A Robust AI Framework for Safety-Critical LIB Degradation Prognostics: SE-VMD and Dual-Branch GRU-Transformer
Abstract
1. Introduction
- (1)
- A Frequency-Aware Dual-Branch Architecture for Multi-Scale Degradation Modeling: We propose a novel dual-branch deep learning framework that explicitly models both abrupt and gradual degradation patterns in LIBs. High-frequency dynamics (e.g., sudden capacity drops) are captured by Gated Recurrent Units (GRUs), while low-frequency trends (e.g., long-term capacity fade) are modeled by Transformers. A learnable fusion module dynamically integrates these pathways based on their temporal characteristics, enhancing robustness against noise, adversarial perturbations, and heterogeneous aging behaviors. This architecture enables reliable generalization—particularly critical in safety-critical applications where false negatives may lead to catastrophic failures.
- (2)
- Adaptive and Interpretable Signal Decomposition for Frequency-Specific Feature Extraction: To enable the frequency-aware design of the dual-branch model, we introduce an adaptive decomposition strategy combining Sample Entropy-based Variational Mode Decomposition (SE-VMD) with K-means clustering. SE-VMD automatically determines the optimal number of intrinsic mode functions (IMFs) by minimizing sample entropy, eliminating the need for manual parameter tuning. Subsequently, IMFs are grouped into high- and low-frequency components using a hybrid feature space (frequency centroid and sample entropy), ensuring both physical interpretability and robustness to measurement noise. This decomposition provides a principled, data-driven basis for routing signals to specialized subnetworks.
- (3)
- Systematic Empirical Guidelines for Temporal Context Selection in Battery Prognostics: We conduct a comprehensive experimental study on the impact of sliding window size—a critical yet often overlooked hyperparameter—in battery degradation modeling. Our results demonstrate that window length significantly affects both decomposition quality and model performance, with an optimal range yielding the best trade-off between short-term responsiveness and long-term trend stability. These findings provide actionable design principles for configuring temporal context in real-world battery health monitoring systems, improving prediction reliability across diverse aging scenarios.
2. Literature Review
2.1. Physics-Based Models
2.2. Data-Driven Approaches
2.3. Hybrid Strategies
3. Methodology
3.1. Overview
3.1.1. Battery Degradation Indicator Selection
3.1.2. Sequence Segmentation via Sliding Window Technique
3.1.3. Signal Decomposition Using Sample Entropy-Guided VMD (SE-VMD)
3.1.4. Dual-Branch Temporal Modeling with Transformer and GRU Networks
3.1.5. Degradation Prognostics and SOH Estimation
3.2. Signal Decomposition
3.2.1. Traditional VMD Methodology
3.2.2. Sample Entropy-Guided VMD with K-Means Clustering for Adaptive Signal Separation
Algorithm 1: Sample Entropy-Guided VMD with K-means Clustering for Adaptive Signal Separation in Lithium-Ion Battery Degradation Analysis | |||
Input: (1) A sequence of remaining capacity measurements , where N is the total number of samples. (2) Divides S into overlapping subsequences , where Window size: W. Subsequence count: M = N – W + 1(since the step size Δ = 1). Each subsequence , where i=1,2,...,M. Output: (1) HF Signal Set: , where contains high-frequency IMFs of subsequence . (2) LF Signal Set: , where contains low-frequency IMFs of subsequence . Algorithm Steps: 1: Initialize Parameters Set decomposition mode range ,. 2: For each subsequential ; (2.1) Initialize ; (2.2) Apply VMD to decompose into k intrinsic mode functions (IMFs): | |||
(5) | |||
(2.3) Dynamic Adjustment of Sample Entropy Parameters: For each IMF , compute its standard deviation , and set . (2.4) Calculate the sample entropy for each using: | |||
, | (6) | ||
where is the number of m-length subsequeces within tolerance , and is the number of (m+1)-length subsequences. (2.5) Weighted Average Sample Entropy: Assign weights to each based on the IMF’s center frequency : | |||
(7) | |||
(2.6) Iteratively Update k: Increment k = k + 1 if k < kmax return to Step (2.2). (2.7) Select Optimal k* Choose the that minimizes the weighted sample entropy: | |||
. | (8) | ||
(2.8) K-means Clustering for High/Low Frequency Separation: For the k* IMFs of (a) Extract feature vectors for each . (b) Apply K-means (K = 2) with to cluster IMFs into HF and LF groups. (3) Signal Alignment and Output: (3.1) Standardization: Z-score normalize all high/low-frequency IMFs to remove scale differences. (3.2) Padding for Subsequence Alignment: If subsequences have varying numbers of IMFs in high/low clusters: Pad with zeros or mean values to ensure uniform length across all samples. (3.3) Output Format: Output HF set and LF set for subsequent modeling. |
3.2.3. Sample Entropy-Guided VMD with K-Means Clustering for Adaptive Signal Separation
3.3. Design of the Time-Series Feature Extraction Model
3.3.1. Transformer-Based Low-Frequency Feature Extraction Branch
3.3.2. GRU-Based High-Frequency Trend Modeling Branch
3.3.3. Cross-Scale Feature Fusion
4. Experimental Design and Results Analysis
4.1. Dataset
4.1.1. NASA
4.1.2. CALCE
4.2. Experimental Parameter Settings
4.3. Core Experiment
4.3.1. Experimental Results
4.3.2. Discussion on the Impact of Window Size on Prediction Performance
4.3.3. Comparison with Other Experimental Methods
4.4. Ablation Study on Signal Decomposition Methods
- (1)
- SE-VMD exhibits the narrowest interquartile range (IQR) and the lowest median RMSE, indicating minimal variance and higher stability.
- (2)
- Traditional VMD shows moderate performance, but its IQR is wider than SE-VMD, with some outliers, suggesting limited adaptability to complex patterns.
- (3)
- The no-decomposition method has the widest IQR and highest median RMSE, reflecting significant variability and instability, particularly in datasets with abrupt degradation (e.g., NASA-B0007).
4.5. Computational Efficiency Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
CALCE dataset
References
- Nekahi, A.; Reddy, A.K.M.R.; Li, X.; Deng, S.; Zaghib, K. Rechargeable Batteries for the Electrification of Society: Past, Present, and Future. Electrochem. Energy Rev. 2025, 8, 1–30. [Google Scholar]
- Gharehghani, A.; Rabiei, M.; Mehranfar, S.; Saeedipour, S.; Andwari, A.M.; García, A.; Reche, C.M. Progress in Battery Thermal Management Systems Technologies for Electric Vehicles. Renew. Sustain. Energy Rev. 2024, 202, 114654. [Google Scholar] [CrossRef]
- Bokkassam, S.D.; Krishnan, J.N. Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining. Battery Energy 2024, 3, 20240022. [Google Scholar]
- Frost, S.; Welford, R.; Cheung, D. CSR Asia News Review: October–December 2006. Corp. Soc. Responsib. Environ. Manag. 2007, 14, 52–59. [Google Scholar] [CrossRef]
- Baird, A.R.; Archibald, E.J.; Marr, K.C.; Ezekoye, O.A. Explosion hazards from lithium-ion battery vent gas. J. Power Sources 2020, 446, 227257. [Google Scholar] [CrossRef]
- Rezvanizaniani, S.M.; Liu, Z.; Chen, Y.; Lee, J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J. Power Sources 2014, 256, 110–124. [Google Scholar] [CrossRef]
- Zhou, B.; Cheng, C.; Ma, G.; Zhang, Y. Remaining useful life prediction of lithium-ion battery based on attention mechanism with positional encoding. IOP Conf. Ser. Mater. Sci. Eng. 2020, 895, 012006. [Google Scholar] [CrossRef]
- Guo, W.; Sun, Z.; Vilsen, S.B.; Meng, J.; Stroe, D.I. Review of “grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods. J. Energy Storage 2022, 56, 105992. [Google Scholar] [CrossRef]
- Li, D.; Yang, L.; Li, C. Control-oriented thermal-electrochemical modeling and validation of large size prismatic lithium battery for commercial applications. Energy 2021, 214, 119057. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, P.; Dai, J.; Gui, W. Estimating the state-of-charge of lithium-ion battery using an H-infinity observer based on electrochemical impedance model. IEEE Access 2020, 99, 1. [Google Scholar] [CrossRef]
- Zhang, C.; Allafi, W.; Dinh, Q.; Ascencio, P.; Marco, J. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique. Energy 2018, 142, 678–688. [Google Scholar] [CrossRef]
- Naseri, F.; Schaltz, E.; Stroe, D.-I.; Gismero, A.; Farjah, E. An enhanced equivalent circuit model with real-time parameter identification for battery state-of-charge estimation. IEEE Trans. Ind. Electron. 2022, 69, 3743–3751. [Google Scholar] [CrossRef]
- Zhang, C.; He, Y.; Yuan, L.; Xiang, S.; Wang, J. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM. Comput. Intell. Neurosci. 2015, 2015, 14. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Ye, M.; Zhang, C.; Wang, Q.; Lian, G.; Xia, B. Integrating Mechanism and Machine Learning Based Capacity Estimation for LiFePO4 Batteries Under Slight Overcharge Cycling. Energy 2024, 296, 131208. [Google Scholar] [CrossRef]
- Kim, S.; Lee, P.-Y.; Lee, M.; Kim, J.; Na, W. Improved state-of-health prediction based on auto-regressive integrated moving average with exogenous variables model in overcoming battery degradation-dependent internal parameter variation. J. Energy Storage 2022, 46, 103888. [Google Scholar] [CrossRef]
- Wang, Z.; Shangguan, W.; Peng, C.; Meng, Y.; Chai, L.; Cai, B. A Predictive Maintenance Strategy for a Single Device Based on Remaining Useful Life Prediction Information: A Case Study on Railway Gyroscope. IEEE Trans. Instrum. Meas. 2024, 73, 1–14. [Google Scholar] [CrossRef]
- Liu, Z.; He, H.; Xie, J.; Wang, K.; Huang, W. Self-discharge prediction method for lithium-ion batteries based on improved support vector machine. J. Energy Storage 2022, 55, 105571. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction of lithiumion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long short-term memory network for remaining useful life estimation. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Piscataway, NJ, USA, 19–21 June 2017; IEEE: New York, NY, USA, 2017; pp. 88–95. [Google Scholar]
- Gugulothu, N.; Tv, V.; Malhotra, P.; Vig, L.; Agarwal, P.; Shroff, G. Predicting remaining useful life using time series embeddings based on recurrent neural networks. Int. J. Progn. Health Manag. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Catelani, M.; Ciani, L.; Fantacci, R.; Patrizi, G.; Picano, B. Remaining useful life estimation for prognostics of lithium-ion batteries based on recurrent neural network. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Khalid, A.; Sundararajan, A.; Acharya, I.; Sarwat, A.I. Prediction of liion battery state of charge using multilayer perceptron and long short-term memory models. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Mo, Y.; Wu, Q.; Li, X.; Huang, B. Remaining useful life prediction of lithium-ion battery based on AConvST-LSTM-Net-TL. Phys. Scr. 2025, 100, 026010. [Google Scholar] [CrossRef]
- Mo, Y.; Wu, Q.; Li, X.; Huang, B. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit. J. Intell. Manuf. 2021, 32, 1997–2006. [Google Scholar] [CrossRef]
- Jha, A.; Dorkar, O.; Biswas, A.; Emadi, A. iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries. In Proceedings of the 2024 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 19–21 June 2024. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhang, M.; Jiang, L. Bayesian Meta Random Graph Implicit Enhanced Network for Lithium-Ion Batteries Remaining Useful Life Prediction With Few-Shot and Uncertainty Interference. IEEE Trans. Transport. Electrific. 2025, 11, 9877. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Shi, J.; Yue, D.; Shi, G.; Lyu, D. Estimating Lithium-Ion Battery Health Status: A Temporal Deep Learning Approach With Uncertainty Representation. IEEE Sens. J. 2025, 25, 26931–26948. [Google Scholar] [CrossRef]
- Chen, C.; Tao, G.; Shi, J.; Shen, M.; Zhu, Z.H. A Lithium-Ion Battery Degradation Prediction Model With Uncertainty Quantification for Its Predictive Maintenance. IEEE Trans. Ind. Electron. 2024, 71, 3650–3659. [Google Scholar] [CrossRef]
- Ren, L.; Dong, J.; Wang, X.; Meng, Z.; Zhao, L.; Deen, M.J. A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life. IEEE Trans. Ind. Inform. 2021, 17, 3478–3487. [Google Scholar] [CrossRef]
- Shen, L.; Li, J.; Zuo, L.; Zhu, L.; Shen, H.T. Source-free cross-domain state of charge estimation of lithium-ion batteries at different ambient temperatures. IEEE Trans. Power Electron. 2023, 38, 6851–6862. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, D. Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms. Reliab. Eng. Syst. Saf. 2023, 230, 108947. [Google Scholar] [CrossRef]
- Tong, A.; Zhang, J.; Xie, L. Intelligent Fault Diagnosis of Rolling Bearing Based on Gramian Angular Difference Field and Improved Dual Attention Residual Network. Sensors 2024, 24, 2156. [Google Scholar] [CrossRef]
- Cai, Y.; Li, W.; Zahid, T.; Zheng, C.; Zhang, Q.; Xu, K. Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model. Heliyon 2023, 9, 13. [Google Scholar] [CrossRef]
- Wu, M.; Yue, C.; Zhang, F.; Li, J.; Huang, W.; Hu, S.; Tang, J. A combined GRU-MLR method for predicting the remaining useful life of lithium batteries under multiscale decomposition. Energy Storage Sci. Technol. 2023, 12, 2220. [Google Scholar]
- Liu, Y.; Han, L.; Wang, Y.; Zhu, J.; Zhang, B.; Guo, J. An Evolutionary Deep Learning Framework for Accurate Remaining Capacity Prediction in Lithium-Ion Batteries. Electronics 2025, 14, 400. [Google Scholar] [CrossRef]
- Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved Complete Ensemble EMD: A Suitable Tool for Biomedical Signal Processing. Biomed. Signal Process. Control 2014, 14, 19–29. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Wang, R.; Hou, Q.L.; Shi, R.Y.; Zhou, Y.X.; Hu, X. Remaining useful life prediction method of lithium battery based on variational mode decomposition and integrated deep model. Chin. J. Sci. Instrum. 2021, 42, 111–120. [Google Scholar]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Bhaskar, S.; Kai, G. Battery Data Set. In NASA AMES Prognostics Data Repository; NASA Ames Research Center: Moffett Field, CA, USA, 2007. [Google Scholar]
- CALCE Battery Group. CALCE Lithium-Ion Battery Aging Dataset. University of Maryland. 2020. Available online: http://calce.umd.edu/battery-data (accessed on 22 September 2025).
- Zhou, X. Open-Source Code and Preprocessed CALCE Dataset for Battery Prognostics. GitHub Repository. 2021. Available online: https://github.com/XiuzeZhou/CALCE (accessed on 22 September 2025).
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1325–1338. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, Y.; Yang, B. Prediction for Remaining Useful Life of Lithium-ion Batteries Based on NGO-VMD and LSTM. In Proceedings of the 2024 Prognostics and System Health Management Conference (PHM), Stockholm, Sweden, 28–31 May 2024. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, L.; Bai, W.-L.; Feng, H.-X.; Wang, Z.-Y. Seismic Signal Analysis Based on Adaptive Variational Mode Decomposition for High-speed Rail Seismic Waves. Appl. Geophys. Bull. Chin. Geophys. Soc. 2024, 21, 358–371. [Google Scholar] [CrossRef]
- Liu, D.; Pang, J.; Zhou, J.; Peng, Y.; Pecht, M. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 2013, 53, 832–839. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proc. AAAI Conf. Artif. Intell. 2020, 35, 11106–11115. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation Long-Term Series Forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments. Appl. Energy 2024, 358, 122555. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, L.; Xiao, G.; Wang, P.; Gu, Y.; Lu, J. Elevator fault diagnosis based on digital twin and PINNs-e-RGCN. Sci. Rep. 2024, 14, 3071. [Google Scholar] [CrossRef] [PubMed]
Component | Parameter | Value | Function |
---|---|---|---|
Sliding Window | Window Length (w) | 12, 24, 48 | Controls the time span of the input sequence |
Step Size (s) | 1 | Ensures maximum temporal overlap and dense prediction | |
Sample Entropy-Guided VMD (SE-VMD) | Sample Entropy Parameters (r, m) | R = 0.15 × σ, m = 2 | Automatically determines optimal IMF count via signal complexity analysis (normalized by signal standard deviation σ) |
kmin | 2 | Ensures sufficient frequency separation to distinguish HF/LF components | |
kmax | 12 | Prevents over-decomposition and balances computational efficiency | |
K-means Clustering | Cluster Count = 2 | Separates IMFs into HF and LF subgroups | |
Transformer | Number of Encoder Layers | 3 | Captures global temporal dependencies |
Number of Attention Heads | 4 | ||
Gated Recurrent Unit (GRU) | Number of Hidden Units | 64 | Extracts local temporal features |
Training Optimization | Learning Rate | 5 × 10−4 | Ensures stable training |
SIZE | GROUP | MSE | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|---|---|
12 | B0005 | 0.000189 | 0.013753 | 0.007398 | 0.4585% | 0.9926 |
B0006 | 0.000699 | 0.026445 | 0.015865 | 0.9700% | 0.9827 | |
B0007 | 0.000174 | 0.013177 | 0.006836 | 0.4057% | 0.9905 | |
B0018 | 0.000580 | 0.024087 | 0.013074 | 0.8241% | 0.9632 | |
MEAN | 0.000410 | 0.019365 | 0.010793 | 0.6645% | 0.9822 | |
24 | B0005 | 0.000193 | 0.013880 | 0.007972 | 0.5083% | 0.9927 |
B0006 | 0.000638 | 0.025268 | 0.016531 | 1.0802% | 0.9818 | |
B0007 | 0.000170 | 0.013056 | 0.006773 | 0.4106% | 0.9904 | |
B0018 | 0.000587 | 0.024233 | 0.012820 | 0.8197% | 0.9568 | |
MEAN | 0.000397 | 0.019109 | 0.011024 | 0.7047% | 0.9804 | |
48 | B0005 | 0.000149 | 0.012206 | 0.006971 | 0.4591% | 0.9902 |
B0006 | 0.000486 | 0.022055 | 0.013554 | 0.9143% | 0.9686 | |
B0007 | 0.000189 | 0.013746 | 0.006634 | 0.4263% | 0.9696 | |
B0018 | 0.000495 | 0.022239 | 0.012456 | 0.8264% | 0.9351 | |
MEAN | 0.000333 | 0.017686 | 0.009832 | 0.6649% | 0.9679 |
SIZE | GROUP | MSE | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|---|---|
12 | CS2_35 | 0.000232 | 0.015235 | 0.007377 | 1.1386% | 0.9941 |
CS2_36 | 0.000294 | 0.017140 | 0.010118 | 2.1200% | 0.9956 | |
CS2_37 | 0.000189 | 0.013749 | 0.007245 | 1.0791% | 0.9954 | |
CS2_38 | 0.000246 | 0.015684 | 0.007672 | 1.1122% | 0.9939 | |
MEAN | 0.000240 | 0.015452 | 0.008103 | 1.3625% | 0.9947 | |
24 | CS2_35 | 0.000269 | 0.016401 | 0.008042 | 1.3656% | 0.9937 |
CS2_36 | 0.000265 | 0.016289 | 0.009027 | 1.6603% | 0.9955 | |
CS2_37 | 0.000174 | 0.013184 | 0.006934 | 0.9299% | 0.9950 | |
CS2_38 | 0.000211 | 0.014529 | 0.007395 | 0.9970% | 0.9938 | |
MEAN | 0.000229 | 0.015096 | 0.007849 | 1.2382% | 0.9945 | |
48 | CS2_35 | 0.000243 | 0.015588 | 0.007799 | 1.2194% | 0.9939 |
CS2_36 | 0.000242 | 0.015546 | 0.008860 | 1.3992% | 0.9956 | |
CS2_37 | 0.000219 | 0.014786 | 0.008646 | 1.2785% | 0.9948 | |
CS2_38 | 0.000246 | 0.015687 | 0.007649 | 1.1258% | 0.9939 | |
MEAN | 0.000237 | 0.015352 | 0.008238 | 1.2557% | 0.9945 |
MODEL | GROUP | MSE | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|---|---|
LSTM | B0005 | 0.000230 | 0.015161 | 0.008647 | 0.5469% | 0.9912 |
B0006 | 0.000940 | 0.030652 | 0.022604 | 1.4579% | 0.9730 | |
B0007 | 0.000230 | 0.015158 | 0.008934 | 0.5431% | 0.9871 | |
B0018 | 0.000661 | 0.025709 | 0.016078 | 1.0344% | 0.9514 | |
MEAN | 0.000515 | 0.02167 | 0.014066 | 0.8956% | 0.9756 | |
TRANSFORMER | B0005 | 0.000382 | 0.019547 | 0.014077 | 0.8867% | 0.9854 |
B0006 | 0.001328 | 0.036444 | 0.026446 | 1.6920% | 0.9618 | |
B0007 | 0.000676 | 0.026006 | 0.021832 | 1.3468% | 0.9619 | |
B0018 | 0.001367 | 0.036974 | 0.025771 | 1.6850% | 0.8995 | |
MEAN | 0.000885 | 0.029743 | 0.022032 | 1.3526% | 0.9571 | |
OURS | B0005 | 0.000193 | 0.013880 | 0.007972 | 0.5083% | 0.9927 |
B0006 | 0.000638 | 0.025268 | 0.016531 | 1.0802% | 0.9818 | |
B0007 | 0.000170 | 0.013056 | 0.006773 | 0.4106% | 0.9904 | |
B0018 | 0.000587 | 0.024233 | 0.012820 | 0.8197% | 0.9568 | |
MEAN | 0.000397 | 0.019109 | 0.011024 | 0.7047% | 0.9804 |
MODEL | GROUP | MSE | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|---|---|
LSTM | CS2_35 | 0.000295 | 0.017178 | 0.008571 | 1.4739% | 0.9932 |
CS2_36 | 0.000330 | 0.018175 | 0.010595 | 2.3757% | 0.9953 | |
CS2_37 | 0.000184 | 0.013559 | 0.007560 | 1.0125% | 0.9948 | |
CS2_38 | 0.000216 | 0.014687 | 0.007626 | 1.0253% | 0.9937 | |
MEAN | 0.000256 | 0.015990 | 0.008588 | 1.4719% | 0.9942 | |
TRANSFORMER | CS2_35 | 0.000526 | 0.022932 | 0.013436 | 2.3306% | 0.9876 |
CS2_36 | 0.000500 | 0.022357 | 0.013553 | 2.8367% | 0.9915 | |
CS2_37 | 0.000340 | 0.018429 | 0.011192 | 1.7994% | 0.9902 | |
CS2_38 | 0.000374 | 0.019328 | 0.011936 | 1.8752% | 0.9891 | |
MEAN | 0.000435 | 0.020766 | 0.012529 | 2.1604% | 0.9896 | |
OURS | CS2_35 | 0.000269 | 0.016401 | 0.008042 | 1.3656% | 0.9937 |
CS2_36 | 0.000265 | 0.016289 | 0.009027 | 1.6603% | 0.9955 | |
CS2_37 | 0.000174 | 0.013184 | 0.006934 | 0.9299% | 0.9950 | |
CS2_38 | 0.000211 | 0.014529 | 0.007395 | 0.9970% | 0.9938 | |
MEAN | 0.000229 | 0.015096 | 0.007849 | 1.2382% | 0.9945 |
NASA | CALCE | |||||||
---|---|---|---|---|---|---|---|---|
METHOD | B0005 | B0006 | B0007 | B0018 | CS2_35 | CS2_36 | CS2_37 | CS2_38 |
None | 0.048935 | 0.041679 | 0.081783 | 0.043439 | 0.065873 | 0.071812 | 0.059725 | 0.065565 |
VMD | 0.027204 | 0.042358 | 0.027838 | 0.041314 | 0.035466 | 0.036286 | 0.033182 | 0.034589 |
SE-VMD | 0.012206 | 0.022055 | 0.013746 | 0.022239 | 0.016401 | 0.016289 | 0.013184 | 0.014529 |
METHOD | Decomposition Time (s) | Training Time per Epoch (s) | Inference Latency (ms) | Total Pipeline Time (s) |
---|---|---|---|---|
None | 0 | 3.32 | 0.01461 | 123.6 |
VMD | 94.59 | 2.52 | 0.0159 | 219 |
SE-VMD | 613.61 | 3.5 | 0.01989 | 838.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, Q.; Zhu, J.; Zhang, B.; Guo, J. A Robust AI Framework for Safety-Critical LIB Degradation Prognostics: SE-VMD and Dual-Branch GRU-Transformer. Electronics 2025, 14, 3794. https://doi.org/10.3390/electronics14193794
Liu Y, Li Q, Zhu J, Zhang B, Guo J. A Robust AI Framework for Safety-Critical LIB Degradation Prognostics: SE-VMD and Dual-Branch GRU-Transformer. Electronics. 2025; 14(19):3794. https://doi.org/10.3390/electronics14193794
Chicago/Turabian StyleLiu, Yang, Quan Li, Jinqi Zhu, Bo Zhang, and Jia Guo. 2025. "A Robust AI Framework for Safety-Critical LIB Degradation Prognostics: SE-VMD and Dual-Branch GRU-Transformer" Electronics 14, no. 19: 3794. https://doi.org/10.3390/electronics14193794
APA StyleLiu, Y., Li, Q., Zhu, J., Zhang, B., & Guo, J. (2025). A Robust AI Framework for Safety-Critical LIB Degradation Prognostics: SE-VMD and Dual-Branch GRU-Transformer. Electronics, 14(19), 3794. https://doi.org/10.3390/electronics14193794