Felix, Michael S. Watt and Robin J. L. Hartley
Forests 2025, 16(8), 1240; https://doi.org/10.3390/f16081240 - 28 Jul 2025
Viewed by 331
Abstract
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost [...] Read more.
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost operations, particularly in steep or remote terrain. As uptake grows, tools for monitoring treatment effectiveness, particularly during the early stages of stress, will become increasingly important. This study evaluated the use of UAV-based multispectral and hyperspectral imagery to detect early herbicide-induced stress in a nine-year-old radiata pine (Pinus radiata D. Don) plantation, based on temporal changes in crown spectral signatures following treatment with metsulfuron-methyl. A staggered-treatment design was used, in which herbicide was applied to a subset of trees in six blocks over several weeks. This staggered design allowed a single UAV acquisition to capture imagery of trees at varying stages of herbicide response, with treated trees ranging from 13 to 47 days after treatment (DAT). Visual canopy assessments were carried out to validate the onset of visible symptoms. Spectral changes either preceded or coincided with the development of significant visible canopy symptoms, which started at 25 DAT. Classification models developed using narrow band hyperspectral indices (NBHI) allowed robust discrimination of treated and non-treated trees as early as 13 DAT (F1 score = 0.73), with stronger results observed at 18 DAT (F1 score = 0.78). Models that used multispectral indices were able to classify treatments with a similar accuracy from 18 DAT (F1 score = 0.78). Across both sensors, pigment-sensitive indices, particularly variants of the Photochemical Reflectance Index, consistently featured among the top predictors at all time points. These findings address a key knowledge gap by demonstrating practical, remote sensing-based solutions for monitoring and characterising herbicide-induced stress in field-grown radiata pine. The 13-to-18 DAT early detection window provides an operational baseline and a target for future research seeking to refine UAV-based detection of chemical thinning. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

26 pages, 11912 KiB  
Article
Multi-Dimensional Estimation of Leaf Loss Rate from Larch Caterpillar Under Insect Pest Stress Using UAV-Based Multi-Source Remote Sensing
by He-Ya Sa, Xiaojun Huang, Li Ling, Debao Zhou, Junsheng Zhang, Gang Bao, Siqin Tong, Yuhai Bao, Dashzebeg Ganbat, Mungunkhuyag Ariunaa, Dorjsuren Altanchimeg and Davaadorj Enkhnasan
Drones 2025, 9(8), 529; https://doi.org/10.3390/drones9080529 - 28 Jul 2025
Viewed by 302
Abstract
Leaf loss caused by pest infestations poses a serious threat to forest health. The leaf loss rate (LLR) refers to the percentage of the overall tree-crown leaf loss per unit area and is an important indicator for evaluating forest health. Therefore, rapid and [...] Read more.
Leaf loss caused by pest infestations poses a serious threat to forest health. The leaf loss rate (LLR) refers to the percentage of the overall tree-crown leaf loss per unit area and is an important indicator for evaluating forest health. Therefore, rapid and accurate acquisition of the LLR via remote sensing monitoring is crucial. This study is based on drone hyperspectral and LiDAR data as well as ground survey data, calculating hyperspectral indices (HSI), multispectral indices (MSI), and LiDAR indices (LI). It employs Savitzky–Golay (S–G) smoothing with different window sizes (W) and polynomial orders (P) combined with recursive feature elimination (RFE) to select sensitive features. Using Random Forest Regression (RFR) and Convolutional Neural Network Regression (CNNR) to construct a multidimensional (horizontal and vertical) estimation model for LLR, combined with LiDAR point cloud data, achieved a three-dimensional visualization of the leaf loss rate of trees. The results of the study showed: (1) The optimal combination of HSI and MSI was determined to be W11P3, and the LI was W5P2. (2) The optimal combination of the number of sensitive features extracted by the RFE algorithm was 13 HSI, 16 MSI, and hierarchical LI (2 in layer I, 9 in layer II, and 11 in layer III). (3) In terms of the horizontal estimation of the defoliation rate, the model performance index of the CNNRHSI model (MPI = 0.9383) was significantly better than that of RFRMSI (MPI = 0.8817), indicating that the continuous bands of hyperspectral could better monitor the subtle changes of LLR. (4) The I-CNNRHSI+LI, II-CNNRHSI+LI, and III-CNNRHSI+LI vertical estimation models were constructed by combining the CNNRHSI model with the best accuracy and the LI sensitive to different vertical levels, respectively, and their MPIs reached more than 0.8, indicating that the LLR estimation of different vertical levels had high accuracy. According to the model, the pixel-level LLR of the sample tree was estimated, and the three-dimensional display of the LLR for forest trees under the pest stress of larch caterpillars was generated, providing a high-precision research scheme for LLR estimation under pest stress. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Viewed by 224
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

23 pages, 4324 KiB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 431
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

