Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = multiscale sample entropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3664 KB  
Review
Global Distribution and Dispersal Pathways of Riparian Invasives: Perspectives Using Alligator Weed (Alternanthera philoxeroides (Mart.) Griseb.) as a Model
by Jia Tian, Jinxia Huang, Yifei Luo, Maohua Ma and Wanyu Wang
Plants 2026, 15(2), 251; https://doi.org/10.3390/plants15020251 - 13 Jan 2026
Viewed by 196
Abstract
In struggling against invasive species ravaging riverscape ecosystems, gaps in dispersal pathway knowledge and fragmented approaches across scales have long stalled effective riparian management worldwide. To reduce these limitations and enhance invasion management strategies, selecting appropriate alien species as models for in-depth pathway [...] Read more.
In struggling against invasive species ravaging riverscape ecosystems, gaps in dispersal pathway knowledge and fragmented approaches across scales have long stalled effective riparian management worldwide. To reduce these limitations and enhance invasion management strategies, selecting appropriate alien species as models for in-depth pathway analysis is essential. Alternanthera philoxeroides (Mart.) Griseb. (alligator weed) emerges as an exemplary model species, boasting an invasion record of around 120 years spanning five continents worldwide, supported by genetic evidence of repeated introductions. In addition, the clonal reproduction of A. philoxeroides supports swift establishment, while its amphibious versatility allows occupation of varied riparian environments, with spread driven by natural water-mediated dispersal (hydrochory) and human-related vectors at multiple scales. Thus, leveraging A. philoxeroides, this review proposes a comprehensive multi-scale framework, which integrates monitoring with remote sensing, environmental DNA, Internet of Things, and crowdsourcing for real-time detection. Also, the framework can further integrate, e.g., MaxEnt (Maximum Entropy Model) for climatic suitability and mechanistic simulations of hydrodynamics and human-mediated dispersal to forecast invasion risks. Furthermore, decision-support systems developed from the framework can optimize controls like herbicides and biocontrol, managing uncertainties adaptively. At the global scale, the dispersal paradigm can employ AI-driven knowledge graphs for genetic attribution, multilayer networks, and causal inference to trace pathways and identify disruptions. Based on the premise that our multi-scale framework can bridge invasion ecology with riverscape management using A. philoxeroides as a model, we contend that the implementation of the proposed framework tackles core challenges, such as sampling biases, shifting environmental dynamics, eco–evolutionary interactions using stratified sampling, and adaptive online algorithms. This methodology is purposed to offer scalable tools for other aquatic invasives, evolving management from reactive measures to proactive, network-based approaches that effectively interrupt dispersal routes. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 9281 KB  
Article
Safety Behavior Recognition for Substation Operations Based on a Dual-Path Spatiotemporal Network
by Xiaping Zhao, Fuqi Ma, Ge Cao, Shixuan Lv and Qian Liu
Processes 2026, 14(1), 133; https://doi.org/10.3390/pr14010133 - 30 Dec 2025
Viewed by 211
Abstract
The integration of large-scale renewable energy sources has increased the complexity of operation and maintenance in modern power systems, causing on-site substation operation and maintenance activities to exhibit stronger continuity and dynamics, and thereby placing higher demands on real-time operational perception and safety [...] Read more.
The integration of large-scale renewable energy sources has increased the complexity of operation and maintenance in modern power systems, causing on-site substation operation and maintenance activities to exhibit stronger continuity and dynamics, and thereby placing higher demands on real-time operational perception and safety judgment. However, existing behavior recognition methods have difficulty accurately identifying operational states in complex scenarios involving continuous actions, partial occlusions, and fine-grained manipulations. To address these challenges, this paper proposes a safety behavior recognition method for substation operations based on a dual-path spatiotemporal network. Personnel localization is achieved using YOLOv8, while behavior classification is performed through the SlowFast framework. In the Slow pathway, an ECA attention mechanism is integrated with residual structures to enhance the representation of sustained operational postures. In the Fast pathway, a multi-path excitation residual network is introduced to fuse temporal, channel, and motion information, improving the multi-scale representation of local action variations. Furthermore, to mitigate the issue of class imbalance in substation operation data, Focal Loss based on binary cross-entropy is incorporated to adaptively down-weight easily classified samples. Experimental results demonstrate that the proposed method achieves a recognition accuracy of 87.77% and an F1-score of 85.56% across multiple operation scenarios. The results further indicate improved recognition stability and adaptability, supporting safe substation operation and maintenance in renewable energy-integrated power systems. Full article
Show Figures

Figure 1

42 pages, 3358 KB  
Article
Adaptive Event-Driven Labeling: Multi-Scale Causal Framework with Meta-Learning for Financial Time Series
by Amine Kili, Brahim Raouyane, Mohamed Rachdi and Mostafa Bellafkih
Appl. Sci. 2025, 15(24), 13204; https://doi.org/10.3390/app152413204 - 17 Dec 2025
Viewed by 916
Abstract
Financial time-series labeling remains fundamentally limited by three critical deficiencies: temporal rigidity (fixed horizons regardless of market conditions), scale blindness (single-resolution analysis), and correlation-causation conflation. These limitations cause systematic failure during regime shifts. We introduce Adaptive Event-Driven Labeling (AEDL), integrating three core innovations: [...] Read more.
Financial time-series labeling remains fundamentally limited by three critical deficiencies: temporal rigidity (fixed horizons regardless of market conditions), scale blindness (single-resolution analysis), and correlation-causation conflation. These limitations cause systematic failure during regime shifts. We introduce Adaptive Event-Driven Labeling (AEDL), integrating three core innovations: (1) multi-scale temporal analysis capturing hierarchical market patterns across five time resolutions, (2) causal inference using Granger causality and transfer entropy to filter spurious correlations, and (3) model-agnostic meta-learning (MAML) for adaptive parameter optimization. The framework outputs calibrated probability distributions enabling uncertainty-aware trading strategies. Evaluation on 16 assets spanning 25 years (2000–2025) with rigorous out-of-sample validation demonstrates substantial improvements: AEDL achieves average Sharpe ratio of 0.48 (across all models and assets) while baseline methods average near-zero or negative (Fixed Horizon: −0.29, Triple Barrier: −0.03, Trend Scanning: 0.00). Systematic ablation experiments on a 12-asset subset reveal that selective innovation deployment outperforms both minimal baselines and maximal integration: removing causal inference improves performance to 0.65 Sharpe while maintaining full asset coverage (12/12), whereas adding attention mechanisms reduces applicability to 2/12 assets due to compound filtering effects. These findings demonstrate that judicious component selection outperforms kitchen-sink approaches, with peak individual asset performance exceeding 3.0 Sharpe. Wilcoxon tests confirm statistically significant improvements over Fixed Horizon baseline (p = 0.0024). Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

26 pages, 1063 KB  
Article
Multiclass Differentiation of Dementia Subtypes Based on Low-Density EEG Biomarkers: Towards Wearable Brain Health Monitoring
by Anneliese Walsh, Shreejith Shanker and Alejandro Lopez Valdes
J. Dement. Alzheimer's Dis. 2025, 2(4), 48; https://doi.org/10.3390/jdad2040048 - 17 Dec 2025
Viewed by 341
Abstract
Background: Wearable EEG devices offer an accessible and unobtrusive system for regular brain health monitoring outside clinical settings. However, due to the current lack of data available from wearable low-density EEG devices, we need to anticipate the extraction of biomarkers for brain health [...] Read more.
Background: Wearable EEG devices offer an accessible and unobtrusive system for regular brain health monitoring outside clinical settings. However, due to the current lack of data available from wearable low-density EEG devices, we need to anticipate the extraction of biomarkers for brain health evaluation from available clinical datasets. Methods: This study evaluates multiclass dementia classification of Alzheimer’s disease, frontotemporal dementia, and healthy controls using features derived from low-density temporal EEG electrodes as a proxy for wearable EEG setups. The feature set comprises power-based metrics, including the 1/f spectral slope, and complexity metrics such as Hjorth parameters and multiscale sample entropy. Results: Our results show that multiclass differentiation of dementia, using low-density electrode configurations restricted to temporal regions, can achieve results comparable to a full-scalp configuration. Notably, electrode T5, positioned over the left temporo-posterior region, consistently outperformed other configurations, achieving a subject-level accuracy of 83.3% and an F1 score of 82.4%. Conclusions: These findings highlight the potential of single-site EEG measurement for wearable brain health devices. Full article
Show Figures

Graphical abstract

21 pages, 2556 KB  
Article
Comparison of Machine Learning Models in Nonlinear and Stochastic Signal Classification
by Elzbieta Olejarczyk and Carlo Massaroni
Appl. Sci. 2025, 15(20), 11226; https://doi.org/10.3390/app152011226 - 20 Oct 2025
Viewed by 562
Abstract
This study aims to compare different classifiers in the context of distinguishing two classes of signals: nonlinear electrocardiography (ECG) signals and stochastic artifacts occurring in ECG signals. The ECG signals from a single-lead wearable Movesense device were analyzed with a set of eight [...] Read more.
This study aims to compare different classifiers in the context of distinguishing two classes of signals: nonlinear electrocardiography (ECG) signals and stochastic artifacts occurring in ECG signals. The ECG signals from a single-lead wearable Movesense device were analyzed with a set of eight features: variance (VAR), three fractal dimension measures (Higuchi fractal dimension (HFD), Katz fractal dimension (KFD), and Detrended Fluctuation Analysis (DFA)), and four entropy measures (approximate entropy (ApEn), sample entropy (SampEn), and multiscale entropy (MSE) for scales 1 and 2). The minimum-redundancy maximum-relevance algorithm was applied for evaluation of feature importance. A broad spectrum of machine learning models was considered for classification. The proposed approach allowed for comparison of classifier features, as well as providing a broader insight into the characteristics of the signals themselves. The most important features for classification were VAR, DFA, ApEn, and HFD. The best performance among 34 classifiers was obtained using an optimized RUSBoosted Trees ensemble classifier (sensitivity, specificity, and positive and negative predictive values were 99.8, 73.7%, 99.8, and 74.3, respectively). The accuracy of the Movesense device was very high (99.6%). Moreover, the multifractality of ECG during sleep was observed in the relationship between SampEn (or ApEn) and MSE. Full article
(This article belongs to the Special Issue New Advances in Electrocardiogram (ECG) Signal Processing)
Show Figures

Figure 1

39 pages, 13725 KB  
Article
SRTSOD-YOLO: Stronger Real-Time Small Object Detection Algorithm Based on Improved YOLO11 for UAV Imageries
by Zechao Xu, Huaici Zhao, Pengfei Liu, Liyong Wang, Guilong Zhang and Yuan Chai
Remote Sens. 2025, 17(20), 3414; https://doi.org/10.3390/rs17203414 - 12 Oct 2025
Cited by 3 | Viewed by 3131
Abstract
To address the challenges of small target detection in UAV aerial images—such as difficulty in feature extraction, complex background interference, high miss rates, and stringent real-time requirements—this paper proposes an innovative model series named SRTSOD-YOLO, based on YOLO11. The backbone network incorporates a [...] Read more.
To address the challenges of small target detection in UAV aerial images—such as difficulty in feature extraction, complex background interference, high miss rates, and stringent real-time requirements—this paper proposes an innovative model series named SRTSOD-YOLO, based on YOLO11. The backbone network incorporates a Multi-scale Feature Complementary Aggregation Module (MFCAM), designed to mitigate the loss of small target information as network depth increases. By integrating channel and spatial attention mechanisms with multi-scale convolutional feature extraction, MFCAM effectively locates small objects in the image. Furthermore, we introduce a novel neck architecture termed Gated Activation Convolutional Fusion Pyramid Network (GAC-FPN). This module enhances multi-scale feature fusion by emphasizing salient features while suppressing irrelevant background information. GAC-FPN employs three key strategies: adding a detection head with a small receptive field while removing the original largest one, leveraging large-scale features more effectively, and incorporating gated activation convolutional modules. To tackle the issue of positive-negative sample imbalance, we replace the conventional binary cross-entropy loss with an adaptive threshold focal loss in the detection head, accelerating network convergence. Additionally, to accommodate diverse application scenarios, we develop multiple versions of SRTSOD-YOLO by adjusting the width and depth of the network modules: a nano version (SRTSOD-YOLO-n), small (SRTSOD-YOLO-s), medium (SRTSOD-YOLO-m), and large (SRTSOD-YOLO-l). Experimental results on the VisDrone2019 and UAVDT datasets demonstrate that SRTSOD-YOLO-n improves the mAP@0.5 by 3.1% and 1.2% compared to YOLO11n, while SRTSOD-YOLO-l achieves gains of 7.9% and 3.3% over YOLO11l, respectively. Compared to other state-of-the-art methods, SRTSOD-YOLO-l attains the highest detection accuracy while maintaining real-time performance, underscoring the superiority of the proposed approach. Full article
Show Figures

Figure 1

21 pages, 43172 KB  
Article
Surface Temperature Prediction of Grain Piles: VMD-SampEn-vLSTM-E Prediction Method Based on Decomposition and Reconstruction
by Peiru Li, Bangyu Li, Jin Qian and Liang Qi
Sustainability 2025, 17(20), 9012; https://doi.org/10.3390/su17209012 - 11 Oct 2025
Viewed by 407
Abstract
The surface temperature of grain piles is sensitive to environmental fluctuations and exhibits nonlinear, multi-scale temporal patterns, making accurate prediction crucial for grain storage risk early warning. This paper proposes a decomposition–reconstruction prediction method integrating Sample Entropy (SampEn), variational mode decomposition (VMD), and [...] Read more.
The surface temperature of grain piles is sensitive to environmental fluctuations and exhibits nonlinear, multi-scale temporal patterns, making accurate prediction crucial for grain storage risk early warning. This paper proposes a decomposition–reconstruction prediction method integrating Sample Entropy (SampEn), variational mode decomposition (VMD), and a variant Long Short-Term Memory network (vLSTM). SampEn determines the optimal decomposition parameters, VMD extracts intrinsic mode functions (IMFs), and vLSTM, with peephole connections and coupled gates, conducts synchronous multi-IMF prediction. To explicitly account for environmental influences, a support vector regression (SVR) model driven by dew point temperature and vapor pressure deficit is employed to estimate the surface temperature variation ΔT. This component enhances the adaptability of the framework to dynamic storage conditions. The environment-derived ΔT is then integrated with the VMD-SampEn-vLSTM output to obtain the final forecast. Experiments on real-granary data from Liaoning, China demonstrate that the proposed method reduces mean absolute error (MAE) and root mean square error (RMSE) by 25% and 14%, respectively, compared with baseline models, thus achieving a significant improvement in prediction performance. This integration of data-driven prediction with environmental adjustment significantly improves forecasting accuracy and robustness. Full article
Show Figures

Figure 1

26 pages, 3429 KB  
Article
A Robust AI Framework for Safety-Critical LIB Degradation Prognostics: SE-VMD and Dual-Branch GRU-Transformer
by Yang Liu, Quan Li, Jinqi Zhu, Bo Zhang and Jia Guo
Electronics 2025, 14(19), 3794; https://doi.org/10.3390/electronics14193794 - 24 Sep 2025
Viewed by 689
Abstract
Lithium-ion batteries (LIBs) are critical components in safety-critical systems such as electric vehicles, aerospace, and grid-scale energy storage. Their degradation over time can lead to catastrophic failures, including thermal runaway and uncontrolled combustion, posing severe threats to human safety and infrastructure. Developing a [...] Read more.
Lithium-ion batteries (LIBs) are critical components in safety-critical systems such as electric vehicles, aerospace, and grid-scale energy storage. Their degradation over time can lead to catastrophic failures, including thermal runaway and uncontrolled combustion, posing severe threats to human safety and infrastructure. Developing a robust AI framework for degradation prognostics in safety-critical systems is essential to mitigate these risks and ensure operational safety. However, sensor noise, dynamic operating conditions, and the multi-scale nature of degradation processes complicate this task. Traditional denoising and modeling approaches often fail to preserve informative temporal features or capture both abrupt fluctuations and long-term trends simultaneously. To address these limitations, this paper proposes a hybrid data-driven framework that combines Sample Entropy-guided Variational Mode Decomposition (SE-VMD) with K-means clustering for adaptive signal preprocessing. The SE-VMD algorithm automatically determines the optimal number of decomposition modes, while K-means separates high- and low-frequency components, enabling robust feature extraction. A dual-branch architecture is designed, where Gated Recurrent Units (GRUs) extract short-term dynamics from high-frequency signals, and Transformers model long-term trends from low-frequency signals. This dual-branch approach ensures comprehensive multi-scale degradation feature learning. Additionally, experiments with varying sliding window sizes are conducted to optimize temporal modeling and enhance the framework’s robustness and generalization. Benchmark dataset evaluations demonstrate that the proposed method outperforms traditional approaches in prediction accuracy and stability under diverse conditions. The framework directly contributes to Artificial Intelligence for Security by providing a reliable solution for battery health monitoring in safety-critical applications, enabling early risk mitigation and ensuring operational safety in real-world scenarios. Full article
Show Figures

Figure 1

29 pages, 19475 KB  
Article
Fine-Scale Grassland Classification Using UAV-Based Multi-Sensor Image Fusion and Deep Learning
by Zhongquan Cai, Changji Wen, Lun Bao, Hongyuan Ma, Zhuoran Yan, Jiaxuan Li, Xiaohong Gao and Lingxue Yu
Remote Sens. 2025, 17(18), 3190; https://doi.org/10.3390/rs17183190 - 15 Sep 2025
Cited by 2 | Viewed by 1633
Abstract
Grassland classification via remote sensing is essential for ecosystem monitoring and precision management, yet conventional satellite-based approaches are fundamentally constrained by coarse spatial resolution. To overcome this limitation, we harness high-resolution UAV multi-sensor data, integrating multi-scale image fusion with deep learning to achieve [...] Read more.
Grassland classification via remote sensing is essential for ecosystem monitoring and precision management, yet conventional satellite-based approaches are fundamentally constrained by coarse spatial resolution. To overcome this limitation, we harness high-resolution UAV multi-sensor data, integrating multi-scale image fusion with deep learning to achieve fine-scale grassland classification that satellites cannot provide. First, four categories of UAV data, including RGB, multispectral, thermal infrared, and LiDAR point cloud, were collected, and a fused image tensor consisting of 10 channels (NDVI, VCI, CHM, etc.) was constructed through orthorectification and resampling. For feature-level fusion, four deep fusion networks were designed. Among them, the MultiScale Pyramid Fusion Network, utilizing a pyramid pooling module, effectively integrated spectral and structural features, achieving optimal performance in all six image fusion evaluation metrics, including information entropy (6.84), spatial frequency (15.56), and mean gradient (12.54). Subsequently, training and validation datasets were constructed by integrating visual interpretation samples. Four backbone networks, including UNet++, DeepLabV3+, PSPNet, and FPN, were employed, and attention modules (SE, ECA, and CBAM) were introduced separately to form 12 model combinations. Results indicated that the UNet++ network combined with the SE attention module achieved the best segmentation performance on the validation set, with a mean Intersection over Union (mIoU) of 77.68%, overall accuracy (OA) of 86.98%, F1-score of 81.48%, and Kappa coefficient of 0.82. In the categories of Leymus chinensis and Puccinellia distans, producer’s accuracy (PA)/user’s accuracy (UA) reached 86.46%/82.30% and 82.40%/77.68%, respectively. Whole-image prediction validated the model’s coherent identification capability for patch boundaries. In conclusion, this study provides a systematic approach for integrating multi-source UAV remote sensing data and intelligent grassland interpretation, offering technical support for grassland ecological monitoring and resource assessment. Full article
Show Figures

Figure 1

18 pages, 2904 KB  
Article
Multiscale Average Absolute Difference (MSAAD): A Computationally Efficient and Nonparametric Adaptation of Line Length for Noisy, Uncontrolled Wearables Time Series
by Jamison H. Burks, Wendy Hartogensis, Stephan Dilchert, Ashley E. Mason and Benjamin L. Smarr
Algorithms 2025, 18(9), 577; https://doi.org/10.3390/a18090577 - 12 Sep 2025
Viewed by 699
Abstract
With the rise in physiological data sampled from wearable devices, efficient methods must be developed to encode temporal information for the comparison of time series arising from uncontrolled monitoring. We present a fast, nonparametric method called Multiscale Average Absolute Difference (MSAAD) to extract [...] Read more.
With the rise in physiological data sampled from wearable devices, efficient methods must be developed to encode temporal information for the comparison of time series arising from uncontrolled monitoring. We present a fast, nonparametric method called Multiscale Average Absolute Difference (MSAAD) to extract multiscale temporal features from wearable device data for purposes ranging from statistical analysis to machine learning inference. MSAAD outperforms comparable algorithms like multiscale sample entropy (MSSE) and multiscale Katz Fractal Dimension (MS-KFD) in terms of calculation stability on short realizations and faster runtime. MSAAD outperforms MSSE and MS-KFD by being able to separate diabetic and non-diabetic cohorts with moderate and large effect sizes in both sexes. Furthermore, it is capable of capturing “critical slowing down” in the temperature dynamics of aging populations, a phenomenon that has been previously observed in controlled settings. We propose that MSAAD is a scalable, interpretable time series feature that is capable of identifying meaningful differences in physiological time series data without making assumptions regarding underlying process models. MSAAD could improve the ability to derive insight from time series data mining for health applications. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

17 pages, 17890 KB  
Article
AnomNet: A Dual-Stage Centroid Optimization Framework for Unsupervised Anomaly Detection
by Yuan Gao, Yu Wang, Xiaoguang Tu and Jiaqing Shen
J. Imaging 2025, 11(9), 301; https://doi.org/10.3390/jimaging11090301 - 3 Sep 2025
Viewed by 806
Abstract
Anomaly detection plays a vital role in ensuring product quality and operational safety across various industrial applications, from manufacturing to infrastructure monitoring. However, current methods often struggle with challenges such as limited generalization to complex multimodal anomalies, poor adaptation to domain-specific patterns, and [...] Read more.
Anomaly detection plays a vital role in ensuring product quality and operational safety across various industrial applications, from manufacturing to infrastructure monitoring. However, current methods often struggle with challenges such as limited generalization to complex multimodal anomalies, poor adaptation to domain-specific patterns, and reduced feature discriminability due to domain gaps between pre-trained models and industrial data. To address these issues, we propose AnomNet, a novel deep anomaly detection framework that integrates a lightweight feature adapter module to bridge domain discrepancies and enhance multi-scale feature discriminability from pre-trained backbones. AnomNet is trained using a dual-stage centroid learning strategy: the first stage employs separation and entropy regularization losses to stabilize and optimize the centroid representation of normal samples; the second stage introduces a centroid-based contrastive learning mechanism to refine decision boundaries by adaptively managing inter- and intra-class feature relationships. The experimental results on the MVTec AD dataset demonstrate the superior performance of AnomNet, achieving a 99.5% image-level AUROC and 98.3% pixel-level AUROC, underscoring its effectiveness and robustness for anomaly detection and localization in industrial environments. Full article
Show Figures

Figure 1

34 pages, 10418 KB  
Article
Entropy-Fused Enhanced Symplectic Geometric Mode Decomposition for Hybrid Power Quality Disturbance Recognition
by Chencheng He, Wenbo Wang, Xuezhuang E, Hao Yuan and Yuyi Lu
Entropy 2025, 27(9), 920; https://doi.org/10.3390/e27090920 - 30 Aug 2025
Cited by 1 | Viewed by 772
Abstract
Electrical networks face operational challenges from power quality-affecting disturbances. Since disturbance signatures directly affect classifier performance, optimized feature selection becomes critical for accurate power quality assessment. The pursuit of robust feature extraction inevitably constrains the dimensionality of the discriminative feature set, but the [...] Read more.
Electrical networks face operational challenges from power quality-affecting disturbances. Since disturbance signatures directly affect classifier performance, optimized feature selection becomes critical for accurate power quality assessment. The pursuit of robust feature extraction inevitably constrains the dimensionality of the discriminative feature set, but the complexity of the recognition model will be increased and the recognition speed will be reduced if the feature vector dimension is too high. Building upon the aforementioned requirements, in this paper, we propose a feature extraction framework that combines improved symplectic geometric mode decomposition, refined generalized multiscale quantum entropy, and refined generalized multiscale reverse dispersion entropy. Firstly, based on the intrinsic properties of power quality disturbance (PQD) signals, the embedding dimension of symplectic geometric mode decomposition and the adaptive mode component screening method are improved, and the PQD signal undergoes tri-band decomposition via improved symplectic geometric mode decomposition (ISGMD), yielding distinct high-frequency, medium-frequency, and low-frequency components. Secondly, utilizing the enhanced symplectic geometric mode decomposition as a foundation, the perturbation features are extracted by the combination of refined generalized multiscale quantum entropy and refined generalized multiscale reverse dispersion entropy to construct high-precision and low-dimensional feature vectors. Finally, a double-layer composite power quality disturbance model is constructed by a deep extreme learning machine algorithm to identify power quality disturbance signals. After analysis and comparison, the proposed method is found to be effective even in a strong noise environment with a single interference, and the average recognition accuracy across different noise environments is 97.3%. Under the complex conditions involving multiple types of mixed perturbations, the average recognition accuracy is maintained above 96%. Compared with the existing CNN + LSTM method, the recognition accuracy of the proposed method is improved by 3.7%. In addition, its recognition accuracy in scenarios with small data samples is significantly better than that of traditional methods, such as single CNN models and LSTM models. The experimental results show that the proposed strategy can accurately classify and identify various power quality interferences and that it is better than traditional methods in terms of classification accuracy and robustness. The experimental results of the simulation and measured data show that the combined feature extraction methodology reliably extracts discriminative feature vectors from PQD. The double-layer combined classification model can further enhance the model’s recognition capabilities. This method has high accuracy and certain noise resistance. In the 30 dB white noise environment, the average classification accuracy of the model is 99.10% for the simulation database containing 63 PQD types. Meanwhile, for the test data based on a hardware platform, the average accuracy is 99.03%, and the approach’s dependability is further evidenced by rigorous validation experiments. Full article
Show Figures

Figure 1

14 pages, 1735 KB  
Article
Hydroelectric Unit Fault Diagnosis Based on Modified Fractional Hierarchical Fluctuation Dispersion Entropy and AdaBoost-SCN
by Xing Xiong, Zhexi Xu, Rende Lu, Yisheng Li, Bingyan Li, Fengjiao Wu and Bin Wang
Energies 2025, 18(14), 3798; https://doi.org/10.3390/en18143798 - 17 Jul 2025
Viewed by 525
Abstract
The hydropower unit is the core of the hydropower station, and maintaining the safety and stability of the hydropower unit is the first essential priority of the operation of the hydropower station. However, the complex environment increases the probability of the failure of [...] Read more.
The hydropower unit is the core of the hydropower station, and maintaining the safety and stability of the hydropower unit is the first essential priority of the operation of the hydropower station. However, the complex environment increases the probability of the failure of hydropower units. Therefore, aiming at the complex diversity of hydropower unit faults and the imbalance of fault data, this paper proposes a fault identification method based on modified fractional-order hierarchical fluctuation dispersion entropy (MFHFDE) and AdaBoost-stochastic configuration networks (AdaBoost-SCN). First, the modified hierarchical entropy and fractional-order theory are incorporated into the multiscale fluctuation dispersion entropy (MFDE) to enhance the responsiveness of MFDE to various fault signals and address its limitation of overlooking the high-frequency components of signals. Subsequently, the Euclidean distance is used to select the fractional order. Then, a novel method for evaluating the complexity of time-series signals, called MFHFDE, is presented. In addition, the AdaBoost algorithm is used to integrate stochastic configuration networks (SCN) to establish the AdaBoost-SCN strong classifier, which overcomes the problem of the weak generalization ability of SCN under the condition of an unbalanced number of signal samples. Finally, the features extracted via MFHFDE are fed into the classifier to accomplish pattern recognition. The results show that this method is more robust and effective compared with other methods in the anti-noise experiment and the feature extraction experiment. In the six kinds of imbalanced experimental data, the recognition rate reaches more than 98%. Full article
Show Figures

Figure 1

22 pages, 3279 KB  
Article
HA-CP-Net: A Cross-Domain Few-Shot SAR Oil Spill Detection Network Based on Hybrid Attention and Category Perception
by Dongmei Song, Shuzhen Wang, Bin Wang, Weimin Chen and Lei Chen
J. Mar. Sci. Eng. 2025, 13(7), 1340; https://doi.org/10.3390/jmse13071340 - 13 Jul 2025
Cited by 1 | Viewed by 871
Abstract
Deep learning models have obvious advantages in detecting oil spills, but the training of deep learning models heavily depends on a large number of samples of high quality. However, due to the accidental nature, unpredictability, and urgency of oil spill incidents, it is [...] Read more.
Deep learning models have obvious advantages in detecting oil spills, but the training of deep learning models heavily depends on a large number of samples of high quality. However, due to the accidental nature, unpredictability, and urgency of oil spill incidents, it is difficult to obtain a large number of labeled samples in real oil spill monitoring scenarios. Surprisingly, few-shot learning can achieve excellent classification performance with only a small number of labeled samples. In this context, a new cross-domain few-shot SAR oil spill detection network is proposed in this paper. Significantly, the network is embedded with a hybrid attention feature extraction block, which consists of a coordinate attention module to perceive the channel information and spatial location information, as well as a global self-attention transformer module capturing the global dependencies and a multi-scale self-attention module depicting the local detailed features, thereby achieving deep mining and accurate characterization of image features. In addition, to address the problem that it is difficult to distinguish between the suspected oil film in seawater and real oil film using few-shot due to the small difference in features, this paper proposes a double loss function category determination block, which consists of two parts: a well-designed category-perception loss function and a traditional cross-entropy loss function. The category-perception loss function optimizes the spatial distribution of sample features by shortening the distance between similar samples while expanding the distance between different samples. By combining the category-perception loss function with the cross-entropy loss function, the network’s performance in discriminating between real and suspected oil films is thus maximized. The experimental results effectively demonstrate that this study provides an effective solution for high-precision oil spill detection under few-shot conditions, which is conducive to the rapid identification of oil spill accidents. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

19 pages, 10143 KB  
Article
A Multi-Stage Enhancement Based on the Attenuation Characteristics of X-Band Marine Radar Images for Oil Spill Extraction
by Peng Liu, Xingquan Zhao, Xuchong Wang, Pengzhe Shao, Peng Chen, Xueyuan Zhu, Jin Xu, Ying Li and Bingxin Liu
Oceans 2025, 6(3), 39; https://doi.org/10.3390/oceans6030039 - 1 Jul 2025
Cited by 1 | Viewed by 990
Abstract
Marine oil spills cause significant environmental damage worldwide. Marine radar imagery is used for oil spill detection. However, the rapid attenuation of backscatter intensity with increasing distance limits detectable coverage. A multi-stage image enhancement framework integrating background clutter fitting subtraction, Multi-Scale Retinex, and [...] Read more.
Marine oil spills cause significant environmental damage worldwide. Marine radar imagery is used for oil spill detection. However, the rapid attenuation of backscatter intensity with increasing distance limits detectable coverage. A multi-stage image enhancement framework integrating background clutter fitting subtraction, Multi-Scale Retinex, and Gamma correction is proposed. Experimental results using marine radar images sampled in the oil spill incident in Dalian 2010 are used to demonstrate the significant improvements. Compared to Contrast-Limited Adaptive Histogram Equalization and Partially Overlapped Sub-block Histogram Equalization, the proposed method enhances image contrast by 24.01% and improves the measurement of enhancement by entropy by 17.11%. Quantitative analysis demonstrates 95% oil spill detection accuracy through visual interpretation, while significantly expanding detectable coverage for oil extraction. Full article
Show Figures

Figure 1

Back to TopTop