30 pages, 5734 KiB  
Article
Evaluating Remote Sensing Products for Pasture Composition and Yield Prediction
by Karen Melissa Albacura-Campues, Izar Sinde-González, Javier Maiguashca, Myrian Herrera, Judith Zapata and Theofilos Toulkeridis
Remote Sens. 2025, 17(15), 2561; https://doi.org/10.3390/rs17152561 - 23 Jul 2025
Viewed by 331
Abstract
Vegetation and soil indices are able to indicate patterns of gradual plant growth. Therefore, productivity data may be used to predict performance in the development of pastures prior to grazing, since the morphology of the pasture follows repetitive cycles through the grazing of [...] Read more.
Vegetation and soil indices are able to indicate patterns of gradual plant growth. Therefore, productivity data may be used to predict performance in the development of pastures prior to grazing, since the morphology of the pasture follows repetitive cycles through the grazing of animals. Accordingly, in recent decades, much attention has been paid to the monitoring and development of vegetation by means of remote sensing using remote sensors. The current study seeks to determine the differences between three remote sensing products in the monitoring and development of white clover and perennial ryegrass ratios. Various grass and legume associations (perennial ryegrass, Lolium perenne, and white clover, Trifolium repens) were evaluated in different proportions to determine their yield and relationship through vegetation and soil indices. Four proportions (%) of perennial ryegrass and white clover were used, being 100:0; 90:10; 80:20 and 70:30. Likewise, to obtain spectral indices, a Spectral Evolution PSR-1100 spectroradiometer was used, and two UAVs with a MAPIR 3W RGNIR camera and a Parrot Sequoia multispectral camera, respectively, were employed. The data collection was performed before and after each cut or grazing period in each experimental unit, and post-processing and the generation of spectral indices were conducted. The results indicate that there were no significant differences between treatments for yield or for vegetation indices. However, there were significant differences in the index variables between sensors, with the spectroradiometer and Parrot obtaining similar values for the indices both pre- and post-grazing. The NDVI values were closely correlated with the yield of the forage proportions (R2 = 0.8948), constituting an optimal index for the prediction of pasture yield. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Figure 1

21 pages, 16254 KiB  
Article
Prediction of Winter Wheat Yield and Interpretable Accuracy Under Different Water and Nitrogen Treatments Based on CNNResNet-50
by Donglin Wang, Yuhan Cheng, Longfei Shi, Huiqing Yin, Guangguang Yang, Shaobo Liu, Qinge Dong and Jiankun Ge
Agronomy 2025, 15(7), 1755; https://doi.org/10.3390/agronomy15071755 - 21 Jul 2025
Viewed by 410
Abstract
Winter wheat yield prediction is critical for optimizing field management plans and guiding agricultural production. To address the limitations of conventional manual yield estimation methods, including low efficiency and poor interpretability, this study innovatively proposes an intelligent yield estimation method based on a [...] Read more.
Winter wheat yield prediction is critical for optimizing field management plans and guiding agricultural production. To address the limitations of conventional manual yield estimation methods, including low efficiency and poor interpretability, this study innovatively proposes an intelligent yield estimation method based on a convolutional neural network (CNN). A comprehensive two-factor (fertilization × irrigation) controlled field experiment was designed to thoroughly validate the applicability and effectiveness of this method. The experimental design comprised two irrigation treatments, sufficient irrigation (C) at 750 m3 ha−1 and deficit irrigation (M) at 450 m3 ha−1, along with five fertilization treatments (at a rate of 180 kg N ha−1): (1) organic fertilizer alone, (2) organic–inorganic fertilizer blend at a 7:3 ratio, (3) organic–inorganic fertilizer blend at a 3:7 ratio, (4) inorganic fertilizer alone, and (5) no fertilizer control. The experimental protocol employed a DJI M300 RTK unmanned aerial vehicle (UAV) equipped with a multispectral sensor to systematically acquire high-resolution growth imagery of winter wheat across critical phenological stages, from heading to maturity. The acquired multispectral imagery was meticulously annotated using the Labelme professional annotation tool to construct a comprehensive experimental dataset comprising over 2000 labeled images. These annotated data were subsequently employed to train an enhanced CNN model based on ResNet50 architecture, which achieved automated generation of panicle density maps and precise panicle counting, thereby realizing yield prediction. Field experimental results demonstrated significant yield variations among fertilization treatments under sufficient irrigation, with the 3:7 organic–inorganic blend achieving the highest actual yield (9363.38 ± 468.17 kg ha−1) significantly outperforming other treatments (p < 0.05), confirming the synergistic effects of optimized nitrogen and water management. The enhanced CNN model exhibited superior performance, with an average accuracy of 89.0–92.1%, representing a 3.0% improvement over YOLOv8. Notably, model accuracy showed significant correlation with yield levels (p < 0.05), suggesting more distinct panicle morphological features in high-yield plots that facilitated model identification. The CNN’s yield predictions demonstrated strong agreement with the measured values, maintaining mean relative errors below 10%. Particularly outstanding performance was observed for the organic fertilizer with full irrigation (5.5% error) and the 7:3 organic-inorganic blend with sufficient irrigation (8.0% error), indicating that the CNN network is more suitable for these management regimes. These findings provide a robust technical foundation for precision farming applications in winter wheat production. Future research will focus on integrating this technology into smart agricultural management systems to enable real-time, data-driven decision making at the farm scale. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop